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Epigenetic changes are associated with the regulation
of transcription of key cell regulatory genes [micro
RNAs (miRNAs)] during different types of liver injury.
This study evaluated the role of methylation-associ-
ated miRNA, miR-34a, in alcoholic liver diseases. We
identified that ethanol feeding for 4 weeks signifi-
cantly up-regulated 0.8% of known miRNA compared
with controls, including miR-34a. Treatment of nor-
mal human hepatocytes (N-Heps) and cholangiocytes
[human intrahepatic biliary epithelial cells (HiBECs)]
with ethanol and lipopolysaccharide induced a signif-
icant increase of miR-34a expression. Overexpression
of miR-34a decreased ethanol-induced apoptosis in
both N-Heps and HiBECs. In support of the concept
that the 5=-promoter region of miR-34a was noted to
be embedded within a CpG island, the expression
level of miR-34a was significantly increased after
demethylation treatment in N-Heps and HiBECs. By
methylation-specific PCR, we confirmed that miR-34a
activation is associated with ethanol-linked hypom-
ethylation of the miR-34a promoter. A combination of

bioinformatics, dual-luciferase reporter assay, mass

804
spectrometry, and Western blot analysis revealed that
caspase-2 and sirtuin 1 are the direct targets of miR-
34a. Furthermore, modulation of miR-34a also altered
expression of matrix metalloproteases 1 and 2, the
mediators involved in hepatic remodeling during
alcoholic liver fibrosis. These findings provide the
basis for an exciting field in which the epigenomic
microRNAs of hepatic cells may be manipulated with
potential therapeutic benefits in human alcoholic
liver diseases. (Am J Pathol 2012, 181:804–817; http://dx.

doi.org/10.1016/j.ajpath.2012.06.010)

Long-term alcohol consumption and the associated de-
velopment of alcoholic liver disease (ALD) is a major
health concern for the United States. Approximately 15%
of individuals with alcoholism in the United States even-
tually develop ALD, one of the leading causes of liver
diseases and liver-related deaths worldwide. ALDs en-
compass a broad spectrum of clinical features of alco-
holic fatty liver, alcoholic steatohepatitis, alcoholic cirrho-
sis, and increased risk of hepatocellular carcinoma
(HCC).1 The pathologic mechanisms of ALD involve com-
plex interactions between the direct effects of alcohol
and its toxic metabolites on various cell types in the liver,
including induction of reactive oxygen species, up-regu-
lation of the inflammatory cascade, and other cell-spe-
cific effects in the liver. Prominent features of ALD include
ethanol-mediated cellular alterations, steatosis, and he-
patic inflammation. However, a comprehensive under-
standing of the mechanisms involved in the pathogenesis
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of ALD remains incomplete. Thus, an understanding of
the molecular mechanisms regulating hepatobiliary cell
injury is important and may lead to more effective thera-
peutic approaches for ALD.

MicroRNAs (miRNAs) are a group of noncoding RNA
that plays an important role in human liver diseases and
have recently become of interest in the pathogenesis of
ALD.2,3 In mammals, miRNAs can negatively regulate
their targets by either binding to imperfect complemen-
tary sites within the 3=-untranslated region (UTR) of their
mRNA targets or by targeting specific cleavage of ho-
mologous mRNAs.4 In our previous studies, we observed
the increased expression of several miRNAs, including
miR-181 and let-7 family members that are involved in
hepatic cell survival, remodeling, and transformation.5

Similarly, altered expression of several miRNAs has been
described in expression profiling of human liver diseases
and in animal studies.6–8 We postulate that alterations in
the expression of miRNAs influence cellular behavior,
such as survival and remodeling by alteration of key
cellular targets. In fact, aberrant expression of miRNAs,
such as miR-181, alters the cellular expression of TIMP3
and Nemo-like kinase.5 However, the contribution of ab-
errantly expressed miRNAs to hepatic cell responses in
ALD is unknown.

The regulation of miR-34a by the transcription factor
p53 suggests a potential role for miR-34 in the modulation
of hepatic cell behavior.9–12 Normally, p53 inhibits cell
proliferation and stimulates cell death. However, disrup-
tion of the p53 pathway promotes liver injury. One path-
way by which p53 regulates cell growth is through
miRNA. Cellular stress stabilizes p53 that in turn regu-
lates the expression of a set of miRNA, which control
apoptosis and senescence.9–13 Recent studies show that
the miRNA miR-34a is activated by p53.9–13 E2F3, a
transcription factor involved in cell cycle progression, has
also been identified as a target of miR-34a.13,14 Although
derepression of E2F3 may promote neoplastic growth in
tumors in which miR-34a is reduced, such as gliomas,
neuroblastomas,14 and colorectal cancers,13 the overex-
pression of miR-34a during human liver regeneration
suggests the presence of additional mechanisms by
which miR-34a contributes to hepatic cell survival and
regeneration.15 Thus, we assessed the role of aberrant
expression of miR-34a in hepatic cell survival and remod-
eling during ALD by posing the following questions: i) Is
miR-34a expression altered in ethanol-exposed mice and
ALD human liver tissues? ii) Does modulation of miR-34a
alter cell survival and remodeling? iii) Is miR-34a expres-
sion be epigenetically modulated? and iv) What down-
stream targets of miR-34a are involved in ALD?

Materials and Methods

Cells and Tissues

Normal human hepatocytes (N-Heps) and cholangiocytes
[human intrahepatic biliary epithelial cells (HiBECs)] were
obtained from Sciencell (San Diego, CA). The human hep-

atocellular cancer cell line, HepG2, was obtained from the
American Type Culture Collection (Manassas, VA) and
cultured as recommended by the supplier. Cells were
grown to �75% confluency on 100-mm culture dishes.
For studies on the effects of methylation inhibition, cells
were incubated with either 10 �mol/L 5-aza-2=deoxycyt-
idine (5-Aza-CdR) or diluent (acetic acid) for 24 hours at
37°C, after which cells were washed twice with cold 1�
PBS and harvested for the isolation of genomic DNA or
total protein. Six pairs of ALD human liver samples (ad-
jacent liver tissues of HCC patients with heavy alcohol
consumption history) and normal control tissues from sur-
gical resections (distal normal liver tissue of patients with
liver hemangioma) were analyzed in a masked manner
from the Department of Hepatobiliary Surgery, Shengjing
Hospital (see Supplemental Table S1 at http://ajp.
amjpathol.org). The study protocol of human subjects for
the collection of all human materials and data were ap-
proved by the Ethics Committee of Shengjing Hospital,
China Medical University, Shenyang, China.

Transfections

Transfections were performed by nuclear electroporation
using the Nucleofector system (Amaxa Biosystems, Koln,
Germany). A total of 50 �L of 100 nmol/L microRNA
precursor, antisense inhibitor, or controls (Ambion, Aus-
tin, TX) were added to 1 � 106 cells suspended in 50 �L
of Nucleofector solution at room temperature. The se-
quences of the microRNA precursors and inhibitors used
can be obtained from Ambion. After electroporation,
transfected cells were resuspended in culture medium
containing 10% fetal bovine serum for 48 to 72 hours
before study. All studies were performed in quadruplicate
unless otherwise specified.

