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Abstract
Numerous accelerometers and prediction methods are used to estimate energy expenditure (EE).
Validation studies have been limited to small sample sizes in which participants complete a
narrow range of activities and typically validate only one or two prediction models for one
particular accelerometer.

Purpose—To evaluate the validity of nine published and two proprietary EE prediction
equations for three different accelerometers.

Methods—277 participants completed an average of 6 treadmill (TRD) (1.34, 1.56, 2.23 m·sec−1

each at 0% and 3% grade) and 5 self-paced activities of daily living (ADLs). EE estimates were
compared to indirect calorimetry. Accelerometers were worn while EE was measured using a
portable metabolic unit. To estimate EE, 4 ActiGraph prediction models were used, 5 Actical
models, and 2 RT3 proprietary models.

Results—Across all activities, each equation underestimated EE (bias −0.1 to −1.4 METs and
−0.5 to −1.3 kcals, respectively). For ADLs EE was underestimated by all prediction models (bias
−0.2 to −2.0 and −0.2 to −2.8, respectively), while TRD activities were underestimated by seven
equations, and overestimated by four equations (bias −0.8 to 0.2 METs and −0.4 to 0.5 kcals,
respectively). Misclassification rates ranged from 21.7% (95% CI 20.4%, 24.2%) to 34.3% (95%
CI 32.3%, 36.3%), with vigorous intensity activities being most often misclassified.

Discussion—The prediction equations did not yield accurate point estimates of EE across a
broad range of activities, nor were they accurate at classifying activities across a range of
intensities (light < 3 METs, moderate 3–5.99 METs, vigorous ≥ 6 METs). Current prediction
techniques have many limitations when translating accelerometer counts to EE.
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Introduction
The role of physical activity (PA) in promoting health and preventing chronic disease has
long been established. However, accurately quantifying or measuring PA remains a
challenge to researchers and clinicians. Large-scale epidemiological studies, field-based
research and clinical trials have traditionally relied on subjective methods such as
questionnaires, self-report diaries and interviews. Such methods however, have proven
inaccurate, with individuals tending to over-report time spent in PA (Sallis et al. 2000). In
order to accurately quantify PA and elucidate the dose-response relationship between PA
and health outcomes, researchers have turned to objective measurement tools. Specifically,
accelerometers have emerged as the device of choice to measure free living PA.

Accelerometers offer minimal subject burden, versatility, and relative cost efficiency.
However, once researchers decide to use accelerometers they are faced with two immediate
challenges. First, they must choose which of the many commercially available devices is
best suited for their research. For example, the ActiGraph, Actical and RT3 are three
commonly used accelerometers. Each of these devices produces a “count” value as their
output. The way in which this count value is generated depends on a unique set of technical
specifications (e.g. A/D conversion scale, frequency filtering range, number of axes
sensitive to acceleration etc.) distinctive for each monitor. Thus, although counts have
traditionally been considered the universal accelerometer output used in PA research,
technical differences render counts an arbitrary, unit-less output that is not comparable
across monitors. The second challenge facing researchers is that for each device several
different regression models are available to predict energy expenditure (EE) from
accelerometer output (counts). Using the first generation of what is currently the ActiGraph,
Freedson et al. (1998) developed the first linear regression prediction model to estimate
energy expenditure from accelerometer counts. It was a relatively simple calibration study in
which 50 subjects performed 3 treadmill activities ranging from brisk walking to slow
jogging. The accelerometer was positioned on the anterior supra iliac spine in an attempt to
capture vertical acceleration of the center of mass. This model was based on the principle
that vertical acceleration is linearly related to energy expenditure during locomotion.
However this relationship breaks down at higher running speeds (Cavagna et al. 1976) and
does not translate to non-locomotive activities. Since then many single and multi, linear and
non-linear equations have been developed for each monitor. In addition, several multi-step
techniques have been developed which rely on the activity intensity, the variation of the
movement, or the type of movement to determine the appropriate prediction equation to use
(Klippel & Heil 2003; Crouter et al. 2006a; Crouter et al. 2008). Although these more
sophisticated methods have been developed, all current regression techniques collect and
average accelerometer counts over a specified period of time, usually one-minute. The
averaged count value is used to estimate energy expenditure given the relationship dictated
by the prediction equation. In other words, energy expenditure is a function of the average
counts·min−1 and is often expressed as specific point estimates of energy expenditure (e.g. 4
kcals), as a rate of energy expenditure (e.g. 4 METs), or as light (< 3 METs), moderate (3–
5.99 METs,) or vigorous (≥ 6 METs) intensity activity.

Due to the numerous commercially available accelerometers and published prediction
techniques, there is a great deal of confusion in the literature when predicting energy
expenditure from accelerometer counts. The many prediction models often produce widely
different estimates of time spent at various intensities of PA with no clear indication of
which estimate is correct. Although calibration studies often use a form of cross validation
to assess the success of their newly developed model, the sample on which the model is
tested is often very similar to the sample from which it was produced. In addition, the test
sample usually performs the same (or similar) activities as the activities from which the
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model was developed. As a result, the reported performance scores do not provide an
accurate representation of how the model will perform for the general population and across
a broad range of activity types and intensities. Although several studies have attempted to
assess monitor accuracy and identify valid prediction techniques (Crouter et al. 2006b;
Rothney et al. 2008), they have been limited by small sample sizes in which subjects
perform a narrow range of activities. Additionally, studies often focus on only one monitor
or prediction technique, making comparison between studies impossible. There has yet to be
a single comprehensive evaluation that uses a large sample with an extensive range of
participant characteristics (e.g. age, height, weight, BMI, physical activity level, and race/
ethnicity) to assess the validity of the most popular prediction models and activity
monitoring devices for a wide range of common household, locomotion and sporting
activities. Therefore, the purpose of this study was to conduct a comprehensive evaluation of
commonly used prediction models on a large diverse population. Specifically, this study
evaluated the validity of nine published and two proprietary energy expenditure prediction
equations using the ActiGraph, the Actical and the RT3 activity monitors. Additionally,
activity intensity classification accuracy using these prediction models was evaluated.

