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Abstract
Combining high mass accuracy mass spectrometry, isobaric tagging, and novel software for
multiplexed, large-scale protein quantification, we report deep proteomic coverage across multiple
biological replicates and cell lines. We applied this method to study four human embryonic stem
cell and four induced pluripotent stem cell lines in biological triplicate, a 24-sample comparison
resulting in the largest set of identified proteins and phosphorylation sites in pluripotent cells to
date. The statistical analysis afforded by this approach revealed, for the first time, subtle but
reproducible differences in protein and protein phosphorylation between embryonic stem cells and
induced pluripotent cells. Merging these results with RNA-seq analyses, we found functionally
related differences across each tier of regulation. Finally, we introduce the Stem Cell–Omics
Repository (SCOR), a resource that collates and displays quantitative information across multiple
planes of measurement, including mRNA, protein, and post-translational modifications.

For practical and ethical reasons, induced pluripotent stem (iPS) cells hold great potential
for therapeutic and research purposes. Based on morphology, capacity to self-renew, and
developmental potential, iPS cells are nearly indistinguishable from their embryonic stem
(ES) cell counterparts1–3; however, their degree of similarity on the molecular level remains
controversial4–6. While various studies have stressed the overall similarity of gene
expression programs between ES and iPS cells1, 2, 5, 7, a handful of studies have reported
subtle differences in RNA levels, DNA methylation, and the efficiency of many iPS lines to
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differentiate into neural lineages6, 8–10. Meanwhile, similarity on the protein level remains
completely unexplored. These analyses are critical, as many forms of regulation are
enforced post-transcriptionally or through post-translational modifications (PTMs).

To address the proteomic and phosphoproteomic similarity between ES and iPS cells, we
employed a method that combines isobaric tagging, high mass accuracy mass spectrometry,
and novel software. Applying this method to the comparison of two ES, one iPS, and one
fibroblast cell line we identified 7,952 proteins and 10,499 phosphorylation sites.
Leveraging the multiplexing nature of our approach, we then examined protein and their
phosphorylation sites in four ES and four iPS cell lines in biological triplicate (24 samples
total) and identified 6,761 proteins and 19,122 phosphorylation sites. Rigorous statistical
analysis revealed statistically significant and functionally related differences between
proteins and phosphorylation sites in human ES and iPS cells, which may reflect residual
regulation characteristic of iPS cells’ somatic origin. Finally, we introduce a queryable
online resource for large-scale data related to pluripotency.

RESULTS
Peptide identification and quantitation

To remove the limitation of low mass cutoff, imposed by resonant excitation CAD, we
employed beam-type collision-activated dissociation (HCD) with high mass accuracy
detection of fragment ions11,12–14. As shown in Figure 1a these methods increase peptide
identification over 60% and phosphopeptide identifications over 260% compared to CAD
with low mass accuracy fragment ion detection. We attribute these increases to greater
specificity in database searches and fewer sequence-directed cleavage events. Importantly,
HCD is compatible with isobaric tagging strategies for multiplexed peptide quantitation.
Isobaric tags can compare up to eight samples in a single experiment and facilitate analysis
of biological replicates and multiple cell lines15–17. However, this form of quantitation is
subject to a unique and widespread source of quantitative error arising from the co-isolation
of multiple peptide precursors prior to fragmentation18. We therefore developed novel
software, TagQuant, which identifies mass spectra compromised by interference and
excludes these data points from peptide and protein quantitation19. This filtering method
resulted in a statistically significant increase in quantitative precision (permutation testing, P
< 3×10−16; Fig. 1b). TagQuant also incorporates mathematic correction of tag impurities,
summing of reporter ion intensities, and exclusion of low intensity reporter ions (see
supplemental materials and methods)20, 21. We tested our complete workflow using whole-
cell lysate from S. cerivisae. Separate pools of protein were labeled with isobaric tags,
combined in known ratios, and analyzed via mass spectrometry. The observed results match
closely to the expected ratios for the range of mixtures tested (R2 > 0.99; Figure 1c).

