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Abstract
Objectives—Cell lines derived from human ovarian and endometrial cancers, and their
immortalized non-malignant counterparts, are critical tools to investigate and characterize
molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel
therapeutics. To determine the extent of misidentification, contamination and redundancy, with
evident consequences for the validity of research based upon these models, we undertook a
systematic analysis and cataloging of endometrial and ovarian cell lines.

Methods—Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR),
p53 nucleotide polymorphisms and microsatellite instability.

Results—Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five
(A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten
endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and
AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and
ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in
the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was
reportedly derived, and all ECC-1 isolates genotyped as Ishikawa cells, MCF-7 breast cancer cells,
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or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells
and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer
cells, respectively.

Conclusions—Results demonstrate significant misidentification, duplication, and loss of
integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a
simple and economical method to verify and validate studies undertaken with these models.
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Introduction
Cell lines, immortalized from normal human tissues or derived from tumors, are widely used
models to address molecular mechanisms underlying the physiology and pathology of the
female reproductive tract, and to evaluate novel therapeutics or preventive strategies [1–3].
Verification of the provenance and integrity of such cell lines is clearly of paramount
importance, but historically, has rarely been undertaken by investigators. The problem of
cross-contamination, identified and characterized by examination of isozyme patterns,
karyotyping, and cytogenetics, dates back to the establishment of the prototypical HeLa cell
line in culture in 1951 and remains a significant concern [4–7]. Over one-third (18–50%) of
cell lines may be mixtures, misidentified or intra-species contaminants [2, 8–15].
Furthermore, there are many examples of redundancy among reportedly unique cell lines,
and instances of contamination during original derivations, such that the intended novel cell
line was never established [5, 10, 16–19]. Thus, it is evident that authentication of cell line
origins and integrity is crucial to validate results and conclusions obtained using these model
systems.

Short tandem repeat (STR) profiling or ‘DNA fingerprinting’ identifies variants in
tetranucleotide microsatellite loci on multiple human chromosomes and is the accepted
international standard for genetic analysis of cell lines for authentication by comparison to
established STR databases [20–24].

A comprehensive analysis of cell lines commonly used in the study of ovarian and
endometrial cancer had not been undertaken, particularly with respect to those cell lines not
obtained from established cell repositories. We used STR profiling, sequencing of p53
mutations, and human papilloma virus screening to examine cell lines of purported ovarian
and endometrial origins. We observed examples of cross-contamination, misidentification of
lines and/or tissue of origin, and redundancy among established cancer cells, and found
evidence that immortalized normal endometrial epithelial cell lines are genetically identical
to previously established cervical and breast cancer cells. We provide reference DNA
profiles for women's cancer cell lines that are not currently in public cell banks and extend
the number of loci for profiles currently available through central repositories.

Materials and methods
DNA isolation and STR profiling

Cell lines were grown in appropriate specific standard media. Genomic DNA was isolated
from 0.5–5 × 106 cells using a Zymo Research ZR genomic DNA II kit and quantified by
gel electrophoresis and ethidium bromide staining by comparison to a DNA mass ladder.
Multiplex PCR amplified products were generated using 1–2 ng of genomic DNA with an
Applied Biosystems Identifiler kit and ABI 3730 capillary sequencer as described [2, 18].
STR loci were analyzed with Gene Mapper 4.0. Profiles were compared to published reports
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[22, 25], consolidated (ATCC, DSMZ, JCRB and RIKEN) databases, and an in-house
database, using a custom search algorithm designed to facilitate comparison of cell lines
with related profiles and identify individual cell lines in a mixture (C. Korch and J. West,
Vanderbilt University, unpublished). STR profiles of the ovarian and endometrial cancer
cells analyzed in this study are available online at
http://DNAsequencingcore.UCDenver.edu.

TP53 sequence analysis and microsatellite instability assays
PCR amplification was used to generate overlapping products spanning the Variable
Number Tandem Repeat (VNTR; a pentanucleotide repeat of A4T) in intron 1, through the
protein encoding exons 2–11, including intervening introns 2–8 and 10 [26]. Sequencing
primers and p53 gene structure are shown in Figure S1. DNAs were screened for
microsatellite instability [27] using Promega MSI analysis system version 1.2 according to
the manufacturers protocol.

HPV testing
Aliquots of cells were placed into ThinPrep (Hologic) solution. DNA was isolated and tested
in University of Colorado Hospital Clinical Laboratory using the hybrid capture PCR,
Digene HC2 High Risk HPV test (Qiagen).

Ovarian and endometrial cell lines
We obtained cell lines from multiple institutions in the United States, Europe and Japan,
including, where possible, the originating laboratories. Multiple independent samples of the
earliest available passages from each institution were analyzed and, if available, profiles of
each individual cell line were compared from several sources. Ovarian cancer cell lines are
listed in Table S1. Ishikawa cells were obtained from Dr. K.K. Leslie (University of Iowa),
Dr. B.A. Lessey (Greenville Hospital System, SC), Dr. M. Brown (Dana Farber Cancer
Institute, Harvard University) and Drs H. Philpott and P. Thraves (European Collection of
Cell Cultures, ECACC). ECC-1 cells were from Drs. B.A. Lessey, M. Brown and V.C.
Jordan (Lombardi Comprehensive Cancer Center, Georgetown University). EnCa-101
tumors were provided by Drs. V.C. Jordan and G. Balburski (Fox Chase Cancer Center).
HES cells were from Dr. D. Kniss (Ohio State University) and hTERT-EECs from Dr. T.
Klonisch (University of Manitoba, Canada). KLE and HEC-50 cells were from Dr. K.K.
Leslie. RL-95-2, HEC-1A, HEC-1B and AN3CA cells were from the American Type
Culture Collection (ATCC, Manassas, VA).