Methods
Subjects

Two hundred and seventy seven healthy men and women between the ages of 20–60 years
were recruited from the Amherst, Massachusetts area. Each participant completed an
informed consent document, a health history questionnaire, the Physical Activity Readiness
Questionnaire (PAR-Q) and a questionnaire to evaluate habitual physical activity status.
Before completing the study protocol, female participants over 50 yrs and male participants
over 40 yrs were screened for cardiovascular disease risk with a physician-supervised 12-
lead ECG stress test to 90% of age-predicted maximum heart-rate according to the American
College of Sports Medicine Guidelines for Exercise Testing (2009). Participants were
excluded if they had any contraindications to exercise, were taking medication altering
metabolic rate or if the physician identified any cardiovascular abnormalities that potentially
prevented them from safely completing the activity protocol.

Anthropometric and Metabolic Measurements
Prior to testing, participants’ height and weight were measured using a stadiometer and a
physician’s scale and body mass index (BMI) was calculated. Blood pressure was measured
using the “OSZ 5 easy” automatic blood pressure cuff (Welch Allyn, Inc, Arden, NC) and
participants were excluded from the study if their blood pressure exceeded 140 mm systolic
and 90 mm diastolic. Resting Metabolic Rate (RMR) was measured using the Med Gem
Analyzer (HealtheTech, Inc, Golden, CO). The Med Gem is a hand-held indirect calorimeter
that calculates energy expenditure based on a modified Weir equation and uses a fixed
respiratory exchange ratio of 0.85 (HealtheTech 2003). The MedGem has been shown to be
a valid device for measuring resting metabolic rate compared to the gold-standard Douglas
bag method (Nieman et al. 2003). Following a 4-hr restriction of food, caffeine and exercise,
participants rested quietly for 15 minutes in the supine position. RMR was measured while
the participant remained supine.

Activity Protocol
The activity protocol consisted of two routines performed in random order; treadmill
activities (TRDs) (Part A) and activities of daily living (ADLs) (Part B). Each activity was
performed for 7 minutes (except ascending and descending the stairs) with 4 minutes rest
between each bout. For any activity, if heart rate exceeded that which was safely established

Lyden et al. Page 3

Eur J Appl Physiol. Author manuscript; available in PMC 2012 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



during the stress test, or if the participant was unable to safely complete the activity (e.g.
treadmill speed too fast), the activity was stopped and eliminated from analysis.

Part A
Participants performed six treadmill activities at 3 speeds (1.34, 1.56, 2.23 m·sec−1), each at
0% and 3% grade. The order of activities was randomized across subjects.

Part B
Activities of daily living consisted of common household and sporting activities. Five ADLs
were performed at a self-selected pace. Three ADLs were performed by each subject; ascend
stairs, descend stairs and moving a 6 kg box. The remaining two activities were randomly
selected from a catalog of 14 possible activities, including cleaning the room, dusting,
gardening, laundry, mopping, mowing, painting, raking, sweeping, trimming, vacuuming,
washing dishes, basketball and tennis. These activities represent common household, leisure
time and sporting activities. Common ADLs (ascending and descending the stairs and
moving a weighted object) were chosen as being representative of the spectrum of activities
that people perform.

Accelerometers
The accelerometers were worn on a belt positioned around the participants’ hips. The
ActiGraph accelerometer was positioned on the non-dominant (right handed participants
wore the accelerometers on the left hip etc) in line with the anterior superior iliac spine, the
Actical was positioned directly posterior to the ActiGraph, and the RT3 was positioned
directly anterior to the ActiGraph.

ActiGraph
The ActiGraph accelerometer (model GT1M) (ActiGraph, LLC, Fort Walton Beach, FL) is a
uniaxial accelerometer that measures movement in the vertical plane. The monitor is small
in size and lightweight, 5.1 × 3.8 × 1.5 cm and 42.6 gm, respectively. It is sensitive to
accelerations from 0.05–2.0 G’s and has a band limited frequency of 0.25–2.5 Hz. The
ActiGraph samples at a rate of 10 Hz and the signal is digitized by an 8 bit A/D converter.
Each signal is summed over a user specified time interval (epoch) and activity counts are
stored. The ActiGraph was initialized to collect data in one-second epochs and results were
downloaded directly to a PC compatible computer using a USB cable.

Actical
The Actical (Mini Mitter Co., Inc., Bend, OR) is an omni-drectional accelerometer that is
28×27×10 mm in size and weighs 17 g. It measures accelerations in the range of 0.05–2.0
G’s and has a band limited frequency of 0.5–3.0 Hz. The Actical samples data at a rate of 32
Hz and can be initialized to collect data from 15-second – one-minute epochs. For this study,
the Actical was initialized to collect data in 15-second epochs and results were downloaded
directly to a PC compatible computer.

RT3
The RT3 accelerometer (StayHealthy, Inc., Monrovia, CA) is a triaxial monitor that
measures acceleration in three orthogonal dimensions. It is the size of a pager, 71×56×28
mm in size and 65 g. The RT3 provides triaxial vector data in activity counts. The sensor
range, sampling frequency and the linear regression algorithm used by the manufacturer’s
software are proprietary. For this study, the RT3 was initialized to record data in one-second
epochs and the vector magnitude (triaxial vector data) was used to predict EE. Data from the
RT3 were downloaded directly to a PC compatible computer.
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Indirect Calorimetry
During each activity, oxygen consumption was measured using a portable metabolic
measurement system (Oxycon Mobile; Cardinal Health, Yorba Linda, California). The
Oxycon Mobile is a portable respiratory gas exchange system that measures ventilation and
expired concentrations of oxygen and carbon dioxide and estimates energy expenditure
using a modified Weir equation (Weir et al. 1949). Its lightweight (2 kg) and wireless
transmission system allow the Oxycon Mobile to be used in a non-laboratory setting. For
each activity ventilation and expired gas concentrations were collected breath-by-breath and
energy expenditure measured from the Oxycon Mobile served as the criterion measure to
which to compare energy expenditure estimated from the prediction equations. Immediately
prior to each activity routine (TRD and ADLs) a two-point (0.2 and 2.0 L·s−1) air flow
calibration was performed using the automatic flow calibrator, and the gas analyzers were
calibrated using a certified gas mixture of 16 % O2, 4.01% CO2. The Oxycon Mobile system
is a valid device for measuring VO2 (Perret et al. 2006; Rosdahl et al. 2009). Compared to
the Douglas Bag, the Oxycon Mobile produced accurate and reliable estimates of VE, VO2
and VCO2 during maximal and sub-maximal cycling. (Rosdahl et al. 2009).