Animal Experiments

For long-term alcohol administration, C57BL/6 mice (10
weeks old) were aseptically implanted with gastrostomy
catheters as previously described.16,17 An increasing
dose of ethanol (22.7 to 35 g/kg per day) or control
solutions was infused for 4 weeks. All animal experiments
were performed with age- and sex-matched mice from
the same littermates and conducted in accordance with
the approved Institutional Animal Care and Use Commit-
tee protocol at the University of Southern California.

miRNA Array Hybridization and Analysis

RNA was extracted using Trizol reagent (Invitrogen,
Carlsbad, CA). Total RNA (5 �g) was reverse transcribed
using biotin end-labeled random octamer oligonucleotide
primers. Hybridization of biotin-labeled complementary
DNA was performed using a custom miRNA microarray
chip (Noncoding RNA Program at Center for Targeted Ther-
apy, M.D. Anderson Cancer Center, Houston, TX), contain-
ing 627 probes for mature miRNA corresponding to 324
different human miRNAs spotted in quadruplicate. The im-
ages were scanned quantitated using an Axon 4000B scan-
ner (Molecular Devices, Sunnyvale, CA). The scanned im-

ages were quantified using GenePix software version 6.0
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(Molecular Devices). The data from three samples for each
cell type were further analyzed by the BRB-ArrayTools soft-
ware version 4.2.1 from the National Cancer Institute
(Bethesda, MD).

Real-Time PCR for Mature miRNA

The expression of mature miRNAs in human hepatobiliary
cell lines was analyzed by TaqMan miRNA Assay (Applied
Biosystems, Foster City, CA). Briefly, single-stranded cDNA
was synthesized from 10 ng of total RNA in a 15-�L reaction
volume by using the TaqMan MicroRNA Reverse Transcrip-
tion Kit (Applied Biosystems). The reactions were incu-
bated first at 16°C for 30 minutes and then at 42°C for 30
minutes. The reactions were inactivated by incubation at
85°C for 5 minutes. Each cDNA generated was amplified
by quantitative PCR by using sequence-specific primers
from the TaqMan microRNA Assays on a MX 3000P PCR
Instrument (Stratagene, San Diego, CA). The 20-�L PCR
included 10 �L of 2� Universal PCR Master Mix (No
AmpErase UNG), 2 �L of each 10� TaqMan MicroRNA
Assay Mix, and 1.5 �L of reverse transcription product.
The reactions were incubated in a 96-well plate at 95°C
for 10 minutes, followed by 40 cycles of 95°C for 15
seconds and 60°C for 1 minute. The CT is defined as the
fractional cycle number at which the fluorescence passes
the fixed threshold.

Plasmids and Oligonucleotides for miR-34a
Methylation-Specific Luciferase Assay

Oligonucleotides were designed to the 5=-promoter re-
gion of has-miR-34a genomic sequence, and primers
were obtained from Invitrogen. A fragment of 179 to 385
that contains the identified CpG island enriched elements
of the 5=- promoter region of has-miR-34a was amplified
by PCR and cloned into the MluI and BgIII sites of the
pGL3-luciferase plasmid (Promega, Madison, WI) to form
5=-miR-34a-LUC; pCMV-Renilla was obtained from Pro-
mega. A 24-bp mutation of the hsa-miR-34a methylation
site (206 bp) GCC to TAA was performed using oligonu-
cleotides to the CpG island enriched region and a
Quikchange site mutagenesis kit (Stratagene, San Diego,
CA) according to the manufacturer’s instructions to form
miR-34a-MUT. Orientation and sequence identity were
confirmed in all plasmids by sequencing.

SuperArray Quantitative PCR Assay and
Real-Time PCR Analysis

RNA was isolated from colon tissues using TRIzol (Invit-
rogen) and cleaned with the Qiagen’s RNeasy Kit (Qia-
gen, Valencia, CA) according to the manufacturer’s pro-
tocol. The optional on-column DNase treatment was
performed. Reverse transcription was performed using 1
�g of RNA with SABios-ciences’ RT2 First Strand Kit
(SABiosciences, Frederick, MD) according to the manu-
facturer’s protocol. Mouse liver tissue cDNA was ana-
lyzed using SuperArray plates (Epigenetic Chromatin

Modification Enzymes PCR Array, SABiosciences). To
validate the translational significance of these gene expres-
sion findings, mice liver samples were analyzed using real-
time PCR. RT2 qPCR Primer Assays were obtained from
SABiosciences. Real-time PCR was performed using
SABiosciences RT2 SYBR Green/ROX qPCR Master Mix for
a Stratagene Mx3005P Real-Time PCR System according to
the manufacturer protocol. ROX was used as an endogenous
reference, and data were analyzed using SABiosciences
PCR Array Data Analysis Template. The comparative CT

method (��CT) was used for quantification of gene ex-
pression. All samples were tested in triplicate and mean
values used for quantification.

Isolation of RNA and Semiquantitative RT-PCR

The mRNA levels of DNMT3B and DNMT1 were analyzed
by semiquantitative RT-PCR. A total of 1 �g of total RNA,
isolated using an RNA isolation kit from Invitrogen, was
used in reverse transcription reactions as described by
the manufacturer. The resulting total cDNA was used in
the PCR reaction to measure the mRNA levels of
DNMT3B and DNMT1. The mRNA level of glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) was used
as internal control. PCR was performed with Taq poly-
merase, and conditions were as follows: predenaturing at
94°C for 3 minutes and 94°C for 30 seconds, 55°C for 30
seconds, and 72°C for 60 seconds. The PCR cycle num-
bers were 26 for GAPDH, 30 for DNMT1, and 35 for
DNMT3B. The primers used for RT-PCR were as follows:
DNMT3B: sense primer, 5=-AATGTGAATCCAGCCAG-
GAAAGGC-3=; antisense primer, 5=-ACTGGATTACACTC-
CAGGAACCGT-3=; DNMT1: sense primer, 5=-ACCGCTTC-
TACTTCCTCGAGGCCTA-3=; antisense primer, 5=-
GTTGCAGTCCTCTGTGAACACTGTGG-3=; GAPDH: sense
primer, 5=-AAGGCTGAGAACGGGAAGCTTGTCATCAAT-
3=; antisense primer, 5=-TTCCCGTTCAGCTCAGGGAT-
GACCTTGCCC-3=. Under the conditions used, the cDNAs
were exponentially amplified, and thus a semiquantitative
estimation of the products was possible.

