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Abstract

Genome-wide association studies (GWAS) are a standard approach for studying the genetics of
natural variation. A major concern in GWAS is the need to account for the complicated
dependence-structure of the data both between loci as well as between individuals. Mixed models
have emerged as a general and flexible approach for correcting for population structure in GWAS.
Here we extend this linear mixed model approach to carry out GWAS of correlated phenotypes,
deriving a fully parameterized multi-trait mixed model (MTMM) that considers both the within-
trait and between-trait variance components simultaneously for multiple traits. We apply this to
human cohort data for correlated blood lipid traits from the Northern Finland Birth Cohort 1966,
and demonstrate greatly increased power to detect pleiotropic loci that affect more than one blood
lipid trait. We also apply this to an Arabidopsis dataset for flowering measurements in two
different locations, identifying loci whose effect depends on the environment.

Introduction

Most GWAS to date have been conducted using the simplest possible statistical model: a
single-locus test of association between a binary SNP genotype and a single phenotype.
Given that most traits of interest are multifactorial, this clearly amounts to model
misspecification, and the resulting danger of biased results whenever there is non-
independence (linkage disequilibrium) between causal loci (for example due to population
structure) is well knownl2:3, Much less attention has been devoted to the fact that
phenotypes may also be correlated. Whenever multiple measurements are taken from
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individuals, the resulting phenotypes will be correlated because of pleiotropy, which is of
direct interest, as well as shared environment and linkage disequilibrium, which are usually
confounding factors. Taking these correlations into account is important not only because of
the importance of understanding pleiotropy, but also because we may expect increased
power compared to marginal analyses. Intuitively, correlated traits amount to a form of
replication. The importance of correlated phenotypes becomes even clearer when we
consider measurements across environments. The canonical example here is an agricultural
field experiment using inbred lines, a setting in which no one would consider analyzing
phenotypes from different environments independently of each other, because the whole
point of the study is to separate genetic from environmental effects and identify genotype-
environment interactions. In human genetics, disentangling genetic and environmental effect
is also of obvious interest, although much more challenging as the environment usually
cannot be experimentally manipulated®.

There is a long history of multi-trait models in quantitative genetics®67:89 but these
methods have rarely been applied to GWAS. In this paper we demonstrate how a standard
linear mixed model from animal breeding® may be used to model correlated traits while at
the same time correcting for dependence among loci (e.g., due to population structure). As
designs like cohort studies become more prevalent, the need for modeling correlated traits as
well as population structure will grow?:11.12 and the same is true for the increasing number
of non-human GWAS 1314151617

The mixed model, which handles population structure by estimating the phenotypic
covariance that is due to genetic relatedness, or kinship, between individuals, has previously
been shown to perform well in GWAS21318.19.20.21.22 ' Here we extend this approach to
handle correlated phenotypes by deriving a fully parameterized multi-trait mixed model
(MTMM) that considers both the within-trait and between-trait variance components
simultaneously for multiple traits (Online Methods), and implementing it for GWAS. The
idea is not new?3:24.25.26.27 pyt jt has never been applied for association mapping on a
genome-wide scale. Alternative approaches for GWAS in multiple traits exist, but they
generally fail to control for population structure28:29, and often are not applicable to
genome-wide data.

We validate our approach using extensive simulations based on available SNP data from A.
thaliana3®, demonstrating that our model increases power to detect associations while
controlling the false discovery rate. We then demonstrate its usefulness by considering
correlated blood lipid traits from the Northern Finland Birth Cohort 1966 (NFBC1966)3L,
and environmental plasticity in an A. thaliana data set that contains flowering measurements
for two simulated growth seasons in two different locations32. Finally, we discuss its utility,
not only in terms of increasing power to detect associations, but also in terms of
understanding the basic genetic architecture of the phenotypes.
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Pairs of correlated phenotypes were simulated by adding phenotypic effects to genome-wide
SNP data from A. thaliana3. A single randomly selected SNP was set to account for up to
2% of the phenotypic variance, but with the possibility of different effects in each of the two
phenotypes (see below). In addition, 10,000 SNPs were given much smaller effects to
simulate the genetic background. A randomly chosen fraction of these background SNPs
was shared between the two phenotypes, allowing for variation in the degree of phenotypic
correlation (Supplementary Fig. 1, Online Methods).