Prediction Equations
Nine published and two proprietary regression models were examined. For information on
each model, including features of their development, see Table 1. Equations most commonly
used in research were chosen for analysis, and they are defined (and analyzed) exactly as
they are published.

Data Analysis and Reduction
For each activity, the first 120 seconds were eliminated to ensure steady state had been
reached and the last 10 seconds were eliminated to minimize any researcher error in timing
synchronization between the monitor and the metabolic measurements. After elimination of
the first 120 seconds and last 10 seconds, the remaining data needed to be at least 30
seconds in order to be included in the analyses. Thus activity data ranged from 30 seconds to
290 (7 minutes minus 130 seconds) seconds in length. In order to ensure steady state was
reached within 120 seconds, we assessed the differences in oxygen consumption for minutes
2 and 3 vs. the last minutes of activity. For two activities (gardening and trimming), METs
decreased about 8% (0.3 METs). For all other activities, the changes were less than 5%.
Thus, 120 seconds was a sufficient time to establish steady state during these activities.

Monitor Data
For each activity, accelerometer data were converted to average counts·min−1 and entered
appropriately into each equation to predict energy expenditure. For example, if an activity
was performed for 290 seconds accelerometer data were averaged over 4.8 minutes. Each
activity was then classified as light (<3 METs), moderate (3–5.99 METs) or vigorous (≥6
METs) intensity. For the equations that predict EE in kcals (Freedson kcal, Heil AEE, and
RT3 Proprietary), kcals were first converted to METs and then classified. For the Crouter et
al. ActiGraph and Actical two-regression methods, the accelerometer count coefficient of
variation (CV) was determined for each minute of activity to direct counts to the appropriate
equation. For the ActiGraph model, the CV for each minute was determined by using six 10-
second epochs per minute (CV = standard deviation (SD)/mean). For the Actical model the
CV was determined using 4 consecutive 15-second epochs. For both models, each minute of
activity was assigned a CV and directed to the appropriate equation.
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Indirect Calorimetry Data
Average measured VO2 was determined and converted to relative VO2 (ml·kg−1·min−1) and
then to METs. Relative VO2 was converted to METs by dividing by 3.5 ml·kg−1·min−1 for
all analyses except for those pertaining to the RT3 proprietary models. For RT3 analyses,
measured VO2 was converted to relative VO2, gross EE (GEE) (kcals·min−1), activity EE
(AEE) (kcals·min−1 – RMR) and to METs using measured RMR rather than the standard 3.5
ml·kg−1·min−1. For each equation, predicted EE was compared to either measured METs
(determined using either 3.5 ml·kg−1·min−1 – ActiGraph and Actical; or measured RMR –
RT3), GEE or AEE.

Despite measuring RMR as part of the protocol, we defined RMR for the ActiGraph and
Actical analyses as the commonly used standard 3.5 ml·kg−1·min−1. Although recent
evidence suggests this standard measure significantly underestimates RMR for specific sub-
groups (Byrne et al. 2005; Kozey et al., 2010), each of the prediction models evaluated
(except RT3 models) were developed using 3.5 ml·kg−1·min−1 as a standard baseline
measure. Because it was our intent to evaluate the models, and not to address the differences
in using measured RMR compared to the standard 3.5 ml·kg−1·min−1, we used each model
in the way in which it was developed. Furthermore, this is how these models are commonly
used in the field, especially in large epidemiologic studies that do not have the means to
measure RMR for all participants. Since it is our intent to provide a comprehensive report
that can be used as a resource for researchers deciding which activity monitor and prediction
model is best suited for their research, this approach is the most useful and widely
applicable. For the development of the proprietary RT3 models, we are uncertain if the
standard 3.5 ml·kg−1·min−1 or measured RMR was used. However, the RT3 proprietary
equations estimate RMR as part of their prediction models, thus leading us to use measured
RMR in the RT3 analyses. By using measured RMR in these analyses we believe we
increased the likelihood that the RT3 models would be successful at predicting EE given the
recent evidence that estimated RMR is more closely related to measured RMR than to the
standard 3.5 ml·kg−1·min−1 (Byrne et al. 2005; Kozey et al., 2010).

Statistical Analysis
All statistical analyses were performed using the free and open source computing language
and statistics package R (2009). For each prediction equation, predicted EE was compared to
measured EE using a repeated measures mixed model. For each individual activity, treadmill
activities, activities of daily living, and across all activities combined, the mixed models
were used to assess the average difference between predicted EE and measured EE (bias). A
negative bias (predicted EE-measured EE) indicates an underestimation of EE by the
prediction model; a positive bias corresponds to an overestimation of EE by the prediction
model. Ninety-five percent confidence intervals (CI) were also established from the mixed
models and were used to determine significance. If the upper and lower confidence intervals
spanned 0, then predicted EE was not significantly different from measured EE at α=0.05.
To describe the magnitude of the difference between measured and predicted EE the root
mean squared error (RMSE) was also determined for each activity, treadmill activities,
activities of daily living, and across all activities combined. Although bias and 95% CI’s
were used to determine significance it is essential to consider both the bias and RMSE when
evaluating the validity of a prediction model. The bias is used to give an indication of
whether the model under- or over- estimates EE. However, an overall bias close to 0 can be
deceiving. For example, if a model considerably underestimates EE for activities of daily
living, but considerably overestimates EE for treadmill activities these divergent errors will
essentially cancel each other out, resulting in a small bias that may indicate the prediction
model produces an EE that is not significantly different from measured EE. The RMSE
measures the square root of the average squared difference between predicted and measured
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EE. This is similar to average of the absolute value of the differences. Thus we will consider
both bias and RMSE when interpreting the results.

Activity intensity classification was described using misclassification rates and 95% CI.
Kappa statistics were used to describe the level of agreement between actual activity
intensity classification and predicted activity intensity classification.