HPLC-Chip/MS Analysis

The cell lysate samples (500 �g) were reduced, alky-
lated, and double digested with trypsin to generate pep-
tides. The digested peptides were dried in a SpeedVac
and resuspended in 100 �L of 0.1% formic acid in 5%
acetonitrile (mobile phase A). A total of 200 �g of pep-
tides (40 �L) was directly loaded onto a 1 � 150-mm
Poly-SEA strong cation exchange column (Michrom
Bioresources, Auburn, CA) using an Agilent 1200 au-
tosampler (Agilent Technologies, Santa Clara, CA). Pep-
tides were eluted to 10 fractions using 0 to 100 mmol/L
ammonium formate for 40 minutes (mobile phase B: 1
mmol/L ammonium formate, 10% formic acid in 5% ace-
tonitrile) and five fractions in 100 to 1000 mmol/L ammo-
nium formate for 10 minutes (on an Agilent 1200 Capillary
LC and Analytical-Fraction Collector at a flow rate of 50
�L/min). Peptides were completely dried and reconsti-
tuted in 20 �L of 0.1% trifluoroacetic acid for liquid chro-
matography coupled with tandem mass spectrometry

(LC-MS/MS) analysis using an LC/MS system consisting
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of an 1100 Series liquid chromatograph, HPLC-Chip
Cube MS interface, and 1100 Series LC/MSD Trap XCT
Ultra ion trap mass spectrometer (all Agilent Technolo-
gies). The system was equipped with an HPLC-Chip (Agi-
lent Technologies) that incorporated a 40-nL enrichment
column and a 43 � 75-�m analytical column packed with
Zorbax 300SB-C18 5-�m particles. The gain control (in-
traclass correlation coefficient) was set to 500,000 with a
maximum accumulation time of 150 milliseconds. The
coefficient of intrinsic dependence was triggered on the
six most abundant, not singly charged peptide ions in
the m/z range of 450 to 1500. Precursors were set in an
exclusion list for 1 minute after two MS/MS spectra. Co-
efficient of intrinsic dependence data were searched
against the NCBInr human database, using the Agilent
Spectrum Mill Server software version Rev A.03.03 (Agi-
lent Technologies). A Spectrum Mill autovalidation was
performed first in the protein details followed by peptide
mode using default values [minimum scores, minimum
scored peak intensity, forward minus reversed score
threshold, and rank 1 minus rank 2 score threshold]. All
protein hits found in a distinct database search by Spec-
trum Mill are nonredundant.

Western Blotting

Cells grown in 100-mm dishes were lysed and protein con-
tent quantitated using the Bradford protein assay. Equiva-
lent amounts of protein were resolved by SDS-PAGE and
transferred to nitrocellulose membranes. Membranes were
blocked and incubated with the specific primary antibody
overnight at 4°C, washed, and incubated with the appro-
priate IRDye700- and IRDye800-labeled secondary anti-
bodies (Rockland, Gilbertsville, PA) (1:1000) for 1 hour.
Blots were stripped and reprobed with mouse monoclo-
nal antibodies for �-tubulin (Sigma Chemical, St. Louis,
MO) (1:2000), which was used for normalization. Protein
expression was visualized and quantified using the LI-
COR Odyssey Infrared Imaging System (LI-COR Biosci-
ence, Lincoln, NE).

MMP Gene Expression

Real-time PCR assays were performed as described.18,19

Briefly, cDNA was generated by reverse transcription
using 1 �g of total RNA isolated using the RNA isolation
kit (Bio-Rad, Hercules, CA) and the SuperScript III Re-
verse Transcription Kit (Invitrogen). Quantitative real-time
PCR was performed on a MX 3005P PCR Instrument
(Stratagene, San Diego, CA) as described.18,19 Each
sample was tested in triplicate. The PCR products were
verified by melting curve analysis and by 1.8% agarose
gel electrophoresis of the PCR product. Matrix metallo-
proteinase (MMP) mRNA expression was normalized
against expression of �-actin used as an internal control.

Cell Migration Assay

N-Heps, HiBECs, and HepG2 cells (5 � 104 cells) were
placed into the top chamber of a BD Falcon HTS Fluo-

roBlok insert with a membrane containing 8-�m pores
(BD Biosciences, Rockville, MD) in 300 �L of serum-free
Dulbecco’s modified Eagle medium in triplicate. The in-
serts were placed into the bottom chamber wells of a
96-well plate containing Dulbecco’s modified Eagle me-
dium media and fetal bovine serum (5%) as a chemoat-
tractant. Cells that migrated through the pores of the
membrane to the bottom chamber were labeled with 8
�g/mL of calcein-AM (Molecular Probes, Eugene, OR) in
PBS for 30 minutes at 37°C. The fluorescence of migrated
cells was quantified using a fluorometer at excitation
wavelengths of 485 nm and emission wavelengths of 530
nm and expressed as arbitrary fluorescence units.

Cell Proliferation Assay

Cell proliferation was measured using the CellTiter 96
AQueous Assay Kit (Promega). Transfected cells (10,000
per well) were plated in 96-well plates (BD Biosciences)
and incubated at 37°C, and cell proliferation was as-
sessed after 72 hours as previously described.5,19

Anchorage-Independent Hepatobiliary Cell
Growth

N-Heps, HiBECs, and HepG2 cells were seeded in 96-
well plates (10,000 per well) in modified Dulbecco’s mod-
ified Eagle medium with 10% fetal bovine serum after
miRNA transfection. The final concentration of the bottom
and top feeder layers of the agar system was 0.6%, and the
cell suspension layer was 0.4%. Anchorage-independent
transformed cell growth was fluorometrically assayed after 7
days using Alamar Blue (Biosource International, Camarillo,
CA), and the SpectraMax M5 Multi-Mode Microplate
Reader (Molecular Devices Inc, Sunnyvale, CA; excitation,
530/25 nm; emission, 580/50 nm).

Luciferase Reporter Assay

Intact putative miR-34a recognition sequence from the
3=-UTR of caspase-2 (CASP2) and Sirtuin 1 (SIRT1)
(pMIR-CASP2/SIRT1-wt-3=-UTR) or with random muta-
tions (pMIR-CASP2/SIRT1-mut-3=-UTR) were cloned
downstream of the firefly luciferase reporter gene. Cells
were co-transfected with 1 �g of pMIR-CASP2/SIRT1-wt
or mut-3=-UTR construct and 1 �g of pRL-TK Renilla lu-
ciferase expression construct with or without precursor
miR-34a using TransIT-siQUEST transfection reagent (Mi-
rus, Madison, WI). Luciferase assays were performed 72
hours after transfection using the Dual Luciferase Re-
porter Assay system (Promega).

Immunohistochemical Analysis

Lobular necrosis was evaluated in liver sections stained
with H&E. Liver sections were incubated overnight at 4°C
with the selected antibody (1:50), washed in 1� PBS,
incubated for 20 minutes at room temperature with a
secondary biotinylated antibody (Dako Cytomation LSAB
Plus System-HRP, Glostrup, Denmark) and then with

Dako ABC for 20 minutes, and developed with 3–3= di-
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aminobenzidine (Dako Cytomation Liquid DAB Plus Sub-
strate Chromogen System). For all immunoreactions,
negative controls were included. Immunohistochemical
observations were taken by BX-51 light microscopy
(Olympus, Tokyo, Japan) with a Videocam (Spot Insight;
Diagnostic Instrument, Sterling Heights, MI) and pro-
cessed with an Image Analysis System.