Comparison of ES and iPS cell proteomes
We first compared transcripts, proteins, and phosphorylation sites across two human ES (H1
and H9), one iPS (DF19.7), and one fibroblast (newborn foreskin fibroblasts, NFF) cell line
(Supplementary Fig. 1) using isobaric tags. With less than two weeks of instrument analysis,
we identified 7,952 proteins (1% false discovery rate (FDR); Supplementary Table 1) and
10,499 sites of phosphorylation (localized with 95% confidence; Supplementary Table 2).
We validated measurements for selected, representative proteins by Western blots
(Supplementary Fig. 2). Identified proteins include key regulators of pluripotency, such as
OCT4/POU5F1, NANOG, and SOX2 (Fig. 2e), and nearly every major component of the
developmentally related epigenetic regulators, polycomb group and trithorax proteins
(Supplementary Fig. 3).
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Comparing ES and NFF cell lines revealed that 35% of proteins and 59% of phosphorylation
sites differed by at least two-fold in abundance. The genes corresponding to these
differentially regulated proteins and phosphorylation sites were functionally related and
representative of the two cell states. For example, proteins found at higher levels (two-fold)
in ES cells were enriched for cell cycle-related processes (e.g., DNA replication, cell
division, etc.), reflecting the rapid proliferation and shorter doubling times characteristic of
pluripotent cells (Supplementary Table 3)22. Conversely, proteins observed at higher levels
in the NFFs were enriched for processes pertinent to differentiated cell types. Differential
regulation of phosphorylation sites was likewise apparent. Phosphorylation sites that were at
least twofold higher in either ES or NFF cells were enriched for a number of different amino
acid motifs (Supplemental Table 4). To test whether this reflected differences in kinase
activity between the two cell types, we mapped potential kinases to each phosphorylated site
using the Group-based Prediction System software23. We then used Fisher’s exact test to
determine if substrates for particular kinases were enriched in sets of phosphorylation sites
that were at least two-fold different between ES and NFF cells and mapped them to the
human kinome tree (Figure 3, adapted from Manning et al.24). Entire kinase families appear
highly active in distinct cell types. For example, targets of CMGC kinases were more highly
phosphorylated in the ES cells relative to NFFs, while substrates of CAMK and AGC
kinases were more heavily occupied in the NFFs (P < 0.05, Fisher’s Exact Test with
Benjamini-Hochberg correction)25. The high number of differences and their functional
enrichment confirm that two sample comparisons, without replicate analysis, are sufficient
to characterize major differences between highly dissimilar cell types.

Of course it is often necessary to perform large-scale comparison of more similar proteomes.
ES and iPS cells offer one such example, and a complete map of their similarities and
differences will be key for both fundamental science and clinical applications. Single
replicate comparison of one ES and one iPS cell line, however, revealed two-fold or greater
differences in less than 1% of proteins and phosphorylation sites. This small set of proteins
and phosphorylation sites showed no functional commonality (i.e., gene ontology terms26,
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways27, or phosphorylation
motifs). Moreover, comparing ES and iPS cells yielded roughly the same number of
differences as a comparison between two ES cell lines, regardless of fold-difference
(Supplementary Fig. 4). Together, these data suggested an overall inability to differentiate
between ES and iPS cells at the protein level.

Next we examined RNA-seq data, which was acquired concomitantly with protein-level
experiments (Supplementary Table 5). Consistent with proteomic results, large differences
were detected between ES and NFF cells: 48% of transcripts differed by two-fold or more.
While 9% of transcripts differed by greater than two-fold when comparing ES (H9) and iPS
transcripts for a single replicate, the two ES cell lines showed even greater variation (12% of
transcripts). This suggested that it was not possible to distinguish differences between cell
types from line-to-line variability. Unlike the initial proteomic experiments, however, the
RNA measurements were carried out in biological triplicate. Statistical analysis afforded by
replicates enabled us to move beyond arbitrary fold-cutoffs and establish statistical
significance. Using Student’s t-test with Benjamini-Hochberg correction (P < 0.05), we
observed 623 differentially regulated transcripts between ES (H9) and iPS cells. From these
data we reasoned that proteomic differences likely existed between these similar cell types
but were subtle and therefore masked by our inability to perform statistical analyses.

To test this hypothesis we leveraged the multiplexing capabilities of 8-plex isobaric tags to
compare proteins and phosphorylation sites across four ES (H1, H7, H9, H14) and four iPS
(DF4.7, DF6.9, DF19.11, DF19.7) cell lines in biological triplicate (Supplementary Fig. 1).
To facilitate comparison between all 24 samples, reporter ion intensities were median

Phanstiel et al. Page 3

Nat Methods. Author manuscript; available in PMC 2012 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



normalized. Proteomic and phosphoproteomic analyses took less than six weeks to acquire
and resulted in the identification of 6,761 proteins (<1% FDR; Supplementary Table 1) and
19,122 sites of phosphorylation (localized with at least 95% confidence; Supplementary
Table 2). 4,742, 3,396, and 2,234 proteins were quantified in at least one, two, or three
replicates respectively while 14,162, 8,217, and 4,564 localized phosphorylation sites were
quantified in at least one, two, or three replicates respectively. Accompanying mRNA
analysis was again performed for each of the samples using an Illumina Genome Analyzer
IIx.