Results
The total possible number of activities was 3047 (277 participants × 11 activities). One
hundred twenty seven activities were eliminated due to the participant being unable to
perform the activity for the minimum time needed for analysis (30 seconds) (e.g. treadmill
speed too fast) or researcher discretion (e.g. participant heart rate exceeding peak HR on
graded exercise test), for a total of 2920 activities performed. Of the 2920 activities
performed, 145 were eliminated due to Oxycon malfunction (e.g. Oxycon Mobile sample
tube occlusion) or insufficient VO2 data. Errors in monitor initialization, downloading or
equipment malfunction, led to the deletion of 30, 179, and 390 activities for the ActiGraph,
Actical and RT3 analyses, respectively. Sample size and physical characteristics for the
participants for these analyses are reported in Table 2.

Figure 1 illustrates the biases (predicted EE – measured EE) of each model across all
activities, for treadmill activities combined and for activities of daily living combined. The
models tend to underestimate EE, with activities of daily living being underestimated to a
greater degree than treadmill activities. In general, the ActiGraph models were more
accurate at estimating EE for lower intensity activities while the Actical models were
slightly better at estimating EE for higher intensity activities. Both the RT3 gross and
activity EE prediction models tend to underestimate activities of daily living and graded
treadmill activities while level treadmill activities tended to be overestimated. Table 3–Table
5 report the bias (95% confidence interval) and the RMSE for each individual activity, for
treadmill activities combined, for activities of daily living combined and across all activities
combined.

For the ActiGraph MET prediction models (Table 3) RMSE ranged from 0.5 METs
(Freedson; dishes, Swartz; dusting, Crouter; dusting) to 6.2 METs (Freedson; ascend stairs).
Bias ranged from −5.9 METs (Freedson; ascend stairs) to 2.1 METs (Crouter; descend
stairs). ActiGraph MET prediction models underestimated EE (negative bias) 72% of the
time. For the ActiGraph kcal prediction models (Table 3) RMSE ranged from 1.4 kcals
(Freedson; 1.34 m·sec−1 3% gr and 1.56 m·sec−1 3% gr) to 7.4 kcals (Freedson; ascend
stairs). Bias ranged from −7.1 kcals (Freedson; ascend stairs) to 0.7 kcals (Freedson; 1.34
m·sec−1 0% gr). ActiGraph kcal prediction models underestimated EE 81% of the time.

For the Actical MET prediction models (Table 4) RMSE ranged from 0.5 METs (Crouter;
dusting) to 5.9 METs (Klippel & Heil; ascend stairs). Bias ranged from −5.7 METs (Klippel
& Heil; ascend stairs) to 2.7 METs (Crouter; descend stairs). Actical MET prediction
models underestimated EE (negative bias) 79% of the time. For the Actical kcal prediction
models (Table 4) RMSE ranged from 0.7 kcals (Heil 1R and Heil 2R; 1.34 m·sec−1 0% gr)
to 8.0 kcals (Heil 1R; ascend stairs). Bias ranged from −7.6 kcals (Heil 1R; ascend stairs) to
0.9 kcals (Heil 1R; 2.23 m·sec−1 0% gr). Actical kcal prediction models underestimated EE
85% of the time.

For the RT3 prediction models (Table 5) RMSE ranged from 1.0 kcals (RT3 Gross EE and
RT3 Activity EE; dishes) to 7.9 kcals (Gross EE and RT3 Activity EE; ascend stairs). Bias
ranged from −7.6 kcals (RT3 Gross EE and RT3 Activity EE; ascend stairs) to 2.1 kcals
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(RT3 Gross EE; descend stairs). RT3 prediction models underestimated EE (negative bias)
73% of the time.

Figure 2 illustrates the rate at which each model misclassified activity intensity. Across all
intensities, misclassification rates ranged from 21.7% (95% CI 20.4%, 24.2%) (kappa
statistic = 0.57) to 34.3% (95% CI 32.3%, 36.3%) (kappa statistic = 0.40), with vigorous
intensity activities being most often misclassified.

Discussion
Although accelerometers are used extensively to assess physical activity, there has yet to be
a comprehensive independent validation of EE and MET prediction models that use
accelerometer output as the predictor variable. Several studies have attempted to investigate
their accuracy, however they are limited by small sample sizes that are not representative of
the population. This study is unique due to its large diverse sample size, the wide range of
activities performed, the use of three commercially available accelerometers and the
simultaneous comparison of 11 discrete prediction models on data independent from which
they were developed. Similar to previous research our findings indicate that the ActiGraph,
Actical and RT3 do not produce accurate point estimates of EE across a broad range of
activities (Crouter et al. 2006b; Rothney et al. 2008). Additionally, no equation is accurate at
classifying activities across all intensities (light < 3 METs, moderate 3–5.99 METs,
vigorous ≥ 6 METs), with vigorous intensity activities being the most frequently
misclassified.

ActiGraph
The ActiGraph is the most commonly used activity monitor and numerous published
prediction techniques have been used to translate activity counts to EE. The Freedson MET
and kcal equations, developed in 1998, have been extensively studied and tend to
underestimate activities of daily living and vigorous treadmill activities (Crouter et al.
2006b; Rothney et al. 2008). This under-prediction is likely due to the fact both equations
were developed on a small sample, where participants performed only three treadmill
activities. In the current study, we observed this under-prediction for the Freedson MET and
kcal equations. The Freedson MET equation under-predicted EE for all ADL (Bias −2.0
METs; 95% CI −2.1, −1.9) and TRD (Bias −0.8 METs; 95% CI −0.8, −0.7) activities except
slow (1.34 m·sec−1) and medium paced walking (1.56 m·sec−1) on level ground and
descending the stairs. The Freedson MET model appears to be most accurate for predicting
EE for level treadmill activities (range RMSE 0.6 to 1.8 METs) and light intensity ADLs
that require minimal lower body movement (dishes, dusting, laundry) (range RMSE 0.6 to
0.9 METs).