We compared our ability to identify the focal locus using MTMM and marginal, single-trait
analyses (using the smallest p-value from the latter to ensure a fair comparison). Three
different tests were used: a full test that compares the full model, including the effect of the
marker genotype and its interaction, with a model that includes neither; an interaction effect
test that compares the full model to one that does not include interaction, and finally; a
common effect test that compares a model with a marker genotype to one without (see
Online Methods for details). As expected, the results depended strongly on the effect of the
focal polymorphism (Fig. 1). When it had the same effect in both phenotypes (i.e., positive
pleiotropy or a common effect across environments; see Fig. 1a), MTMM performed
slightly better than the single trait mixed model (MM) regardless of whether we tested for
full model fit, or just for a common effect (Fig. 1e). The reason for this is the increased
power that results from analyzing the traits together. Testing for an interaction effect alone is
pointless as no interaction exist.

When the effect of the polymorphism is slightly weaker in one trait/environment (Fig. 1b),
testing for a full model fit using MTMM again outperforms single-trait analyses (Fig. 1f).
Testing only for a common or interaction effect using MTMM is also less effective.
Although an interaction effect now exists, it is too weak to be detected. However, as the
strength of the interaction effect increases (Figs. 1c,d), it becomes possible to detect
directly, and the relative advantage of using MTMM increases dramatically (Figs. 1g-h).

An alternative to carrying out two marginal single-trait analyses might be to combine the
phenotypes, e.g., by fitting the traits principal components or their sum or difference. We
tested the latter and as might be expected, this approach works very well when the focal
SNP has exactly the same (or the opposite, when using the difference) effect on the
phenotype (Fig. 1a,d). However, if the effect of the SNPs differs between the two traits,
MTMM outperforms these approaches (Fig. 1b—c).

It should be noted that, because the background SNPs are correlated due to population
structure, simple single-locus tests of association are strongly biased towards false positives,
just like in the original datal®. The mixed model effectively removes this bias, regardless of
whether we analyze one phenotype at a time using a single trait MM or both simultaneously
using MTMM (Supplementary Fig. 2). However, analyzing these data with methods that
do not take population structure into account is clearly not a realistic option
(Supplementary Fig. 3).
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In addition to the model just described, we simulated an oligogenic scenario in which each
phenotype was determined by 20 loci, each of which could, with equal probability: affect
that phenotype only; affect both phenotypes in the same way, or; affect both phenotypes but
in opposite ways. The behavior of each locus was chosen independently, and the resulting
distribution of correlations between the phenotypes was thus centered around zero
(Supplementary Fig. 4), which is very different from the positively correlated phenotypes
generated under the first simulation scenario (Supplementary Fig. 1). MTMM is intended
for correlated phenotypes, and is expected to perform less well when phenotypes are weakly
correlated. The oligogenic simulation results supported this intuition. For weakly correlated
pairs of phenotypes, single-trait analysis often outperformed MTMM (especially for
detecting SNPs with effect in one phenotype only), however, for more strongly correlated
phenotypes, the results agreed with those presented above in that MTMM always
outperformed marginal analyses (Supplementary Fig. 5). Note that the correlation does not
have to be positive: for negatively correlated phenotypes, MTMM has relatively higher
power to detect SNPs with the same effect in both phenotypes, whereas for positively
correlated phenotypes, it performs best for SNPs that have opposing effects (note that it may
sometimes make sense to simply change the direction of correlation by negating one of the
phenotypes when analyzing real data).