Analysis within a single biological replicate (8 cell lines) revealed only 1 transcript, 5
proteins, and 4 phosphorylation sites that were statistically different (P < 0.05, Student’s t-
test with Benjamini-Hochberg correction; Fig. 4a). However, inclusion of two more
biological replicates permitted detection of numerous differentially regulated elements –
1560 transcripts, 293 proteins, and 292 phosphoisoforms differed significantly between ES
and iPS cells (P < 0.05, Student’s t-test with Benjamini-Hochberg correction; Fig. 4a,
Supplementary Table 6). Greater than 90% of the differentially regulated transcripts,
proteins, and phosphorylation sites differed by less than two fold. These minor deviations
were only detectable through biological replicate analysis, which increased sample size, and
with it, statistical power.

Though biological replicates provide the statistical power to detect differences, they may not
always distinguish pervasive differences between cell types from variance between cell
lines. This is best illustrated by considering just H1-ES and DF4.7-iPS cell lines. Biological
triplicate analysis of transcripts from these lines indicates 990 differentially regulated
transcripts (P < 0.05, Student’s t-test with Benjamini-Hochberg correction; Fig. 4d).
However, most (63%) of these differences did not overlap with differentially regulated
transcripts as determined by the full 24-sample comparison. Moreover, 72% of the
differences detected by analysis of all eight cell lines in biological triplicate were not
detected by comparison between H1 and DF4.7 cells alone (Fig. 4d). We conclude that
analyzing multiple cell lines is an essential addition to biological replicates.

Despite the subtlety of the differences observed here, their functional enrichment suggests a
consistent distinction in regulation between ES and iPS cells. Transcripts, proteins, and
phosphorylation sites found at higher levels in iPS cells were enriched for many biological
processes required for somatic cell function, including system process, organ development,
blood circulation, and muscle system process (Supplementary Table 7). However, motif
analysis of differentially regulated phosphorylation sites did not implicate any specific
kinases or phosphatases in these differences. Despite the functional relationship of the
differentially regulated elements, the differences at each level of regulation (transcript,
protein, and phosphorylation) often did not correspond to the same genes (Fig. 4e).

To determine if differences between ES and iPS cells represented incomplete
reprogramming, we contrasted ES and iPS cell comparisons with ES and NFF cell
comparisons. Based on gene enrichment analysis, three biological processes showed
enrichment at every level in iPS cells compared to ES cells (transcript, protein, and
phosphorylation): muscle system process, muscle contraction, and wound healing. These
terms reflect cellular function characteristic of mesodermal lineages and may represent the
NFF origin of the iPS cells. Further supporting this hypothesis, all three terms were enriched
in the transcripts, proteins, and phosphorylation sites that were at least two-fold higher in
NFF cells than ES cells (Supplementary Table 8). In fact, more than half of the gene
ontology terms enriched among transcripts, proteins, and phosphorylation sites that were
significantly higher in iPS compared to ES cells were also enriched in NFF compared to ES
cells. Among this dataset were multiple phosphorylation events on NSUN2, a proto-
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oncogene implicated in cellular proliferation28(Fig. 4c). Transcript and total protein levels
for NSUN2 were not different between ES and iPS cells, suggesting the changes are not
simply a matter of protein abundance. Further, phosphorylation of these sites in iPS cells
was similar to the levels observed in fibroblast cells, which may reflect residual regulation
from kinases and phosphatases more characteristic of the differentiated NFF cells. NSUN2
acts downstream of c-MYC28, one of a handful of factors commonly used to improve
reprogramming efficiency. At the transcript level, the set of mRNAs more abundant in iPS
cells, which included TBX15 and PITX2, were enriched for developmental function and
exposed a connection to mesoderm differentiation29, 30. All of these results suggest that
somatic cell programs are not completely silenced during reprogramming. While this has
been observed before in gene expression studies31, this is the first evidence that incomplete
silencing is also reflected in regulation of proteins and post-translational modifications10, 32.

Data resource and sharing
To facilitate integration of these results with other data sets we created the Stem Cell-Omics
Repository (SCOR, http://coongroup.chem.wisc.edu/scor/ username: POU5F1; password:
txn_factor), a web-based resource that collates quantitative biological analyses of ES and
iPS. A key feature of SCOR is the ability to visualize quantitative information for
transcripts, proteins, and PTMs from numerous sources (Supplementary Figure 5). Included
in the database are several large-scale analyses from other labs, all of which are queried
during standard searches. To ensure that SCOR remains relevant, we’ve added an option to
submit published data for inclusion on the website. Our intention is that the resource will
expand as the field grows. A separate tab in the tools section provides open-access,
downloadable programs used for post-acquisition data processing, including the interference
filtering program, TagQuant. All datasets are downloadable at the SCOR database and have
also been deposited in Tranche
(http://www.proteomecommons.org/dev/dfs/users/index.html).