To address the Freedson MET model’s consistent underestimation of EE for moderate-
vigorous treadmill activities and ADLs, researchers began developing prediction equations
on a wider range of activities, including activities of daily living. Swartz et al. (2000)
employed a protocol consisting of 2 over-ground walking and 26 lifestyle activities
(including household and sport activities) to produce a new linear regression model. In our
sample, this model improved MET estimates (compared to the Freedson MET model) for all
ADLs combined, for all TRDs combined and across all activities combined. However, the
increased accuracy was predominantly due to the improved estimates of moderate intensity
activities, while low intensity activities were considerably overestimated. The y-intercept of
this linear model is 2.606 indicating that at 0 counts (sedentary behavior) an individual’s EE
is 2.606 METs, about 1.5 METs higher than RMR. Thus, activities performed between 1–
2.6 METs will always be overestimated. In the current study, only 3 activities, (dishes,
laundry and dusting) had a measured EE less than 2.6 METs. If more sedentary-light
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activities were tested we likely would have seen a higher rate of EE overestimation. This
lack of sensitivity to changes in sedentary and light activity is of considerable importance
given the recent evidence that most Americans spend more than half of their waking hours
engaged in sedentary behavior (< 1.5 METs) (Mathews et al 2008) and the subsequent
public health focus on reducing sedentary behavior as a means to reduce many chronic
disease risk factors.

In addition to its consistent overestimation of light intensity activities, the Swartz model,
like the Freedson MET model, underestimated vigorous intensity ADLs, such as basketball,
tennis and ascending the stairs. Thus, using a wider range of activities in its calibration
process, the Swartz model was successful at improving EE estimates for moderate intensity
ADLs, while minimally improving estimates for vigorous intensity ADLs. Additionally, the
use of such a large y-intercept (2.606 METs) virtually eliminates the possibility of
accurately estimating sedentary-light intensity activities.

These data indicate that linear regression models perform well when evaluating activities
similar to those from which they were developed and it appears that EE estimates could
improve if different regression equations were used for activities that exhibit distinctive
properties (e.g. movement patterns or intensities), such as rhythmic locomotion activities
and unconstrained activities of daily living. This realization led to the development of a two-
regression model in which the variability in accelerometer counts is used to determine the
type of activity performed (Crouter et al. 2006a). Counts are then directed into either a
lifestyle or locomotion equation to predict METs. In addition, the two-regression model
employs an inactivity threshold which assigns a value of 1 MET to activities with an average
count value of < 50 counts·min−1. The inactivity threshold is meant to provide better
estimates of the low intensity activities that are often overestimated by single linear
regression models. Our data indicate this new approach that uses a feature of the signal
output to direct counts to one of two equations improves EE estimation for all ADLs
combined, compared to the traditional single linear regression techniques of Freedson et al.
(1998) and Swartz et al (2000). Perhaps more promising than the improved EE estimation of
ADLs, is the range of intensities that were accurately predicted. The Crouter method
performed well for activities ranging from 2.5–8.3 METs. The improvement across a wider
range of intensities is likely due to the non-linear cubic function used to estimate EE for
lifestyle activities. Non-linear regressions use more free parameters to model the
relationship between counts and EE; they do not assume a single, “straight line” relationship
across a range of intensities. On the other hand, the exponential curve used to estimate EE
for locomotion activities did not improve EE estimates across all treadmill activities
combined (RMSE 1.7 METs) compared to the Freedson and Swartz MET prediction
equations (RMSE 1.5 and 1.3 METs, respectively). There are often two problems associated
with more complicated, non-linear relationships such as exponential or cubic models. They
sometimes do not transport to other data sets as well as simpler models, and they often do
not extrapolate well to activities that are outside the range of counts from which they were
developed. Despite the added challenges of a more complicated model, and its poor
performance on treadmill activities, the Crouter method shows promise for distinguishing
locomotion and lifestyle activities, as well as accurately estimating EE across a range of
intensities.

Actical
Similar to the Actigraph, Actical prediction techniques tend to underestimate EE across a
range of activities, with activities of daily living being considerably more underestimated
compared to treadmill activities. Three of the five Actical prediction models evaluated are
two-regression models. The Klippel & Heil 2R MET model and the Heil 2R kcal model, are
two-regression models that were developed in an attempt to improve the single regression
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predictions of EE (Klippel & Heil 1R and Heil 1R) across a range of activity intensities.
These two-regression models use activity “intensity” to direct accelerometer counts to one
of two regressions. This technique seems reasonable given that most prediction models are
fairly accurate at predicting EE for activities within a narrow intensity range. Theoretically,
if counts are directed to a regression model that is better suited to predict EE for that specific
intensity range, an improvement in the accuracy of EE estimation should be observed.
However, there is an inherent problem with both the Klippel & Heil 2R MET model and the
Heil 2R kcal model – both models use count cut-points to distinguish activity intensity. In
the current study, the average count·min−1 for raking was 202.8, while the average
count·min−1 for descending the stairs was 3245, however these two activities have very
similar average energy expenditure values, 5.2 and 5.0 kcal·min−1, respectively. These data
clearly demonstrate that two activities of similar intensity can have drastically different
count values due to the nature of the activities. Based on their count values these two
activities would be classified as different intensities and directed to different prediction
equations, resulting in inaccurate estimates of EE. Due to these limitations, the 2R models
did not improve EE estimates compared to the 1R models. The Klippel & Heil 2R MET
model improved EE estimates by an average of 0.1 METs across all activities, while the Heil
2R kcal model improved EE estimates by an average of 0.1 kcals across all activities. These
data further illustrate the limitations of static regression models and their inability to
accurately estimate EE across a range of activity intensities.

Similar to the Crouter two regression model used for the ActiGraph, the Crouter Actical
two-regression model performed well across a broader range of intensities compared to
other single and two-regression models. Again, this is likely due to the use of two non-linear
regressions to model the relationship between counts and EE instead of assuming a single
linear relationship. The Crouter Actical model was slightly more accurate at estimating EE
for ADLs (RMSE 2.5 METs) compared to Klippel & Heil 1R and 2R MET prediction
equations (RMSE 3.0 and 2.9 METs, respectively). However the Crouter model was
considerably less accurate for TRD activities (RMSE 2.1 METs) compared to Klippel &
Heil 1R and 2R MET prediction equations (both have an RMSE of 1.1 METs).