DNA Methylation Analysis

Genomic DNA was deaminated with sodium bisulfite us-
ing EZ DNA Methylation-Direct Kit (Zymo Research, Or-
ange County, CA) according to the manufacturer’s pro-
tocol. CpG islands within the target region for miR-34a
promoter were determined using Promoter Scan (http://
bimas.dcrt.nih.gov/molbio/proscan; Advanced Biosci-
ences Computing Center, University of Minnesota, Du-
luth, MN) and CpG Island Searcher (http://ccnt.hsc.
usc.edu/cpgislands2/cpg.aspx; University of Southern
California, Los Angeles, CA). The regions were within
several hundred base pairs upstream of miR-34a precur-
sor transcription start point. Methylation-specific PCR
(MSP) was performed using primer sequences for meth-
ylated or unmethylated DNA, which were designed using
MethPrimer (http://www.urogene.org/methprimer; Univer-
sity of California At San Francisco, San Francisco, CA)20

(Table 1). The primer sets 1, 2, and 3 were used for
detection of promoter methylation region, whereas primer
sets 4 and 5 were for controls. Briefly, 3 �L of bisulfite-
treated genomic DNA was amplified by fluorescence-
based real-time MSP using SYBR Green ER qPCR
SuperMix. Real-time PCR was performed under the fol-
lowing conditions: 95°C for 10 minutes, followed by 40
cycles of 95°C for 30 seconds, 52°C for 30 seconds, and
60°C for 30 seconds. A reaction tube without any DNA
was used as a negative control. The specificity of prod-
ucts obtained was checked by dissociation curve analy-
sis. Each sample was tested in triplicate. The relative
methylated and unmethylated mRNA expression in nor-
mal or malignant cells was determined based on the
mean and SE of the threshold (CT) values for each set of

Table 1. Primers Used for Methylation-Specific PCR

Primer type Methylated primer

Target primer set 1 F: �917 5=-GGTTGAAAGGTTTTAAGAG
R: �747 5=-TTATTTCAAAAAATCGACT

Target primer set 2 F: �917 5=-GGTTGAAAGGTTTTAAGAG
R: �747 5=- TTATTTCAAAAAATCGAC

Target primer set 3 F: �914 5=-TGAAAGGTTTTAAGAGTAG
R: �747 5=-TTATTTCAAAAAATCGACT

Control primer set 4 F: �38 5=-TAGGTTTGTTTTTCGAGTTT
R: 151 5=-CTCCCACTAATCTAAACATC

Control primer set 5 F: �38 5=-TAGGTTTGTTTTTCGAGTTT
R: 151 5=-CTCCCACTAATCTAAACATC

Primer pairs were designed using MethPrimer software (http://www.u
for each pair. Sets 1 through 3 were used for detection of methylation wit
a control region.

F, forward; R, reverse.
primers (promoter region and controls).
Gelatin Zymography

Twenty-five microliters of culture supernatant was sub-
jected to electrophoresis under nondenaturing conditions
on 7.5% SDS-polyacrylamide gel containing 0.1% bovine
skin gelatin (Sigma Chemical) as substrate and analyzed.
Bands indicated the presence of gelatinase activity.

Chemicals and Reagents
Specific miRNA precursors and inhibitors were obtained
from Ambion. Rabbit anti-SIRT1, CASP2, Toll-like recep-
tor-4, �-smooth muscle actin, survivin polyclonal antibod-
ies, and DNMT3B and control small-interfering RNA plas-
mids were ordered from Santa Cruz Biotechnology Inc
(Santa Cruz, CA). 5-aza-2=deoxycytidine and acetic acid
were obtained from Sigma Chemical.

Statistical Analysis
Data are expressed as the mean � SE from at least three
separate experiments performed in triplicate, unless oth-
erwise noted. The differences between groups were ana-
lyzed using a double-sided Student’s t-test when only two
groups were present and analysis of variance when more
than two groups were present, and the null hypothesis was
rejected at the 0.05 level unless otherwise specified.

Results

Moderate Steatohepatitis Is Induced by
Long-Term Ethanol Exposure in Mice Liver
Four weeks of ethanol exposure caused significant in-
creases in liver weight, liver/body weight ratio, and serum
alanine aminotransferase level compared with control
mice (Table 2). These results, along with liver histologic
findings (Figure 1A) indicated that long-term ethanol
feeding induced moderate steatosis. Ethanol exposure–
induced liver injury was confirmed by analysis of total

Unmethylated primer

TC-3= F: �914 5=-TGAAAGGTTTTAAGAGTAGAATTGA-3=
A-3= R: �747 5=-TTATTTCAAAAAATCAACTTACATA-3=
TC-3= F: �914 5=-TGAAAGGTTTTAAGAGTAGAATTGA-3=
TA-3= R: �746 5=-TTTATTTCAAAAAATCAACTTACATA-3=
A-3= F: �914 5=-TGAAAGGTTTTAAGAGTAGAATTGA-3=
A-3= R: �747 5=-TTATTTCAAAAAATCAACTTACATA-3=
-3= F: �37 5=-AGGTTTGTTTTTTGAGTTTTTTTTG-3=
-3= R: 152 5=-TCTCCCACTAATCTAAACATCTCTCA-3=
-3= F: �38 5=-TAGGTTTGTTTTTTGAGTTTTTTTTG-3=
-3= R: 149 5=-CCCACTAATCTAAACATCTCTCACT-3=

rg/methprimer).20 The positions relative to precursor miR-34a are shown
promoter regions, whereas sets 4 and 5 were used for methylation within
TAGAA
TACGT
TAGAA
TTACG
AATCG
TACGT
TTTTC
TCTCG
TTTTC
TCTCG

rogene.o
hin the
pathologic scores (Table 2).

http://bimas.dcrt.nih.gov/molbio/proscan
http://bimas.dcrt.nih.gov/molbio/proscan
http://ccnt.hsc.usc.edu/cpgislands2/cpg.aspx
http://ccnt.hsc.usc.edu/cpgislands2/cpg.aspx
http://www.urogene.org/methprimer
http://www.urogene.org/methprimer
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miR-34a Is Aberrantly Expressed in Ethanol-
Exposed Mice Tissues

Aberrant expression of selected miRNAs has been ob-
served after alcoholic liver injury.8,21 To identify the miRNAs

Table 2. Pathophysiologic and Biochemical Characterization of
an Ethanol-Exposed Mouse Model

Control Ethanol exposed

Final body weight, g 23.75 � 0.72 24.80 � 0.66
Liver weight, g 1.02 � 0.04 2.41 � 0.19*
Liver weight/body weight, % 4.44 � 0.09 10.15 � 0.45*
Alanine aminotransferase, U/L 14.00 � 1.15 253.60 � 46.07*
Blood alcohol level, mg/dL 368.00 � 0.84 309.78 � 22.80*
Adiponectin, �g/mL 30.70 � 0.07 73.40 � 4.41*
Total pathology score 0.50 � 0.29 6.40 � 0.40*