To demonstrate the value of this resource, we applied the SCOR database to evaluate results
from this and several other microarray and RNA seq experiments1,4. This analysis,
encompassing iPS cells derived using integrating, viral vectors and non-integrating,
episomal vectors, identified a number of transcripts that were consistently different in ES
cells versus iPS cells (Supplementary Table 9). To include data from outside laboratories we
intersected our results with a similar data set4 (Supplementary Table 9). Contained in this
data set were two transcripts (TCERG1L and FAM19A5) that were consistently higher in
ES cells relative to iPS cells. Interestingly, recent work reported that both of these genes
exhibit promoter hypermethylation and ultimately lower expression in a number of iPS cell
lines10. These and other genes that show consistent differential regulation are of great
interest for further studies. As more proteomic studies of ES and iPS cells become available,
SCOR will facilitate similar inter-laboratory comparisons to determine the most pervasive
transcriptomic, proteomic, and phosphoproteomic discrepancies.

DISCUSSION
This transcriptomic, proteomics, and phosphoproteomic comparison of ES and iPS cells
offers important insights into the nature of reprogrammed cells. One subtle but critical
conclusion is the remarkable similarity between ES and iPS cells, which is highlighted by
the technical rigor required to detect even minor differences. While the exact biological
relevance of these differences remains unknown, functional similarity of the genes that
contribute to them suggest that iPS cells retain residual regulation characteristic of the cells
from which they were derived. These differences do not appear to appreciably alter cellular
function in the pluripotent state, but instead may surface during differentiation as cells
invoke gene expression programs needed for development. Although iPS cells are capable of
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producing mesoderm, endoderm, and ectoderm, the process of reprogramming selects for
cells predisposed to the pluripotent state, not necessarily for cells that differentiate with
equal efficiency to all lineages. For example, recent studies have reported that ES lines
differentiate into neural lineages with higher efficiency than most iPS lines33. From our
data, many transcripts lower in iPS cells relative to ES cells, like NEURONATIN and
SOX11, were also functionally related through their role in neural development34, 35. On the
PTM level, phosphorylation states were consistently lower in iPS cells for a number of
microtubule-related proteins that are directly (DPYSL236) or indirectly (FAM29A37)
implicated in neural differentiation and development. Understanding how these genes
contribute to neural differentiation in both ES and iPS cells will be the subject of further
study.

A major advantage of combining multiple planes of measurement is the ability to dissect
regulatory mechanisms not apparent in a single dimension. For instance, many of the protein
kinases whose substrates exhibited significant differences in phosphorylation levels
exhibited little to no change at the transcript or protein level. For example, while mRNA and
protein levels of CDK2 are largely unchanged (< two-fold) in pluripotent cells relative to
NFF cells, CDK2 substrates, were more highly phosphorylated in pluripotent cells. A
possible explanation for this observation was apparent in our global PTM data.
Phosphorylation of CDK2 at threonine 160, a mark required for kinase activity38, is up-
regulated by nearly 6-fold in all three pluripotent cell lines. Likewise, CDK4, CDK5, and
CDK6 are all found at similar levels in the pluripotent cells, but the motifs they target show
a significant increase in phosphorylation. In contrast, the higher transcript and protein
expression levels of PKA and PKC in NFF cells may explain the correspondingly high
levels of substrate phosphorylation. Taken together these data suggest multiple mechanisms
for the regulation of kinases. For instance, proteins involved in transitory functions, like the
aforementioned cell cycle-related kinases, may be regulated via rapid and dynamic signals
(i.e., phosphorylation and dephosphorylation) rather than by slower and longer lasting
transcriptional and translational changes.

The results presented here highlight the importance of including multiple biological
replicates to overcome biological and technical variability and to establish statistical
significance. Moreover, evaluating multiple cell lines or subjects ensures that observed
differences are persistent and not merely single sample aberrations. This study incorporated
24 different samples, though we recognize the importance of expanding the comparison of
ES and iPS cells to cover as many lines, reprogramming methods, and growth conditions as
possible. To date, 75 ES cell lines are listed on the NIH-approved registry and innumerable
iPS lines are available from diverse sources. Comparing all of these cell lines is a daunting
task for a single research group. We therefore created SCOR, an open-access resource to
collate, visualize, and analyze large-scale datasets related to pluripotency. As research
expands, the SCOR website will bring datasets together and facilitate cross-laboratory
comparisons at every tier of regulation.