RT3
The RT3 activity monitor has not been studied as extensively as other commercially
available monitors. The prediction equations most often used, and those examined in this
study, are proprietary and can only be used through the RT3 software. Thus it is not possible
to ascertain specific features of the equation or its development. It is also important to note
that the technical specifications of the RT3 are considerably different than both the
ActiGraph and the Actical. It is a tri-axial accelerometer, sensitive to acceleration in all three
planes of movement. As a result, during a given activity or situation, the RT3 has the
potential to register a much larger degree of acceleration. One would expect that these
specification differences could improve the underestimation of EE exhibited by other
monitors. Conversely, the RT3 models significantly underestimated EE during ADLs (Gross
EE Bias; −1.6 kcals; 95% CI −1.8, −1.4: RMSE 3.8 kcals) and (Activity EE Bias; −1.7
kcals; 95% CI −1.9, −1.5: RMSE 3.8 kcals). Overall, the RT3 models overestimated
treadmill activities (Gross EE Bias; 0.5 kcals; 95% CI 0.4, 0.7: RMSE 1.8 kcals) (Activity
EE Bias; 0.5 kcals; 95% CI 0.3, 0.6: RMSE 1.8 kcals). However this overestimation was
predominantly due to the large overestimation of level treadmill activities, while graded
treadmill activities remained underestimated. This trend is similar to what is seen in both the
ActiGraph and Actical accelerometers. In the current study, the RT3 tri-axial accelerometer
does not appear to improve estimates of EE. This could be due to factors in the calibration
process, the precision of the accelerometer, or factors related to the multi-axis monitor.
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Previous findings suggest that contributions from each axis are not accurately represented in
the 3-axes quantification of acceleration (Howe et al. 2009).

Activity Intensity Classification
In surveillance research, researchers are often not interested in point estimates of EE, but
rather how well the monitor output distinguishes among light (< 3 METs), moderate (3–5.99
METs) or vigorous (≥ 6 METs) intensities. Large scale epidemiologic studies, including the
National Health and Nutrition Examination Study (NHANES), are increasingly relying on
accelerometers as an objective measurement of physical activity (Troiano et al. 2007). Often
the primary goal of such studies is to understand an individual’s habitual physical activity
level. By understanding an individual’s habitual physical activity a number of research and
clinical outcomes can be elucidated, such as if an individual is meeting the physical activity
guidelines, the health outcomes associated with a specific dose of physical activity, or an
individual’s compliance to a specific lifestyle intervention.

Similar to previous studies (Crouter et al. 2006b, Rothney et al. 2008) however, this study
found that no prediction technique, for any monitor, accurately classifies physical activity
across all intensity categories. Figure 2 illustrates the rate of activity intensity
misclassification. Moderate intensity activity was the least often misclassified (range; 8.9–
34.3%), while vigorous activity was most often misclassified (range; 28.2–54.5%). The
higher rate of vigorous activity misclassification was likely due to a number of factors.
Using current prediction techniques, a single accelerometer positioned on an individual’s
hip, 1) does not sufficiently account for the EE produced by upper body movements, 2) is
not able to differentiate the terrain on which an individual is moving and thus cannot
account for the increased EE associated with walking at an incline or ascending stairs, and
3) is not able to account for the increased EE associated with carrying a load. Additionally,
sedentary and light intensity activities were often classified as moderate intensity. This error
is due to prediction equations having a y-intercept as high as 2.6, meaning that at 0 counts
(no acceleration), estimated EE is 2.6 METs. The insensitivity in distinguishing between
sedentary/light and moderate intensities is important given the recent focus on decreasing
sedentary behaviors and accumulating short bouts of moderate activity as a means to elicit
health benefits (PAGAC 2008; Healy et al. 2008). Equations with a lower y-intercept were
more sensitive to light intensity activity; however they tended to underestimate time spent in
moderate and vigorous intensities. This inconsistency illustrates the persistent challenge of
accurately predicting and classifying EE across a broad range of activity types and
intensities with current accelerometer prediction techniques.

Standard 3.5ml·kg−1·min−1 vs. Measured RMR
It is important to point out the errors reported in this paper are not due to our method of
analysis; using the standard 3.5 ml·kg−1·min−1 to establish criterion METs from oxygen
consumption data. Data show the standard 3.5 ml·kg−1·min−1 is not an accurate estimate of
RMR for certain subgroups of the population (e.g. overweight) (Byrne et al. 2005; Kozey et
al. 2010). This issue is important, and there are potential benefits for using measured RMR
when future studies develop new prediction methods. However, the models assessed in the
present study were developed using the standard 3.5 ml·kg−1·min−1. Although the use of
measured RMR in the calibration process may improve prediction models, the purpose of
the current paper was to validate existing methods. When we performed additional analyses
to compare the predicted METs to METs calculated using measured RMR, performance
deteriorates; when using the measured RMR, RMSE always increases, and it increases by
0.37 METs on average. This is perhaps not surprising since prediction models perform best
when used in a manner that closely resembles their calibration. That said, it is important not
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to lose sight of the fact that the original methods were calibrated using the 3.5 ml·kg−1·min−1

standard, which is scientifically somewhat suspect.

Summary
Since 1998 and Freedson et al’s initial calibration study, accelerometer prediction models
have continuously evolved in an attempt to improve EE estimates. Each generation of
prediction models appears to address one or more flaws inherent to its previous model, only
to create or fail to account for additional errors. The Swartz model (2000) addressed the
underestimation of lifestyle activities by the Freedson model (1998), but any observed
improvements were at the expense of overestimating low intensity activities. Two-regression
models, such as those by Klippel and Heil (2003) and Heil et al. (2006), attempted to
improve estimates across a range intensities from light to vigorous by using one regression
for light activities and a different regression for moderate-vigorous activities. These models
however, relied on count·min−1 to determine intensity, a method inherently flawed and
described in detail above. Crouter et al (2006a) and (2008) recognized this flaw and used a
more sophisticated feature of the acceleration signal (coefficient of variation [CV]) to
distinguish locomotion and lifestyle activities and direct count·min−1 to either a lifestyle or
locomotion specific equation. Crouter et al (2006a) and (2008) also attempted to improve
estimates of METs by using more complex non-linear regressions. Although Crouter’s
method appears to be successful at determining locomotion and lifestyle activities by using
the count CV, the use of more complex regressions may limit this technique’s validity when
applied to independent data sets. Figure 3 summarizes these errors and the progression of
prediction techniques from 1998 to the present.

We believe the underlying cause of the limitations noted above, is the fact that current
techniques use a single integrated accelerometer signal averaged over time as the sole input
into accelerometer prediction equations. In other words, the rich features of the signal are
not used, thus patterns of movement are not considered in the translation of accelerometer
counts to energy expenditure. For example, a treadmill activity performed for 10 minutes at
a steady intensity could result in the same accelerometer output as a lifestyle activity
(performed for the same time) that requires variable movement patterns. For these activities
the acceleration signal is very different, but when averaged over time, produces a similar
accelerometer output.