Data are expressed as mean � SE (n � 4 to 5).
*P � 0.05 compared with the control.
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that are differentially increased in expression in ethanol-
exposed liver tissues, we analyzed miRNA expression in
three pairs of ethanol-treated mice and normal liver tissues
using a miRNA microarray platform. Of the 697 human
miRNAs represented in this microarray, the expression of
46 miRNAs was significantly altered relative to normal tis-
sues. Of these, most aberrantly expressed miRNAs were
decreased in expression. However, the expression of sev-
eral miRNAs, including miR-34a, was markedly increased in
expression (more than fourfold) in ethanol-exposed liver
tissues compared with normal tissues (Figure 1, A and B).
The expression of miR-34a was also increased in ethanol-
treated N-Heps and HiBECs with a higher apoptotic rate
compared with that of controls (Figure 1, C and D). The
expression of miR-34a was also up-regulated in malignant
hepatocytes (HepG2) relative to that of N-Heps. To further
verify the expression of miR-34a in primary human ALD,
real-time PCR analysis was performed using total RNA from
ALD and normal human liver tissues obtained from six re-
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Figure 1. Aberrant miR-34a expression in ethanol-
exposed mouse liver. A: Left: Liver H&E staining of
control (top) and ethanol-exposed (bottom) mouse
liver that showed zonation of the liver, including
portal and central veins, and miRNA expression pat-
terns (middle) in ethanol-exposed mouse liver sam-
ples analyzed using a self-organizing tree algorithm
using the Multiexperiment Viewer version 3.1 from
the Institute for Genomic Research (Rockville, MD).
A dendrogram showing three clusters was generated.
miRNA expression in ethanol-exposed mouse liver
tissues is shown on the right axis relative to normal
mouse liver controls on the left axis. Cluster 1 is
composed of a group of miRNAs, including miR-34a
and miR-21, that were overexpressed after long-term
alcohol exposure; cluster 2, 245 miRNAs that were
not significantly altered after ethanol exposure; and
cluster 3, 107 miRNAs that were decreased in expres-
sion. Right: Relative miRNA expression profile be-
tween ethanol-exposed livers versus normal control
tissues. The expression of a panel of diverse updated
miRNAs was evaluated by microarray analysis using
Affymetrix GeneChip U133 Plus version 2.0 (Af-
fymetrix Corporation, Santa Clara, CA). miRNA ex-
pression relative to U6 RNA was plotted, depicting
the relative expression levels (Log2) for selected miR-
NAs in ethanol-exposed liver versus normal control
panels (more than twofold change; P � 0.05). The
relative expression levels and P values for each
miRNA in the related samples were plotted against
each other in the scatterplot. miR-34a and miR-122
are the most up- and down-regulated miRNAs
among the 407 miRNAs detected in mice liver. Data
represent the mean of three separate experiments. B
and C: miRNA was isolated from either normal or
ethanol-exposed mice liver (B) or from N-Heps, Hi-
BECs, and HepG2 cell lines (C) with or without eth-
anol treatment (100 mmol/L) for 72 hours. The ex-
pression of a selected miRNA from each cluster (miR-
34a from cluster 1, miR-96 from cluster 2, and miR-
122a from cluster 3) was assessed using Taqman
real-time PCR assay. Results represent the mean � SE
of miRNA expression from four separate determina-
tions. D: Ethanol reduces hepatobiliary cell survival.
Cell survival was assessed using a viable cell assay,
and the survival index was assessed after the treat-
ment of ethanol (100 mmol/L) or PBS for 72 hours. E:
miR-34a is increased in human ALD liver. Total RNA
was isolated from liver from control (C) or long-term
ethanol-exposed patients (E). Real-time PCR analysis
was performed, and the ratio of miR-34a to U6 small
RNA expression in ethanol-exposed liver samples
was determined. The PCR products were verified by
1.8% agarose gel electrophoresis. Data represent
mean � SE from three separate experiments. *P �
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sected liver samples. miR-34a expression was increased
by twofold or more in four of the six samples compared with
the control liver tissues (Figure 1E and Table 2). These
results indicate that aberrant expression of miR-34a is a
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pared the genomic response of epigenetic modification
enzymes to the treatment with ethanol in vivo using Epi-
genetic Chromatin Modification Enzymes PCR Array from
SA Biosciences (Figure 2A and Table 3). In ethanol-
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Figure 3. Overexpression of miR-34a increases cell survival and migration. A: m
either control or miR-34a precursors. The ability of these constructs to modulate
four separate experiments. B and C: Hepatobiliary cells were transfected with p
anchorage-independent growth assessed fluorometrically after 7 days. Pre-miR
shown represent the mean � SE of four independent experiments. C: Cell survi
assay, and the survival index was assessed after 72 hours. Pre-miR-34a increas
represent mean � SE from four separate experiments. D: The hepatobiliary cells w
cells along with untransfected controls were plated in 96-well plates and treated
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human hepatocytes and HiBECs. Data represent mean � SE from four separa
pre-miR-34a inhibitor for 48 hours. The transfected cells along with untransfec
expression (E) and methylation status of miR-34a upstream regulatory region
up-regulation is more apparent in untransfected cells than that in miR-34a trans
hepatic cells compared with miR-34a transfected cell (both with ethanol treatme
Cell migration was assessed as described in Materials and Methods and is expre

Table 3. Altered Epigenetic Chromatin Modification Enzymes on

Refseq Symbol D

NM_010068 Dnmt3b DNA methyltransferase 3B
NM_010066 Dnmt1 DNA methyltransferase (cyto
NM_030241 Setd8 SET domain containing (lysin
NM_010413 Hdac6 Histone deacetylase 6
NM_009458 Ube2b Ubiquitin-conjugating enzym
NM_009762 Smyd1 SET and MYND domain cont
NM_178891 Prmt6 Protein arginine N-methyltran
NM_145482 Setd4 SET domain containing 4
XM_003085353 Setd1b SET domain containing 1B
NM_024258 Usp16 Ubiquitin specific peptidase
NM_026984 Mll5 Myeloid/lymphoid or mixed-li
NM_008084 Gapdh Glyceraldehyde-3-phosphate
NM_007393 Actb Actin, beta
NM_020572 Aurkc Aurora kinase C
NM_017479 Myst4 MYST histone acetyltransfera
NM_011035 Pak1 P21 protein (Cdc42/Rac)–ac
NM_145404 Prmt7 Protein arginine N-methyltran
NM_201371 Prmt8 Protein arginine N-methyltran
NM_080793 Setd7 SET domain containing (lysin
NM_024124 Hdac9 Histone deacetylase 9
NM_028039 Esco2 Establishment of cohesion 1
NM_144787 Kdm4c Lysine (K)–specific demethy
NM_008679 Ncoa3 Nuclear receptor co-activato
NM_172382 Kdm4a Lysine (K)–specific demethy
Pre-miR-34a increased cell motility in all three cell lines. The results shown represent the
to controls. †P � 0.05 relative to control miRNA precursor/inhibitor transfected cells.
exposed mouse liver samples, ethanol treatment signifi-
cantly decreased the expression of the DNA methyltrans-
ferase enzymes, DNMT3B and DNMT1 (Figure 2, A and
B; P � 0.05). Histone deacetylase, lysine (K)-specific
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demethylase, and ubiquitin-specific enzymes were also
significantly altered after long-term ethanol in vivo expo-
sure detected by PCR array analysis (Table 3). The func-
tional role of DNMT3B was further studied because it is
the most down-regulated gene on the list. In ethanol-
treated N-Heps and HiBECs, reduced expression of
DNMT3B was detected when compared with control cells
(see Supplemental Figure S1 at http://ajp.amjpathol.org).
DNMT3B mRNA expression was increased in N-Heps
and HiBECs in response to 5-aza-CdR. On the basis of
these observations, ethanol treatment decreases the
overall methylation activity via a mechanism involving
down-regulation of expression of DNMT3B methyl-
transferase.