METHODS
Cell Growth and Lysis

We maintained human embryonic stem cells (lines H1, H7, H9, and H14) and induced
pluripotent cells (lines DF4.7, DF6.9, DF19.7, and DF19.11) in a feeder independent
system, as previously described39. We karyotyped all ES and iPS cell lines prior to
experiments using standard G-banding chromosome analysis (WiCell Research Institute).
Upon reaching 70% confluency, we passaged cells enzymatically using dispase (Invitrogen)
at a 1:4 splitting ratio. We cultured human newborn foreskin fibroblasts (Cat# CRL-2097™,
ATCC) essentially according to ATCC recommendations. We maintained cells in 10% fetal
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bovine serum (Hyclone Laboratories Incorporated), 1 mM L-glutamine (Invitrogen), 0.1
mM beta-mercaptoethanol (Sigma-Aldrich), and 0.1 mM non-essential amino acids in
DMEM (both from Invitrogen). We passaged cells ar roughly 70% confluency at a 1:3
splitting ratio, using Tryp-LE (Invitrogen).

For proteomics experiments, we harvested all cells by individualizing for 10 minutes with an
adequate volume of pre-warmed (37 °C), 0.05% Tryp-LE to cover the culture surface.
Following cell detachment, we added an equivalent volume of either ice-cold growth media,
in the case of NFF cells, or ice-cold DPBS (Invitrogen), in the case of ES cells, before
collecting the cells. We subsequently washed cell pellets were twice in ice-cold DPBS and
stored at −80 °C. We collected approximately 108 cells for each analysis. We lysed samples
via sonication in lysis buffer containing 8M Urea, 40 mM NaCl, 50 mM Tris (pH 8), 2 mM
MgCl2, 50 mM NaF, 50 mM b-glyceradelhyde phosphate, 1 mM sodium orthovanadate, 10
mM sodium pyrophosphate, 1X mini EDTA-free protease inhibitor (Roche Diagnostics),
and 1X phosSTOP phosphatase inhibitor (Roche Diagnostics).

For RNA-seq analysis, we washed celled twice in pre-warmed (37°C) DPBS and lysed them
on the culture dish using Trizol reagent (Invitrogen). We added Chloroform (Sigma) to a
final concentration of 16.7% (v/v) and the sample was centrifuged for 15 minutes at
12,000×g at 4°C. We combined the resulting supernatant with an equal volume of 70%
ethanol and processed it using the Qiagen RNeasy kit with on column DNAse digestion. We
linearly amplified poly A+ RNAs using a modified T7 amplification method40 that retains
directionality of the transcripts. This protocol generates Illumina RNA-Seq libraries with
uniform coverage of the entire length of the mRNAs. Samples were run on an Illumina
Genome Analyzer IIx. We then aligned each lane to the genome and the exon splice sites
database using bowtie41, allowing up to ten multiple matches and three mismatches. For
data processing, we filtered 42bp reads to remove adapters in each lane. We used
ERANGE42 to obtain expression values in RPKM (reads per kilobase of exon model per
million mapped reads).

mRNA analysis
We performed microarray raw data processing and normalization as previously
described1, 3. We performed the assessment of the ES and iPS specificity of transcripts as
follows. First, we fit a linear model to estimate all the fold changes across the iPS and ES
lines, and then applied Bayesian smoothing to the standard errors among the same type of
cell lines. Finally, we calculated a p-value based on the moderated t-statistics for the
differentially expressed genes and then adjusted them based on Benjamini and Hochberg’s
method to control the false discovery rate25. Second, we required the fold change to be at
least 3-fold different between the two cell types, with an adjusted p-value of less than or
equal to 0.05. The data in Supplementary Table 7 was generated from 15 microarrays for ES
cells, 25 microarrays for iPS cells, and three microarrays for differentiated cell types (NFF
and IMR90) pooled from the work of Junying Yu et al. 2009 and Junying Yu et al. 20071, 3.

Western Blot analysis
To confirm quantitation determined by mass spectrometry, we analyzed several proteins for
western blot analysis (Supplementary Fig. 3). Following cell lysis, we loaded equal amounts
of total protein from H1, H9, iPS and NFF cells onto a 4–15% acrylamide gel (Biorad). We
used the following primary antibodies to detect the indicated protein: mouse, anti-human
OCT4 monoclonal antibody (1:2000, sc-5279, Santa Cruz Biotechnology), goat, anti-human
DNMT3B (1:1000, sc-10235, Santa Cruz Biotechnology), mouse, anti-human GAPDH
(1:2,000, MAB374, Chemicon), mouse, anti-human CD44 (1:10, 550989, Pharmingen-BD).
We used the following horseradish peroxidase-linked secondary antibodies: goat, anti-
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mouse IgG (1:2,000, sc-2005, Santa Cruz Biotechnology), donkey, anti-goat IgG (1:2,000,
sc-2056, Santa Cruz Biotechnology). We loaded a biotin labeled ladder according to the
manufacturer’s specification (Cell Signaling). We used a Super Signal West Pico
Chemiluminescent Substrate (Thermo Scientific Pierce) according to protocol to image blots
on a LAS-3000 Imaging System (Fujifilm Life Science). We determined quantitation
according to manufacturer’s instructions with MultiGauge software, ver 2.0 (Fujifilm Life
Science). Between detections, we stripped the membrane using Restore Western Blot
Stripping Buffer (Thermo Scientific Pierce).