Figure 4 shows sample data from one subject. Second-by-second counts for level walking
(1.34 m·sec−1) (panel 1) and moving boxes (panel 2) are averaged over 7 minutes (shown in
the solid gray line). Despite very different second-by-second data, these activities produce
very similar counts·min−1, 2198.5 and 2204.7, respectively. As a result, both activities will
yield similar estimates of EE and classifications of activity intensity. It is clear that walking
on a treadmill and performing a lifestyle activity such as moving boxes produce very
different patterns of acceleration, however current regression techniques fail to recognize
and model these differences.

Staudenmayer et al. (2009) has begun to address these issues by developing two artificial
neural networks to estimate METs and identify activity type using more complex features of
the accelerometer signal. Although this technique shows promise for substantially improving
accelerometer based physical activity measurement (Staudenmayer et al 2009), it was
developed using a relatively small sample of subjects (the subjects and data from Crouter et
al, 2006a) and further refinement and development is ongoing.
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Limitations
This study is influenced by one main limitation – activities were not performed in a free-
living environment. The appeal of accelerometers is that they offer a minimally burdensome
means to objectively measure physical activity during free-living conditions. Although the
pace of activities was self-selected (except treadmill activities) and participants were
encouraged to perform activities as they would in their “everyday lives,” they were not
performed in a true free-living environment. Activities were performed for 7-minutes each,
allowing participants to reach steady state. In a true free-living environment the time spent
in each activity is likely much more variable, with some activities lasting only a few
seconds. As a result, much of free-living activity is not performed under steady state
conditions, and because current accelerometer prediction techniques use average
counts·min−1 to estimate EE, it is reasonable to assume that these techniques would perform
even more poorly under free-living conditions. Testing accelerometers and prediction
models in a true free-living environment would shed light on field-based research. However
the procedures necessary to conduct such a validation remain complicated and sometimes
impractical. This study attempted to bridge the gap by creating “free-living” activities within
a laboratory setting.

The issue of how to handle 0 counts was not assessed in the present paper. At 0 counts, the
device is registering no acceleration, and thus it is likely that the participant is seated, is
involved in some sort of sedentary behavior that requires no movement, or has removed the
monitor. As stated earlier, however, some regression models have y-intercepts as high as
2.6, meaning sedentary and some light intensity activities are considerably overestimated.
The existing methods (and future methods) would benefit from explicitly adjusting their
methodology to address 0 counts. In fact, some researchers have developed their own ad hoc
methods to handle 0 counts (Matthews et al 2008), but we are unaware of an established
methodology that has been empirically derived and is consistently used. As a result,
evaluating such a method in combination with published prediction techniques is beyond the
scope of this report. Users of the existing methods are advised to use caution when dealing
with 0 counts and to consider the specific information sought and the population being
assessed when deciding how to handle 0 counts.

Conclusion
In summary, current prediction techniques tend to underestimate energy expenditure, with
the underestimation being greater for ADLs than TRD activities. Additionally, this study
highlights the tendency of current prediction techniques to perform well within a specified
range of intensities and/or specific activity types. These ranges are often indicative of the
activities from which equation was developed. Similarly, current prediction equations are
not accurate at classifying activity intensity, with vigorous intensity activity being most
often misclassified.

In conclusion, accelerometers are a promising tool to objectively measure physical activity,
however current data processing techniques fail to realize the potential of accelerometers for
providing accurate estimates of energy expenditure and estimation of time spent in light,
moderate, and vigorous intensities. This investigation illustrates the numerous limitations of
current regression techniques when translating accelerometer output to physiologically
meaningful energy expenditure metrics, including 1) the fixed, single relationship assumed
between counts and EE when using linear regression models, 2) the insensitivity of these
models to accurately distinguish sedentary and light activities, 3) the insufficient translation
of regression models, especially non-linear models, to data sets independent from the
development data set and 4) the reliance on a single integrated accelerometer signal
averaged over time and subsequent elimination of the rich features of the signal. Future
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research should focus on developing more sophisticated data processing techniques to
estimate energy expenditure from accelerometer output.
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Fig. 1.
Panel 1 shows the bias for MET prediction equations across all activities, for TRDs and
ADLs. Panel 2 shows the bias for kcal prediction equations across all activities, for TRDs
and ADLs. All predicted EE values were significantly different from indirect calorimetry
except when treadmill activities were analyzed using the Klippel and Heil (2003) 2R MET
equation
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Fig. 2.
Activity intensity misclassification for ActiGraph, Actical and RT3 prediction equations,
respectively
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Fig. 3.
Summary of accelerometer energy expenditure prediction equations from 1998 to present.
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Fig. 4.
Counts·sec−1 for level walking (Panel 1) and moving boxes (Panel 2) over 7 minutes. When
averaged these data produce similar counts·min−1, 2198.5 and 2204.7, respectively.
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Table 1

Prediction Models

Prediction Model N Acceleromete Equation EE Metric Predicted

Freedson et al. 1998 50 ActiGraph 1.439008 + (0.000795 × cnts·min−1) METs

Freedson et al. 1998 50 ActiGraph (0.00094 × cnts·min−1) + (0.1346 BW) – 7.37418 kcals

Swartz et al. 2000 70 ActiGraph 2.606 + (0.0006863 × cnts·min−1) METs

Crouter et al. 2006 48 ActiGraph

cnts·min−1 ≤ 50; EE = 1 MET
50 < cnts·min−1 and CV ≤ 10;
2.379833 × (exp(0.00013529 × cnts·min−1))
50 < cnts·min−1 and CV = 0 or > 10;
2.330519 + (0.001646 × cnts·min−1) – (1.2017×10−7

× (cnts·min−1)2) + (3.3779×10−12 × (cnts·min−1)3)

METs

Klippel and Heil 2003
   (1R) 24 Actical

cnts·min−1 ≤ 50; EE = 1 MET
50 < cnts·min−1 < 350;
EE = 1.83 METs
350 < cnts·min−1;
2.826 + (0.0006526 × cnts·min−1)