miR-34a Expression Is Epigenetically Regulated

CpG islands in human genomic DNA are GC-rich frag-
ments whose aberrant methylation is associated with hu-
man disease development. To determine potential mech-
anisms by which microRNA expression was up-regulated
in ALDs, the sequences containing 2000 bp upstream of
the transcription start site of each up-regulated miRNA
from ethanol-exposed mouse liver samples were entered
and searched by MethPrimer for CpG islands.20 Analysis
of the promoter region revealed the presence of CpG
islands �300 bp upstream of the 5=-region of the mature
miR-34a sequence (see Supplemental Figure S2 at http://
ajp.amjpathol.org). These results suggest that the ex-
pression of miR-34a may be potentially regulated by
modulation of promoter methylation. Of note, histone
deacetylase inhibition has been demonstrated to acti-
vate the expression of miR-34a in human bladder can-
cer cells. Thus, we examined the methylation status of
the miR-34a promoter by MSP, a bisulfite conversion-
based PCR technique for the study of DNA CpG meth-
ylation. Using a real-time MSP assay, we found that the
miR-34a promoter was hypomethylated in ethanol-ex-
posed liver tissue (Figure 2C) and in normal hepato-
cytes but not in HepG2 cells after ethanol treatment
(Figure 2D). To verify that miR-34a is translationally
regulated by methylation through a CpG island en-
riched site of 5-promoter region, we performed studies
using luciferase reporter constructs containing the se-
quence of CpG island enriched site from the 5=-pro-
moter region of miR-34a inserted downstream of the
luciferase gene (Figure 2, E and F). 5-aza-CdR treat-
ment for 72 hours increased the reporter activity of
miR-34a-LUC in N-Heps. However, when these studies
were repeated with reporter constructs containing a
24-bp mutation in the recognition sequence, the ef-
fects of reporter activation by methylation inhibitor
were abolished (Figure 2, E and F). Furthermore, a
marked increase in miR-34a was also noted in N-Heps
and HiBECs after 5-Aza-CdR, which was associated
with enhanced cell survival during ethanol treatment
(Figure 2, G and H). These results suggest that loss of
the methylation mark in the miR-34a promoter may be
associated with the reactivation of miR-34a expression
in ethanol-exposed mouse liver. However, the effect of

5-Aza-CdR and the expression of pre-miR-34a on sur-
vival of alcohol-exposed HepG2 cells were minimal.
Nevertheless, anchorage-independent growth and cell
migration were affected, suggesting that other miRNAs
or tumor suppressor genes may be involved in this
event as supported by other studies.22

Overexpression of miR-34a Increases Cell
Survival and Transformation in Vitro

We have previously demonstrated a role for let-7 in
hepatic cell behavior. However, the role of miR-34a in
hepatobiliary injury remains unknown. Thus, we per-
formed studies aimed to explore the possible biologi-
cal significance of aberrant miR-34a by using a pre-
cursor specific to miR-34a. First, we verified the
efficacy of transfection and target effects by assessing
the expression of mature miR-34a by real-time PCR in
N-Heps, HiBECs, and HepG2 cells transfected with
miR-34a precursor (Figure 3A). Meanwhile, a signifi-
cant change was seen in anchorage-independent
growth after pre-miR-34a in all three cell lines tested
(Figure 3B). Next, we assessed the cell survival after
ethanol treatment in the cells lines of N-Heps, HiBECs,
and HepG2 cells. In N-Heps and HiBECs transfected
with pre-miR-34a or anti-miR-34a inhibitor, cell survival
was significantly altered compared with cells trans-
fected with controls with different dosage and duration
of ethanol treatment (Figure 3, C and D). We also
quantified miR-34a expression in miR-34a transfected
cells before and after alcohol exposure and demon-
strate that the levels of miR-34a significantly increased
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by approximately 1.3-fold and 1.4-fold in hepatocytes
and cholangiocytes, respectively (Figure 3E). Mean-
while, relatively long-term ethanol treatment (1 week,
without miR-34a overexpression) induced a 1.8-fold
and 1.7-fold increase in miR-34a expression, respec-
tively, which is higher than that of transfected cells. In
addition, the degree of methylation was not altered in
nontransfected hepatic cells compared with the miR-
34a transfected cells with ethanol treatment (Figure
3F). These observations indicate a role for miR-34a in
the regulation of survival and transformation of human
hepatobiliary cells after alcoholic liver injury.

Modulation of miR-34a Alters Cell Migration in
Hepatobiliary Cell Lines

The ability of cells to migrate into adjacent tissues is a
phenotypic characteristic of hepatobiliary cells and a
key determinant of tissue remodeling and wound heal-
ing process. Hepatobiliary cell lines vary in their mi-
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gratory potential, and among the cell lines studied,
HepG2 cells exhibited the greatest migratory potential.
To assess the effect of miR-34a on cell motility, N-
Heps, HiBECs, and HepG2 cells were transfected with
either control or miR-34a precursor, and we assessed
vertical cell migration. Pre-miR-34a increased cell mi-
gration index in the three hepatobiliary cell lines stud-
ied compared with controls (Figure 3G). Moreover, nei-
ther cell migration nor survival was significantly altered
by transfection of miR-96 precursor in normal human
hepatocytes or HepG2 cells (not shown). Furthermore,
cell motility and transformation were significantly al-
tered after relatively long-term ethanol treatment along
with a moderate increase in miR-34a expression (Fig-
ure 4, A and B). These results support a functional role
for miR-34a and ethanol in mediating cell migration in
hepatocytes and cholangiocytes and provide a mech-
anism by which overexpression of miR-34a induced by
ethanol treatment may contribute to tissues remodeling
and regeneration.
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Figure 5. miR-34a regulates expression of SIRT1.
A: Identification of protein targets modulated by
miR-34a in N-Heps by HPLC-Chip/MS analysis. N-
Heps were transfected with pre-miR-34a or control
precursor (100 nmol/L) for 72 hours; HPLC-
Chip/MS analysis was performed in protein ly-
sates. Overexpressed or down-regulated proteins
(more than twofold or �0.5-fold) from LC-MS have
been ranked to their relative expression levels.
Multifunctional oncogenic protein �-catenin is
ranked in the up-regulated protein group, whereas
CASP2 and SIRT1 are listed among the down-reg-
ulated targets. Data represent mean from three
separate experiments. B: miR-34a target proteins
are altered in normal hepatocytes after ethanol
treatment. Hepatobiliary cells were treated with
ethanol (100 mmol/L) or PBS controls. Cell lysates
were obtained after 7 days and Western blots per-
formed for CASP2, SIRT1, and �-tubulin. Treat-
ment with ethanol down-regulated the expression
of CASP2 and SIRT1 in all three cell lines. C and D:
Schematic of predicted miR-34a site in the 3=UTR
of human CASP2 and SIRT1. Positions 2 to 9 of the
5= region of miRNA 34a are labeled in red. E and F:
Luciferase reporter constructs containing the miR-
34a recognition sequence from the 3=-UTR of
CASP2 and SIRT1 inserted downstream of the lu-
ciferase gene were generated. pMIR-CASP2-wt-luc
or pMIR-SIRT1-wt-luc contains the intact se-
quence, whereas pMIR-CASP2-mut-luc or pMIR-
SIRT1-mut-luc contained the sequence with ran-
dom nucleotide changes. Reporter constructs were
co-transfected with either miR-34a precursor or
control precursor in normal human hepatocytes.
The expression of firefly luciferase activity was
normalized to that of Renilla luciferase activity for
each sample. The decreases in relative firefly lucif-
erase activity in the presence of miR-34a indicate
the presence of a miR-34a modulated target se-
quence in the 3=-UTR of CASP2 and SIRT1. Data
represent the mean of eight separate experiments.
*P � 0.05 relative to control precursor group. G:
N-Heps were transfected with pre-miR-34a or con-
trol precursor. Cell lysates were obtained after 48
hours and Western blots performed for CASP2,
SIRT1, survivin, and �-tubulin. Relative ratios nor-
malized with �-tubulin and control group were
displayed under the image. Overexpression of
miR-34a decreased the expression of CASP2 and
SIRT1 and subsequently increased the level of sur-
vivin, a downstream mediator of SIRT1 in N-Heps.
The ratios shown represent the mean value (rela-
tive to control) normalized with �-tubulin from
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Effects of Specific DNMT3B Gene Depletion
on Hepatobiliary Cell Survival, Transformation,
and Migration