Digestion and iTRAQ labeling
We reduced cysteine residues with 5mM dithiothreitol, alkylated them using 10mM
iodoacetamide, and digested proteins in a two-step process. We added proteinase Lys-C
(Wako Chemicals) (enzyme:protein ratio = 1:100) and incubated for approximately 2 hours
at 37°C in lysis buffer. We then diluted samples with 50 mM Tris pH 8 until the urea
concentration was 1.5 M and digested them with trypsin (Promega) (enzyme:protein ratio =
1:50) at 37°C overnight. We quenched reactions using trifluoroacetic acid (TFA). We dried
samples to completion after purification using C18 solid phase extraction (SPE) columns
(SepPak, Waters). We performed iTRAQ labeling according to manufacturer supplied
protocols (Applied Biosystems)16, 17. To ensure that each of the samples contained the same
amount of protein we prepared a small 1:1:1:1 (1:1:1:1:1:1:1:1 for 8-plex experiment)
aliquot and analyzed it by mass spectrometry. We used summed reporter ion ratios from this
experiment to inform mixing ratios of the remaining labeled digests. Once mixed, we dried
samples to completion and purified by them by sold phase extraction (SPE).

Fractionation
We resuspended the labeled peptides in strong cation exchange (SCX) buffer A [5 mM
KH2PO4, 30% acetonitrile (pH 2.65)] and injected them onto a polysulfoethylaspartamide
column (9.4 × 200 mm; PolyLC). We performed separations using a Surveyor liquid
chromatography quaternary pump (Thermo Scientific) at a flow rate of 3.0 mL/min. We
used the following gradient for separation: 0–2 min, 100% buffer A, 2–5 min, 0–15% buffer
B, 5–35 min, 15–100% buffer B. Buffer B was held at 100% for 10 minutes. Finally, the
column was washed extensively with buffer C and water prior to recalibration. We used the
following buffers: buffer A [5 mM KH2PO4, 30% acetonitrile (pH 2.65)], buffer B [5 mM
KH2PO4, 30% acetonitrile, 350 mM KCl (pH 2.65)], buffer C [50 mM KH2PO4, 500 mM
KCl (pH 7.5)]. We collected the samples by hand and desalted them by SPE.

Phosphopeptide enrichment
Following SCX fractionation, we enriched phosphopeptides using magnetic beads (Qiagen).
We washed the beads 3× with water, 3× with 40 mM EDTA (pH 8.0) for 30 minutes with
shaking, and 3× with water again. We then incubated beads with 100 mM FeCl3 for 30
minutes with shaking. Finally, we resuspended beads in 1 mL 1:1:1 (acetonitrile/methanol/
0.01% acetic acid) and washed them 3 times with 80% acetonitrile/0.1% TFA. We
resuspended samples in 80% acetonitrile/0.1% TFA and incubated them with beads for 30
minutes with shaking. We washed the beads 6 times with 200 μL 80% acetonitrile/0.1%
TFA, and eluted the peptides using 1:1 acetonitrile:5% NH4OH in water. We acidified
eluted phosphopeptides immediately with 4% formic acid, lyophilized them to ~10 μL, and
diluted them with 50 mM phosphate buffer prior to analysis.

Mass spectrometry
We performed tandem mass spectrometry using a NanoAcquity ultra high-pressure liquid
chromatography system (Waters) coupled to a dcQLT-orbitrap (Thermo Fisher Scientific).
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Samples were loaded onto a precolumn (75 μm inner diameter, packed with 5 cm C18
particles, Alltech) for 10 min at a flow rate of 1 μm/min. Samples were then eluted over an
analytical column (50 μm ID, packed with 15 cm C18 particles, Alltech) using a 120 min
linear gradient from 1% to 35% acetonitrile with 0.2% formic acid and a flow rate of 300
nL/min. An additional 30 min were used for column washing and equilibration. We
constructed columns as previously described12.

All mass spectrometer instrument methods consisted of one MS1 (resolving power = 30,000
– 60,000) scan followed by data dependent MS2 scans (resolving power = 7,500) of the ten
most intense precursors. Protein identification experiments used exclusively beam-type
CAD (HCD) with orbitrap mass analysis. Some phosphopeptide identification experiments
included alternating HCD and electron transfer dissociation (ETD) MS2 scans. We
quantified any peptides identified by ETD using the corresponding HCD scan. We used an
exclusion list for 60 s using a window of −0.55 Th to 2.55 Thompson. We excluded
precursors with unassigned charges states or charge states of one (and two for ETD scans).
We used automatic gain control target values of 1,000,000 for MS1 analysis and 50,000 for
orbitrap MS2 analysis. To maximize quantified identifications we employed QuantMode for
some analyses.