As noted in the introduction, an advantage of MTMM is that it can be used for correlated
phenotypes regardless of whether the phenotypes represent different measurements (and the
correlations are due to pleiotropy), or the same trait measured in different environments (cf.
Fig. 1la—d). However, the simulations above assume that the phenotypic correlations are
solely due to genetics, not environment, and this is only likely to be true for studies
involving inbred lines in controlled environments. Certainly correlations between pleiotropic
traits will reflect environment as well as genotype. To verify that MTMM is able to separate
these effects, we simulated another 5,000 pairs of correlated traits using the 10,000locus
model, but now with correlations reflecting environmental as well as genetic covariance (see
Online Methods). Both the environmental and genetic correlations were well estimated
(Supplementary Fig. 6), although it should be noted that the residuals of the genetic and
environmental correlation estimates are negatively correlated (Supplementary Fig. 6d). The
accuracy of these estimates does affect the performance of GWAS, but the effect appears to
be relatively minor (Supplementary Fig. 7).

Pleiotropy in human data

To illustrate the utility of MTMM for traits that are correlated because they are part of the
same biological system, we reanalyzed data from the Northern Finland Birth Cohort 1966
(NFBC1966)3! (see Online Methods for details). We focused on measurements of four
blood metabolites that are strongly involved in cardiovascular heart disease33, namely
triglycerol (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and C-
reactive protein (CRP). These metabolites are significantly correlated, and MTMM analysis
indicates that the correlations are caused by genetics as well as environment (Table 1),
supporting the notion that these traits are mechanistically related and/or have linked causal
loci. For HDL/CRP and TG/CRP the correlations of the genetic effects are in the opposite
direction of the environmental correlations. However, in these cases, the genetic correlations
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are not significantly different from zero, and it is likely that the phenotypic correlations
driven primarily by the shared environment.

In terms of associations, the results from the joint analysis of TG and LDL suffice to
illustrate how two of our main predictions were borne out. First, almost all SNPs that were
found to be significantly associated in the marginal analysis of either LDL or TG were also
significant in the joint analysis (Table 2). However, MTMM arguably provides greater
insight into the nature of the associations, as it reveals interaction effects. Second, MTMM
finds associations that the marginal analyses do not. In particular, for positively correlated
phenotypes such as TG and LDL, we expect MTMM to have much greater power to detect
polymorphism whose effects differ greatly between the phenotypes. A nice example of this
is the FADS1-FADS2 locus, which was not significant in either marginal analysis, but
becomes highly significant using MTMM thanks to a very strong interaction effect (Table 2
and Fig. 2). These genes are excellent candidates, and were mentioned in the previous
analysis of the NFBC1996 data31. Strikingly, they were also identified in a massive meta-
analysis involving more than 100,000 individuals34, which furthermore reported opposite
effects on TG and LDL, in agreement with the strong interaction effect we observe (Fig. 2g)
using a sample of only 5,000 individuals.

The other five trait combinations gave similar results (Supplementary Tables 1-5). Almost
all SNIPs that were identified using single-trait analysis were also detected using MTMM,
either due to a strong common or strong interaction effect. In addition, MTMM also detected
two more regions that were not identified using marginal analyses. First, the gene PPP1R3B
was identified due to strong common effects in the joint analyses of HDL and CRP, and
HDL and TG. These pairs of phenotypes are negatively correlated (Table 1), so we expect
MTMM to have increased power to detect common effects. The association with PPP1R3B
was not found in previous analyses of these data3!, but was reported (and confirmed) in the
much larger meta-analysis of blood lipids34. Second, the TOM40-APOE region was
identified in the joint analysis of TG and CRP, this time due to an interaction effect (TG and
CRP are positively correlated). Albeit not quite significant, this association was noted in the
previous analysis of these data3!, and was also found in the meta-analysis34.

G x E in A. thaliana data

The other natural application for MTMM is when phenotypes are correlated because they
represent the same trait measured in different environments. In such a setting, we are often
directly interested in finding genes that are involved in the differential response to the
environment, i.e., genotype-by-environment (G x E) interactions. We tested this application
using a data set from A. thaliana in which flowering time was measured (for a global
collection of naturally occurring inbred lines) in environmental control chambers for two
simulated seasons (“Spring” and “Summer”) and two simulated locations (“Spain” and
“Sweden”)32. Flowering time varies in a clinal manner, and is generally thought to be
important in local adaptation. It is thus both natural and interesting to try identifying genes
that are responsible for the differential flowering response to different environments32.