We then tested whether inhibition of the DNMT3B gene is
sufficient to produce a significant effect of miR-34a in cell
survival, transformation, and migration. miR-34a was sig-
nificantly increased after silencing DNMT3B (with or with-
out ethanol treatment) in all three cell lines tested (see
Supplemental Figure S3 at http://ajp.amjpathol.org). How-
ever, silencing of DNMT3B increased the survival in nor-
mal hepatocytes but reduced HepG2 cell survival against
ethanol treatment (Figure 4C). In contrast to miR-34a,
DNMT3B silencing decreased transformed cell growth
and migration in HepG2 cells, suggesting different epi-
genetic regulation mechanisms for normal and malignant
hepatocytes (Figure 4D). These results demonstrated the
distinct effects of specific DNMT3B promotion on the
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process of cell remodeling and tissue repair after ethanol
exposure.

Identification of CASP2 and SIRT1 as Targets
for miR-34a

Because miRNAs target mRNA stability and translation,
we used HPLC-Chip/MS to identify specific target protein
levels of miR-34a in pre-miR-34a treated N-Heps. Be-
cause the aim of our study is to correlate miR-34a with
target transcript expression, we therefore used a cutoff of
at least 30% difference in our expression analysis and a
false discovery rate of 10% using the Benjamini-Hoch-
berg correction for multiple testing. Nine genes were
initially selected according to this strategy and further
screened based on 3=-UTR sequence analysis and pre-
diction algorithms; only two proteins can be potentially
targeted by miR-34a (Figure 5A). Interestingly, the target
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Figure 6. miR-34a regulates the tissue remodel-
ing molecules during ethanol exposure. A and
B: Expression of MMP-1, MMP-2, and MMP-9
mRNA was assessed by quantitative real-time
PCR and normalized to expression of �-actin in
normal liver and ethanol-exposed mouse tissue
(A) and in normal hepatocytes with or without 7
days of ethanol treatment (B). MMP-1, MMP-2,
and MMP-9 are overexpressed in ethanol-ex-
posed liver compared with normal liver. How-
ever, MMP-2 and MMP-9, but not MMP-1, were
increased in ethanol-treated hepatocytes com-
pared with PBS controls. The results shown
represent the mea � SE of four independent
experiments. C: N-Heps were transfected with
miR-34a precursors or controls. After 72 hours,
MMP Zymogen Gel Assay was performed for
MMP-1, MMP-2, and MMP-9 expression. En-
hanced expression of miR-34a in N-Heps in-
creases MMP-2 and MMP-9 expression. D: Ste-
atohepatitis is induced by 4 weeks of intragastric
ethanol infusion (ISI) in mice liver. Liver histo-
logic analysis of regular feeding control mice
and ISI mice is displayed. Enhanced expression
of MMP-9 and reduced expression of CASP2 and
SIRT1 were seen in ethanol-exposed mouse liver
[H&E; original magnification: �40 (top); �200
(bottom)]. E and F: Liver tissue homogenates
were obtained from ethanol-exposed and con-
trol mice. Increases of liver fibrotic marker
�-SMA and MMP-9 along with the reduction of
CASP2 and SIRT1 were verified by Western blot
analysis. Representative immunoblots (E) and
quantitative data (mean � SE) from four sepa-
rate blots (F) are shown.
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prediction program Sanger miRBase database (http://
microrna.sanger.ac.uk) indicated the presence of a highly
conserved binding site for miR-34a in the 3=-UTR region
of CASP2 and NAD�-dependent deacetylase SIRT1, the
well-characterized regulator genes of apoptosis in liver
biology. CASP2 and SIRT1 were significantly down-reg-
ulated in surviving N-Heps and HiBECs after ethanol
treatment and are also silenced in HepG2 cells related to
normal controls (Figure 5B). To verify that CASP2 and
SIRT1 are bona fide targets of translational regulation by
miR-34a in hepatocytes, we performed studies using lu-
ciferase reporter constructs containing the miR-34a rec-
ognition sequence from the 3=-UTR of CASP2 and SIRT1
inserted downstream of the luciferase gene (Figure 5, C
and D). Transfection with miR-34a precursor decreased
reporter activity of both CASP2 and SIRT1 in normal hu-
man hepatocytes. However, when these studies were
repeated with reporter constructs that contained random
mutations in the recognition sequence, the effects of re-
porter deactivation by miR-34a precursor were abolished
(Figure 5, E and F). Moreover, a reduction in CASP2 and
SIRT1 expression occurred after 3 days in cells incubated
with pre-miR-34a. Concomitant with reduced SIRT1 expres-
sion, there was a significant increase of survivin expression,
a confirmed downstream mediator of SIRT1 signaling (Fig-
ure 5G). In contrast, transfection with a precursor to miR-
122a, which can also modulate cell survival in normal hepa-
tocytes, did not alter the expression of CASP2 and SIRT1
with a relative expression of 0.8- � 0.2-fold and 1.2- �
0.3-fold of controls, respectively. Taken together, these find-
ings indicate that CASP2 and SIRT1 are the biologically
relevant targets of miR-34a in hepatobiliary cells.

miR-34a Regulates MMP mRNA Expression

The cell remodeling and tissue repair process involves a
series of proteolytic enzymes named MMPs. Alterations
of the SIRT1 complexes have been mechanistically linked
to decreased expression of MMPs and cell motility.
Therefore, we examined the expression of selected
MMPs involved in cell remodeling in normal and ethanol-
exposed mouse liver tissues and cell lines. Compared
with normal liver tissue, the expression of MMP-1, MMP-2,
and MMP-9 increased in ethanol-exposed mouse liver
tissue (Figure 6A). Increased expression of MMP-2 and
MMP-9 was also observed in ethanol-treated N-Heps
compared with controls (Figure 6B). Meanwhile, MMP-11
and MMP-13 were not altered in tissues and cells with
ethanol exposure. To confirm the functional effect and
relevance of miR-34a–dependent modulation of MMPs,
we assessed the effect of modulation of miR-34a on
MMPs expression. Transfection of normal human hepa-
tocytes with miR-34a precursor increased MMP-2 and
MMP-9 activity (Figure 6C). Furthermore, the expression
of SIRT1 and CASP2 was reduced after long-term alcohol
exposure, whereas MMP-9 and �-smooth muscle actin
were increased in ethanol-exposed mouse liver sections
and homogenates (Figure 6, D–F). These findings link
miR-34a and putative mediators of tissue remodeling in

ethanol-exposed mice and suggest that deregulated ex-
pression of miR-34a can contribute to liver reconstruction
and fibrosis during alcoholic liver injury.