Database search and FDR filtering
We used DTA generator to extract peak information from .RAW files and print it into a
searchable text file43. This software removed fragment ions related to the iTRAQ reagents
and as well as charged reduced precursors. We searched spectra against the International
Protein Index (IPI) human database version 3.75 with full enzyme specificity using The
Open Mass Spectrometry Search Algorithm (OMSSA; version 2.1.4) 44, 45. We used a mass
tolerance of ±4.5 Dalton precursors and a monoisotopic mass tolerance of ±0.01 Dalton for
fragments ions. We set carbamidomethylation of cysteines, iTRAQ 4-plex on the N-
terminus, and iTRAQ (4-plex or 8-plex) on lysines as fixed modifications, and oxidation of
methionines and iTRAQ (4-plex or 8-plex) on tyrosines as variable modifications. For
phosphopeptide searches we included variable phosphorylation of Serine, Threonine, and
Tyrosine as variable modifications. We used the COMPASS software suite to filter peptides
to a 1% FDR. COMPASS groups peptides into proteins following the rules previously
established46. COMPASS multiplies peptide level P-scores for unique peptides
corresponding to each protein to obtain protein P-Scores and then filters proteins by this
score to achieve a 1% FDR at the protein level.

Peptide and Protein Quantitation
We used custom software, TagQuant, to perform iTRAQ quantification. TagQuant is written
in C# programming language and istributed along with COMPASS software suite.
TagQuant extracts reporter ion intensities and multiplies them by injection times to
determine counts. TagQuant performs purity correction as previously described20. TagQuant
normalizes intensities such that the total signal from each channel is equal. We summed
reporter ion intensities for each channel for all peptides in a given protein with three
exceptions; (1) scans corresponding to peptides found in multiple protein groups were not
used for quantification (2) peptides found to be phosphorylated were not used for protein
quantification and (3) if peaks not related to the precursor were present in the MS1 scan
within +/− 1.8 Thompson of the selected precursor at an intensity greater than 25% of the
selected precursor the resulting MS2 scan was not used for quantitation. We median
normalized protein and phosphorylation site quantitation in order to compare across all three
replicate experiments.
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Phosphorylation Analysis
We filtered phosphopeptides to a 1% FDR based on unique peptides as described above. To
avoid over-reporting of phosphorylation sites, we combined phosphorylated peptides and
non-phosphorylated peptides and grouped them into proteins together, following previously
established rules46.

We used the program phosphinator software to localize phosphorylation sites47. The
algorithm calculates theoretical fragment ion m/z ratios for all possible permutations of
phosphopeptide isoforms given the sequence and number of phosphorylations. The
algorithm then compares the experimental spectrum against the theoretical product ions for
each candidate phosphopeptide isoform, using a product mass tolerance of ±0.02 Th. Two
criteria are required for localization. First, the candidate with the highest number of
matching product ions must have at least one more matching product ion than the second
highest. Second, the algorithm performs a statistical test to determine the significance of the
observed product ions supporting phosphorylation at a specific residue. We take the null
hypothesis to be that there is no evidence that a given phosphorylation is localized, and that
any site-determining fragments observed are merely spurious matches. We calculate a
probability value (p-value) that represents the likelihood of obtaining the observed number
of site-determining fragments or more based on random chance, using the following
equation, the cumulative distribution function for a binomial distribution:

where P is the p-value, N is the number of possible site-determining fragment ions, n is the
number of observed site-determining fragment ions, and p is the probability of a single
spurious fragment ion match. The algorithm calculates p as the product of the number of
observed MS/MS peaks and the twice the product mass tolerance (±), divided by the MS/MS
m/z range.

The algorithm performs this significance test twice for every phosphorylation site in the top
isoform — once on each side of the phosphorylated residue. The site-determining fragment
ions are those between the phosphorylation site and the closest amino acid residue that could
be phosphorylated but are not in the top isoform. The algorithm considers doubly charged
products for +3 and higher precursors when the product is comprised of a sufficient portion
of the peptide. Phosphinator converts the p-value to a human-readable score by taking −10
log10 (P). We only consider sites where this score is above 13 (i.e., p < 0.05) on both the left
and right side of the residue to be localized, and we only use peptides with all
phosphorylations localized for quantitative analysis.