We analyzed the A. thaliana data using a full 2 x 2 factorial model, i.e., in addition to
estimating the effect of genotype, season, and location, we have two pairwise interaction
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terms (see Online Methods and Supplementary Note). The results are summarized in Figure
3 (for details, see Supplementary Figures 8-9 and Supplementary Tables 6-7). Perhaps
surprisingly, we found very few interaction effects. Out of a total of 41 significant SNP
associations, only three appeared to be due to interactions. A rare allele (MAF =4 %) on
chromosome 5 was identified as a significant genotype-by-season effect, but it does not
correspond to any obvious candidate (Supplementary Fig. 10). A more convincing example
was provided by the two tightly linked and perfectly correlated SNPs on chromosome 1.
These were identified by comparing the full model to one without interaction terms,
although the interaction with the simulated season seems to be strongest (Fig. 4). The minor
allele (MAF = 3 %) is associated with delayed flowering (Fig. 4b), but the effects depends
strongly on the season, and is much more pronounced in the (simulated) summer.
Interestingly, both SNPs are in the coding region of the gene FRS5, which is known to be
involved in the phyA-mediated response to far-red light3®. T-DNA knockout lines of this
locus have an early-flowering phenotype, the magnitude of which depends on day length
(one of the factors that vary between the simulated seasons).

Of the remaining 38 SNPs, 28 we found by both marginal and joint analysis (as common
effects), and 10 were found only by marginal analysis. While our simulations would seem to
suggest that MTMM should always have higher power than marginal test, even for detecting
common or unique effects, this is clearly not always the case. The phenotypes analyzed here
are extremely highly correlated as well as heritable (all coefficients typically well above 0.9;
see Supplementary Table 6). In such cases, the advantage of increasing the sample size
through joint analysis does not necessarily outweigh the cost of a more complex model with
more degrees of freedom.

DISCUSSION

We have shown how the classical mixed model from breeding may be used for GWAS of
correlated phenotypes in structured populations, often providing greater statistical power
than marginal analyses. However, we emphasize that our approach is much more than an ad
hoc method for increasing power. The model we use effectively dates back to Fisher36, and
can be derived from basic genetic principles under the assumption that heritable phenotypic
variation is due to very large numbers of genes of very small effect (Online Methods).
Assuming that this is a reasonable approximation (and it seems to be, for a growing number
of traits), we can disentangle genetic correlations from environmental correlations,
whenever these uncorrelated. This allows us to address fundamental questions about the
nature of variation. When applied to traits that may be biologically related the resulting
variance component estimates allow us to assess the level of pleiotropy without estimating
effects of individual loci. Using data from different human blood lipids, we demonstrated
how the phenotype covariance can be decomposed into genetic and environmental terms,
suggesting that most of these traits are indeed correlated due to shared genetics (i.e., they are
pleiotropic or due to causal sites in linkage disequilibrium). A similar approach was recently
used by Price et al.37 to assess the heritability of RNA expression levels within and across
human cell tissues.
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Irrespective of this, we also demonstrated increased power, detecting several interesting loci
affecting human blood lipid level that were not significant in the single trait analysis, but
that have all been replicated in GWAS studies using much larger sample sizes. This finding
alone strongly argues for routine application of our method to correlated phenotypes.

As an example of how the method can be used to detect environmental interactions, we
applied our method to an A. thaliana flowering time dataset, where the plants had been
phenotyped under four different environmental conditions (in a classical 2times2 factorial
design). These phenotypes are highly correlated as well as highly heritable, and the
estimated variance components suggest that there is in fact very little difference between the
environments at the genetic level (Supplementary Table 6). Hence, it is arguably not
surprising that we detected little in terms of interaction effects. While it is of course possible
that we simply do not have the power to detect interactions, it is notable that analogous
studies in maize have also failed to detect large G x E interaction effects38. The result from
A. thaliana and maize are strikingly different from what has been reported for mouse3?,
yeast?0, and even humans?, but the reason for these differences are far from clear given the
dramatically different study designs.