METs

Klippel and Heil 2003
   (2R) 24 Actical

cnts·min−1 ≤ 50; EE = 1 MET
50 < cnts·min−1 < 350;
EE = 1.83 METs
350 < cnts·min−1 < 1200;
1.935 + (0.003002 × cnts·min−1)
1200 < cnts·min−1;
2.768 + (0.0006397 × cnts·min−1)

METs

Heil et al. 2006 (1R) 24 Actical

50 < cnts·min−1 < 350;
EE = 0.007565 kcals·min−1

350 < cnts·min−1;
0.02779 + ((1.143E-5) × cnts·min−1)

kcals

Heil et al. 2006 (2R) 24 Actical

50 < cnts·min−1 < 350;
EE = 0.007565 kcals·min−1

350 < cnts·min−1 < 1200;
0.01217 + ((5.268E-5) × cnts·min−1)
1200 < cnts·min−1;
0.02663 + ((1.107E-5) × cnts·min−1)

kcals

Crouter et al. 2006 48 Actical

cnts·min−1 ≤ 10; EE = 1 MET
10 < cnts·min−1 and CV ≤ 13;
2.55095 × (exp(0.00013746 × cnts·min−1))
10 < cnts·min−1 and CV > 13;
1.466072 + 0.210755 × (Ln(cnts·min−1)) –
0.0595362 × (Ln(cnts·min−1)2) + 0.0157002 ×
(Ln(cnts·min−1)3)

METs

RT3 Gross
Proprietary (9) Unknown RT3 Proprietary kcals

RT3 Activity EE
Proprietary (9) Unknown RT3 Proprietary kcals

N = participants used in development of model; EE = energy expenditure; cnts = counts; CV = Coefficient of Variation
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Table 2

Physical Characteristics of Participants (mean ± SD (range)).

All
 N = 274

Men
 N = 135

Women
 N = 139

Age
 (years)

38.3 ± 12.4
(20–60)

37.8 ± 12.7
(20–60)

38.8 ± 12.2
(20–58)

Body
Mass (kg)

72.6 ± 14.8
(47.0–130.0)

79.2 ± 13.3
(52.3–130.0)

66.1 ± 13.2
(47.0–123.6)

Height
 (cm)

170.8 ± 9.6
(149.0–193.5)

177.5 ± 6.8
(160.0–193.5)

164.2 ± 7.1
(149.0–190.5)

BMI
 (kg/m2)

24.8 ± 4.2
(17.6–42.2)

25.1 ± 3.7
(17.6–42.2)

24.5 ± 4.5
(18.6–41.8)

Activities
Analyzed 2745 1377 1368

BMI = Body Mass Index
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Table 5

RT3 Bias (95% CI); RMSE

RT3 Gross EE (kcals) RT3 Activity EE (kcals)

Bias
(95% CI) RMSE

Bias
(95% CI) RMSE

Across All
Activities

−0.5
(−0.6, −0.3) 2.9 −0.5

(−0.6, −0.4) 2.9

Treadmill
Activities

0.5
(0.4, 0.6) 1.8 0.5

(0.4, 0.6) 1.8

Activities of
Daily Living

−1.6
(−1.8, −1.4) 3.8 −1.7

(−1.9, −1.5) 3.8

Walking 1.34
m·sec−1 0% gr

0.9
(0.8, 1.0) 1.3 0.8

(0.7, 1.0) 1.3

Walking 1.56
m·sec−1 0% gr

1.1
(1.0, 1.3) 1.6 1.1

(0.9, 1.2) 1.6

Running 2.23
m·sec−1 0% gr

1.8
(1.5, 2.1) 2.9 1.8

(1.4, 2.1) 2.9

Walking 1.34
m·sec−1 3% gr

−0.4
(−0.5, −0.3) 1.9 −0.4

(−0.6, −0.4) 1.3

Walking 1.56
m·sec−1 3% gr

−0.4
(−0.5, −0.2) 1.3 −0.5

(−0.6, −0.3) 1.3

Running 2.23
m·sec−1 3% gr

0.2*
(−0.2, 0.5)

2.4 0.1*
(−0.3, 0.5)

2.4

Ascend Stairs −7.6
(−7.9, −7.2) 7.9 −7.6

(−7.9, −7.3) 7.9

Basketball −2.2
(−2.8, −1.7) 2.7 −2.3

(−2.9, −1.8) 2.8

Move 6kg Box −0.7
(−0.9, −0.5) 1.7 −0.8

(−1.0, −0.6) 1.7

Descend
Stairs

2.1
(1.8, 2.3) 2.6 2.0

(1.8, 2.2) 2.5

Dishes −0.6
(−0.8, −0.3) 1.0 −0.7

(−0.9, −0.4) 1.0

Dust −1.1
(−1.2, −0.9) 1.2 −1.1

(−1.3, −0.9) 1.2

Garden −0.9
(−1.5, −0.3) 2.0 −0.9

(−1.6, −0.3) 2.0

Laundry −1.0
(−1.1, −0.8) 1.1 −1.0

(−1.1, −0.9) 1.1

Mop −1.6
(−1.9, −1.3) 1.8 −1.7

(−1.9, −1.4) 1.9

Mow 0.2*
(−0.6, 0.9)

2.2 0.1*
(−0.7, 0.8)

2.2

Paint −1.7
(−2.0, −1.3) 1.9 −1.7

(−2.1, −1.4) 2.0

Rake −0.4*
(−1.2, 0.4)

2.5 −0.5*
(−1.3, 0.3)

2.5

Clean Room −1.0
(−1.7, −0.2) 2.2 −1.0

(−1.7, −0.3) 2.2
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RT3 Gross EE (kcals) RT3 Activity EE (kcals)

Bias
(95% CI) RMSE

Bias
(95% CI) RMSE

Sweep −1.4
(−1.7, −1.2) 1.6 −1.5

(−1.7, −1.2) 1.7

Tennis −4.0
(−4.6, −3.4) 4.4 −4.1

(−4.6, −3.5) 4.4

Trim −0.1*
(−0.7, 0.5)

1.8 −0.2*
(−0.8, 0.4)

1.8

Vacuum −1.4
(−1.6, −1.2) 1.5 −1.5

(−1.6, −1.3) 1.6

CI = Confidence Interval; RMSE = Root Mean Squared Error; m = meters; sec = seconds; gr = grade;

*
Predicted EE not significantly different than measured EE
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