Discussion

In this study, we demonstrated the role of altered expres-
sion of miR-34a in the processes that contribute to cellu-
lar phenotypic changes that are associated with ALD
progression. We found that miR-34a is increased in eth-
anol-exposed mouse liver in vivo and overexpressed in
ethanol-treated hepatobiliary cell lines compared with
controls. We also demonstrated that miR-34a contributes to
alcoholic liver injury and tissue repair by modulating cell
proliferation, remodeling, and migration. Some of these ef-
fects are mediated through CASP2 and SIRT1, the well-
characterized regulator genes of apoptosis that are also
involved in tissue remodeling. Increased expression of miR-
34a was found by in situ hybridization during liver regener-
ation, and a similar role for miR-34a has been postulated in
renal injury.15,23 The concomitant miR-34a–dependent ac-
tivation of metalloproteinases in hepatobiliary cells can fa-
cilitate tissue remodeling. Taken together, these findings
support a functional role for miR-34a in promoting liver tis-
sue repair and fibrosis during the development of ALD.
However, the enhanced cell survival and migration by miR-
34a may be important for the regression of alcohol-induced
liver fibrosis and cirrhosis but may also mediate the higher
potential for malignant transformation.

miRNA-mediated mechanisms are being increasingly
implicated in liver injury. Deregulation of miR-34a can
occur as a result of altered p53 expression. Likewise,
ectopic expression of miR-34 can decrease expression
of genes that are regulated by p53, such as cyclin E2,
cyclin-dependent kinase 4, and hepatocyte growth factor
receptor.24 These and other studies25 support the con-
cept of a cell cycle regulation role for miR-34a. Variable
expression of miR-34a has been reported in different
organ systems and diseases states. Interestingly, al-
though silencing of miR-34a was demonstrated in several
human malignant neoplasms, up-regulation of miR-34a
was demonstrated in liver injury and HCC.26–28 miR-34a
was also demonstrated to be a critical link to disease
progression from normal liver through cirrhosis to HCC.29
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Figure 7. Summary diagram. Ethanol modulates liver parenchymal cell sur-

vival, remodeling, and transformation by activation of miR-34a–dependent
signaling pathways.
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These observations necessitate a clear definition of liver
tissue–specific expression and function of miR-34a ex-
pression. It is likely that targeted therapeutic approaches
that involve miR-34a may result from defining tissue and
hepatic disease state–specific roles of miR-34a.

SIRT1, an NAD�-dependent class III protein deacety-
lase, plays a role in a wide variety of processes, including
stress resistance, metabolism, differentiation, and ag-
ing.30–33 Overexpression of SIRT1 orthologs leads to in-
creased life span of organisms34–36 and mammals.37 A
recent study has shown that livers from older animals
have reduced expression of SIRT1 and have lost proper
control of the regulation of SIRT1 after partial hepatec-
tomy.38 Long-term ethanol administration inhibits activi-
ties of hepatic SIRT1 in mice and rats.39–43 SIRT1 is
partially localized in the cytoplasm in certain cell lines,
and the cytoplasm-localized SIRT1 is associated with
apoptosis, leading to increased sensitivity to apoptosis.44

The apoptosis enhanced by cytoplasm-localized SIRT1 is
dependent on caspases.45 Overexpression of SIRT1 has
been shown to inhibit cell proliferation and differentiation
of pig preadipocytes.46 Down-regulation of SIRT1 may be
an important mechanism for hepatobiliary cells to cope
with unfavorable growing conditions with the reduction of
related caspase molecules. Moreover, another verified
target gene of miR-34a, CASP2, plays a key role in apop-
tosis by trophic factor deprivation, �-amyloid cytotoxicity,
and granzyme B; CASP2-deficient mice lack a discern-
ible phenotype. Nonetheless, CASP2 is involved in stress
and ethanol-induced apoptosis, most likely upstream of
the mitochondria.47,48 Involvement of CASP2 and Bcl-2
family proteins has been found in oxidative stress-in-
duced apoptosis related to ALD.47,49

Our findings identify a previously unrecognized mech-
anism for direct regulation of SIRT1 and CASP2, involving
noncoding RNA in ALD. Aberrant DNA methylation has
been implicated in many human diseases, including
ALDs. Recent studies indicate that ethanol induces epi-
genetic alterations, particularly acetylation, methylation of
histones, and hypomethylation and hypermethylation of
DNA.47,50–52 This has opened up a new area of interest in
ethanol research and is providing novel insight into ac-
tions of ethanol at the nucleosomal level in relation to
gene expression and pathophysiologic consequences.
Although DNA methylation has been tightly linked to liver
injury and poor outcomes for many hepatic disorders,
including human ALDs, its application to ethanol-depen-
dent noncoding RNA expression is novel. In summary,
the current study has revealed an epigenetic mechanism
that highlights the relationship of ethanol-induced aber-
rant methylation enzymes on the epigenetic regulation of
expression of selected miRNA genes that are relevant to
cell survival and remodeling during alcoholic liver injury
(Figure 7). A better understanding of how ethanol inter-
acts with specific DNA methyltransferases to contribute
to aberrant noncoding RNA expression will advance the
field and increase our understanding of the mechanisms
involved in the development of ALDs. Besides methyl-
ation enzymes, histone deacetylase, lysine (K)–specific
demethylase, and ubiquitin-specific enzymes were also

significantly altered after long-term ethanol exposure in
mouse liver (Table 3), suggesting the importance of other
epigenetic and translational regulation mechanisms dur-
ing alcoholic liver injury. Genomic scanning approaches
to identify epigenetically and translationally modified tar-
gets in ALD are lacking, but such strategies could identify
other novel targets that could be epigenetically modified
in ALDs.

Until recently, only a few therapeutic agents were avail-
able for ALD. We postulate that therapeutic strategies
based on targeting miR-34a may be useful to consider in
the adjuvant setting to human ALDs. Studies undertaken to
identify the interplay of epigenetic events and therapeutic
effects of anti-miR-34a inhibition in vivo will provide new
insights into translational mechanisms of ALD. The availabil-
ity of therapeutic strategies targeting miRNA will enable
translation of our observations to potential strategies for the
treatment of alcohol-induced liver fibrosis in ALD patients.
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