Full factorial designs with replicated genotypes are of course not possible in most
organisms; however, we note that MTMM does not require this. Indeed, a mixed-model
approach has previously been proposed for estimating G x E variance components in
humans2® (using a special case of our model in which heritabilities are assumed to be equal
across environments; see Online Methods). Either approach is directly applicable to human
data.

Although we have focused on relatively simple pairwise correlations in this paper, it is easy
to model more than two phenotypes using MTMM. Conceptually we believe that extending
this to larger multi-trait experiments should allow for greater benefits in estimating error
terms and elucidating functional relationships between suites of traits. However for such
complex models, the computational complexity grows fast and the results become
increasingly difficult to interpret compared to sequential two-trait analyses.

This is a well-known problem in statistics and quantitative genetics, but MTMM has the
additional caveat that it assumes that the increasingly complex covariance structure, which is
estimated in the absence of fixed effects, remains constant as these are added. Various
intermediate approaches are possible, e.g. variance components might be estimated using a
full model once, followed by GWAS using sub-maodels: more work in this area is clearly
desirable.

Finally, when the phenotypes are not correlated, or if the correlation is not due to genetics
(something that can be deduced from the variance component estimates), a single trait mixed
model will generally have greater power to detect causal loci that are phenotype-specific.

When, precisely, this will be the case is hard to predict, however, we suggest using the

MTMM approach as a complement to rather than replacement for marginal GWAS. The
advantages are clear: it allows the detection of both interactions and pleiotropic loci in a
rigorous statistical framework, while simultaneously accounting for population structure.
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URLs

MTMM has been implemented in a set of R scripts (MTMM) for carrying out GWAS. They
rely on the software ASREML4! for the estimation of the variance components. The scripts
can be obtained at https.//cynin.gmi.oeaw.ac.at/home/resourcess MTMM.

ONLINE METHODS
Theory

Multiple traits mixed model—Following Henderson® we can write the mixed model for
the phenotypes of n individuals as

y=XpB+g+e, ()

where y is a vector of the n phenotype values. In this notation, the trait mean is included,
together with other fixed effects, in the design matrix X. The S are the effect sizes of the

fixed effects, 8 ~ IV (07 0§K> is a random effect, and € ~ IV (0, UEI). It follows that the
covariance matrix for the trait values, y, is

var (y) :O'SK—HJ'EI, )

Where K is a nxn kinship or relatedness matrix. If we consider two traits, y;,y, measured on
the same set of individuals, then under the mixed model for the k ’th phenotype follows the

partitions of the variance accordingly, i.e., var (y) :aikK +02.I. However, for the
covariance matrix between the two phenotypes it is not obvious what the appropriate model
is. Henderson*2 suggests the following covariance model:

cov (y1,¥2) =0q10g2pg K+0c10c2pe1,  (3)

where pg captures the genetic correlation between two phenotypes and the term pe captures
the correlation caused by shared environment and other non-genetic sources of correlations.
We can generalize this for phenotypes which have been measured for different sets of
individuals (see Supplementary Note).

Estimating the variance parameters

The estimation procedure for the variance components is described in the Supplementary
Note.

Application to GWAS

Similar to EMMAX? or P3DZ0 we estimate the covariance matrix only once to re-estimate a
scalar in front of it for every marker. This fixes five degrees of freedom out of six in total
(maximum number of variance components for two traits. For a pair of traits (the i "th and

j ’th traits), the proposed approximation effectively assumes that the three variance ratios
(0gil dei, agjl g and agil o) and the two correlations pgi; and pgj are fixed with and without
the marker in the model.
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With multiple traits we can search for causal loci with common effects (across all traits) as
well as trait specific loci or loci with opposite effects in different traits. Depending on what
we are interested in, a GLS F-test can be constructed to compare two models. For two traits
we can write the single marker model as follows:

Y1

y= =Sy 41 +Sop2+X0+ (X X 81) atv, (4)

where x is the marker and s; is a vector with 1 for all values belonging to the i’th trait and 0
otherwise. The v ~ N(0,cov(y)) is a random variable capturing both the error and genetic
random effects. Depending on what kind of loci we are interested in, we propose three
different F-tests tests:

e The full model tested against a null model where =0 and « = 0. This identifies
both loci with common and differing effects in one model, but suffers in power
from the extra degree of freedom.

e To identify common genetic effects we propose to test the genetic model (a = 0)
against a null model where f=0and a=0.

» Finally, to identify differing genetic effects between the traits we propose to test the
full model against a null model where a = 0.

As both the interaction test and the common effect test are sensitive to scaling of the
phenotype values, we propose to normalize them either by the total variance, or the genetic
variance (as obtained in the marginal trait analysis). To minimize multiple-testing problems,
one could, for example, carry out GWAS using the full model and use the other tests in post
hoc analysis of significant loci.

Extending this model for arbitrary number of traits is straight-forward (one example for the
analysis of four traits is described in the Supplementary Note). However, when there are
more than two traits in the model, the number of possible tests grows quickly. An interesting
special case is when there are several environmental variables in a factorial study design, in
which case each environmental variable can be included in the model instead of the term

t t
Zizlsi#i, and their interactions with the genotype could replace the term X (Zizlsmz).
This can result in a simpler and a more tractable model than if all possible combinations of
environments were treated as independent.

Genotype-environment interactions

Given two measured phenotype vectors, yjand y,,Yang et al.2% include a G x E random
effect in a mixed model as follows:

Y1

y= =Xp+u,tug, e, (5

where ug,Ucxg are random effects and have covariance matrices
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cov (

Compared to the model proposed in equation (4), this model implicitly assumes two things:
that there are no environmental correlations; and that the heritabilities are the same in each

Y1

K1 Koy 2 Kii 0
Y2

) =cov (ug) +cov (ug, ) +cov (e) =02 { Kip K GxE

environment, i.e., h¥=h2. As the individuals are different in each environment, the first
assumption is appropriate. However, the second assumption is not guaranteed to hold in
general, and we therefore propose relaxing it.

Simulations

10,000-locus model—We simulated 2,000 pairs of correlated phenotypes using a model
under which the phenotypes consisted of one randomly chosen SNP with a “large” (additive)
effect, accounting for up to 2% of the total phenotypic variance, and 10,000 randomly
chosen SNPs with small additive effects. The effects sizes were drawn from a normal
distribution and scaled to fix the trait heritability to 0.95. To ensure variation in trait
correlations, all trait pairs shared a random fraction of the 10,000 causal loci, with the
fraction drawn from a uniform distribution. The four phenotypic models were distinguished
by different effect-correlations at the major locus (Fig. 1).

In addition, we simulated 5,000 pairs of correlated traits with environmental correlations.
We fixed the heritability to 0.5 and allowed the genetic correlation to vary from -1 to 1.
Additionally, we added a shared environmental term to the model, mimicking scenarios for
both negative and positive environmental correlation.

20-locus model—We also simulated 1,000 pairs of correlated phenotypes using a 20-
locus model. Each phenotype was determined by 20 loci, using a multinomial distribution,
we randomly assigned to three categories with equal probabilities: i) SNPs with same effect
in both phenotypes; ii) SNPs with opposite effect in the two phenotypes, and; iii) SNPs with
effect in one trait only. The SNPs had additive effects drawn from an exponential
distribution. Finally, the effect sizes were scaled to fix the heritabilities to 0.95. To obtain a
single p-value for two traits the smaller of the two p-values for each SNP from the marginal
mixed model analysis was retained.