Next, we counted phosphorylation sites. We summed quantitative information from all
phosphopeptides that contained the same sites in order to get the most accurate quantitation
for each site or combination of sites. We grouped peptides containing multiple sites with
other peptides containing the exact same combination of sites. Therefore, we presented a list
of phosphorylation isoforms rather than a list of phosphorylated sites. Phosphorylation
isoforms can have information regarding one site or a combination of multiple sites. We
only counted redundant sites that were found in more than one isoform once in the final
count of phosphorylation sites.
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Enrichment Analysis
We performed two-tailed Student’s t-test assuming equal variance in Microsoft Excel. To
correct for multiple-hypothesis testing, we applied Benjamini-Hochberg adjustment using
the R statistics package. We used a local gene ontology MySQL database installation for
analysis of function and cellular location and another local MySQL database populated with
information from the KEGG API web services for pathway analysis. We determined
putative kinase targets using the Group-based prediction system software. To perform
Fisher’s exact test and subsequent Benjamini-Hochberg correction, we wrote custom
software in the C# programming language and interfaced to the R statistics package through
the R COM library.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Figures of merit for peptide identification and quantitation
(a) Peptide identifications as a function of precursor and product mass tolerance. We
performed liquid chromatography tandem mass spectrometry for each combination of
dissociation method and mass analyzer. We searched data using a range of fragment ion
tolerances ranging from 0.01 to 5.0 Daltons, filtered results by precursor mass tolerances
ranging from 0.5 to 1,000 ppm, and filtered identifications to a achieve 1%FDR. We
performed experiments in triplicate and averaged the results. The number of peptide
spectrum matches (PSM) is proportional to circle size while unique peptides are represented
by circle color. (b) We used permutation testing and the data from the 4-plex experiment to
test the benefit of interference filtering. R2 values for all peptides in each protein were
calculated as a metric for quality of quantitation. The median R2 increases from 0.70 (red
arrow) to 0.82 (blue arrow) with filtering. Since random removal of spectra also increases
R2 values, we used permutation testing to test the statistical significance of the increase in
R2 value resulting from interference filtering. By fitting a Gaussian curve to the distribution
we estimated the statistical significance of the increase in R2 due to interference filtering (P
= 3.16 × 10−16). (c) Characterization of iTRAQ quantitation. Each circle represents reporter
ion intensities for a single protein mixed in the indicated ratios.
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Figure 2. A transcriptomic, proteomic and phosphoproteomic comparison of two ES (H1 and
H9), one iPS (19.7), and one fibroblast (NFF) line
(a) Heatmaps depicting all quantified transcripts, proteins, and phosphorylation sites. Values
were median normalized. (b) The overlap between transcripts and proteins detected in the 4-
plex experiment. We considered transcripts present if the reads per kilobase of exon per
million mapped reads (RPKM) value was greater than one for all four cell types while we
determined protein identification via P-value filtering (1% FDR). (c) Cytoscape schematic
of mRNA, protein, and phosphorylation quantitation from the 4-plex experiment for genes
known to interact with NANOG, SOX2, or POU5F1 (STRING database, confidence score >
0.90).
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Figure 3. Kinase substrate analysis
Adapted from Manning et al.24. We predicted potential kinases for every phosphorylation
site using the Group-based Prediction system. We applied Fisher’s exact test (followed by
Benjamini-Hochberg adjustment) to test for enrichment of kinase substrates in sets of
phosphorylation sites that were changing by more than two-fold between ES and NFF cells
kinase substrates enriched in ES cells are highlighted in red (P < 0.05). Kinase substrates
enriched in ES cells are highlighted in blue (P < 0.05).
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Figure 4. Comparison of four ES and four iPS cell lines
(a) Differentially regulated transcripts, proteins, and phosphorylation sites are shown as a
function of the number of comparisons. We performed differential expression analysis using
subsets of the data. For example, the n = 2 value reflects the number of differences detected
from comparing just two ES lines and two iPS lines without biological replicate whereas n =
12 represents the differences detected from comparing all four ES lines and all four iPS lines
in biological triplicate. The number of differentially regulated elements for a given fold-
difference is indicated by different colors. (b) Heatmaps depicting differentially regulated
transcripts, proteins, and phosphorylation sites (P < 0.05, Student’s t-test, with Benjamini-
Hochberg correction). Only transcripts exhibiting at least a 1.5-fold difference and protein
and phosphorylation sites exhibiting at least a 1.2-fold difference are shown. (c) Randomly
selected examples of differentially regulated transcripts, proteins, and phosphorylation sites.
Asterisks indicate statistically significant differences between ES and iPS cells. (d)
Differentially regulated transcripts detected based on either a comparison between biological
triplicates of H1 and DF4.7 cell lines (blue) or a comparison of biological triplicates of all
four ES and all four iPS cell lines (red). (e) The overlap between differentially regulated
proteins and transcripts (left) and differentially regulated proteins and phosphorylation sites
(right). Only genes with both a quantified protein and transcript were included. Only genes
with both a quantified protein and phosphorylation site were included.
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