Power calculations

For the calculation of the power and FDR, any significant SNP within 50 kb of a (or the)
causal SNP was classified as a true positive; otherwise it was a false positive. The results are
almost independent of the window size used (Supplementary Fig. 11). More important is
the effect of the causal SNP(s). The nearly two-fold increase of power observed at a FDR of
0.1 in Figure 1 depends on the effect size of the simulated SNP (Supplementary Fig. 12).
Throughout this paper, we used the single-analysis Bonferroni-corrected 5% significance
threshold.
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Human data

We used the 1966 North-Finland Birth Cohort (NFBC1966) which consist of phenotypic
and genotypic data for 5,402 individuals3!. Using the exact same dataset as was used in2,
after their filtering the dataset consisted of 5,326 individuals and 331,475 SNPs. To expedite
the mapping, the unknown genotypes (< 1% in the dataset) were imputed by replacing
missing values with the average genotypic value. Neither the marginal MM analysis nor the
MTMM tests show evidence of population structure confounding (Supplementary Fig. 13).

Analysis of A. thaliana data

The genotype data for A. thaliana consisted of 1,307 individuals genotyped at 214,051 SNPs
using a custom Affymetrix SNP chip30. The phenotypes used were measurements of
flowering time for 459 accessions32. Flowering time was measured in plants grown in four
different environments, a factorial setting with two simulated seasons (“Spring” and
“Summer”) and two simulated locations (“Spain” and “Sweden”). Analyzing the four
phenotype vectors together we can derive five different F-tests (see Supplementary Note).
Neither of these tests shows evidence of confounding due to population structure
(Supplementary Fig. 14).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Simulation results. (a—d) illustrate the scenarios simulated: (a) positive pleiotropy, alt.

common effect across environments; (b) positive pleiotropy, alt. common effect across
environments, with size of effect differing between traits/environments; (c) effect only on
one trait, alt. only in one environment; (d) negative pleiotropy, alt. opposite effect across
environments. (e) shows the estimated relationship between power and false discovery rate
(FDR) using six different statistical tests (see text and Online Methods) for the scenario
described in (a). (f) shows the estimated relationship between power and false discovery rate
(FDR) for the scenario described in (b). (g) shows the estimated relationship between power
and false discovery rate (FDR) for the scenario described in (c). (h) shows the estimated
relationship between power and false discovery rate (FDR) for the scenario described in (d).
Dots on curves denote nominal Bonferroni-corrected 5% significance thresholds. Note that

both power and FDR are calculated with respect to the single focal locus, only.
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full model; (d) interaction effect, and; (€) common effect. The dashed horizontal line denotes
the 5%Bonferroni adjusted genome-wide significance level. (f) Closeup of the FADS1-
FADS2 region on chromosome 11. The points for the single-trait analyses are shown in light
(TG) and dark blue (LDL), while the point for MTMM are shown in orange (full test), light
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gene region. (g) Estimated phenotypic effect of the rs174546 SNP in light (TG) and dark

blue (LDL).
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d Full test Common effect test

Marginal tests =~ 2 Interaction tests

Figure 3.
Venn diagrams summarizing the GWAS of A. thaliana flowering data32. (a) Classification

of the 41 significant SNPs according to the test(s) in which they were significant. (b)
Classification of the 41 SNPs (black) and corresponding gene regions (red) according to
whether they were found using marginal (MM) or joint (MTMM) analysis.
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Summary of FRS6 results. (a) Closeup of a 50kb region on chromosome 1 showing
significant G _ E associations. The gene FRSG is highlighted in gray. The results for the four
marginal analysis (using a single trait MM) are shown in blue, while the MTMM results are
shown in orange (full test), light green (three-way interaction), green (genotype by location),
dark green (genotype by season), and red (common effects).(b) Phenotypic distribution as a
function of experimental condition and genotype. (c—f) Plots contrasting the allelic effect in
different comparisons: (c) the effect of the season in ‘Spain’; (d) the effect of the season in
‘Sweden’; (e) the effect of the location in ‘Spring’; () the effect of the location in
‘Summer’. The effect depends strongly on the season within each location (c—d) and less

strongly on location with season (e—f).
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