Results
Analysis of endometrial cancer cell lines

Endometrial carcinomas are derived from glandular epithelium and are typically divided into
two subtypes based on clinical, histological and molecular characteristics [28–30]. Cell lines
derived from type I (Ishikawa, ECC-1 and RL-95-2) and type II (HEC-1, HEC-50, KLE and
AN3CA) tumors have been widely used as models to investigate molecular genetics and
mechanisms underlying their development, progression and response to therapeutics [31–
35].

HEC-1B cell lines, the first to be derived from a human endometrial carcinoma [32, 36, 37],
both exhibited a unique profile(Table S3). HEC-1A cells are predominantly diploid, while
the HEC-1B line is tetraploid [38, 39]. HEC-50 cells [38, 40], also have a unique profile
consistent with that on file with the Japanese Collection of Research Bioresources (JCRB:
1145).
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Similarly, KLE (CRL-1622) and AN3CA (HTB-111) cells, originating from peritoneal and
lymph node metastases, respectively [34, 41, 42], and RL-95-2 cells (CRL-1671) derived
from a moderately differentiated (Grade 2) endometrial adenosquamous carcinoma [35], all
have STR profiles consistent with those reported by the ATCC (Table S3).

Ishikawa cells were established from the epithelial component of a moderately
differentiated, stage 2, endometrial adenocarcinoma [43, 44]. At least three variants of
Ishikawa cells, the original line, 3-H-4 and 3-H-12, differing in their reported degree of
differentiation, relative expression of estrogen (ER) and progesterone (PR) receptors, growth
and colony formation rates, were distributed to investigators [45].

We profiled multiple isolates of the original Ishikawa cells and 3-H-12 variants obtained
from a number of laboratories as detailed in Materials and Methods. Samples with unique
profiles, which may represent the 3-H-4 variant based upon their date of origin are
designated ‘3-H-4’. The results are summarized in Table 1.

Overall the Ishikawa cell lines exhibit very similar profiles, indicative of their originating
from the same patient. Identical alleles were present at several loci (CSF1PO, D5S818,
D16S539, D21S11, THO1 and TPOX). Others reflect loss or gain of alleles (D8S1179,
D13S317 and FGA) or alterations in the number of repeats (D2S1338, D3S1358, D19S433
and vWA). At the D7S820 locus, the original Ishikawa isolate exhibits 8.3- and 11-repeat
alleles, whilst subsequent sublines display 9- or 10-repeats. The D18S51 locus was found to
be highly polymorphic in most Ishikawa lines.

Minor differences in the number of repeats at certain loci are consistent with the known
microsatellite instability (MSI) of these lines, due to mutations in mismatch repair systems
[46–48], and suggest that these variants arose by genetic drift between different clonal
isolates over hundreds of cell passages. Accordingly, all Ishikawa cell lines exhibited high
variability/ instability at microsatellite loci (Table S2). Defective mismatch repair also
underlies allelic variation in AN3CA cells (Table S3) [49]. In contrast, EnCa-101 tumors
and MCF-7 cells were MSI stable.

We also profiled a variant of Ishikawa cells lacking ER [50]. Previous reports implied that
these cells, also known as Ishikawa B, were derived from a different patient [51, 52]. The
STR profile of ER-negative Ishikawa cells exhibits minor variations from other Ishikawa
sublines (Table 1), but overlap at the majority of loci indicates a common origin.

A second type 1, ER and PR positive cell line, ECC-1, was established from a grade 2, well-
differentiated, endometrial carcinoma adenocarcinoma [42, 53, 54]. The line was derived by
passage of the tumor, designated EnCa-101, in nude mice and subsequent isolation of PR
positive cells from an epithelial monolayer culture [42, 55]. ECC-1 cells were described as a
well-differentiated, steroid responsive line with a phenotype characteristic of luminal surface
epithelium, distinct from Ishikawa cells, which expressed markers of glandular endometrial
epithelium [33].

Upon STR and MSI analysis, ECC-1 samples exhibited DNA profiles essentially identical to
Ishikawa 3-H-12 cells (Tables 1 & S2). In addition, the ATCC profile for ECC-1 also
closely matched that of earlier Ishikawa cells on file with the European Collection of Cell
Cultures (ECACC). Other ‘ECC-1’ cell lines were found to be identical to MCF-7 breast
cancer cells or consist of a mixture of Ishikawa and MCF-7 cells (not shown).
Unfortunately, following the death of Dr. Satyaswaroop, records and cell lines from his
laboratory were lost or destroyed (Zaino, R. & Lessey, B., personal communication). Thus,
we could not obtain reference samples of the original ECC-1 line or EnCa-101 tumor from
which it was purportedly derived. However, the EnCa-101 tumor has been continuously
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maintained in mice [56] and we obtained and analyzed 3 independent samples. Profiling of
these tumors showed minor variations, but results indicated they were derived from the same
human patient. In contrast, the unique EnCa-101 profiles did not match ECC-1, Ishikawa or
MCF-7 cell lines (Table 1). These data are inconsistent with the reported origins of ECC-1
cells and suggest that the original line has been lost. Our results show that currently
available ECC-1 cells are Ishikawa cells, MCF-7 breast cancer cells, or a mixture of both.

Sequencing of p53 mutations in endometrial cancer cells
To confirm the apparent equivalence of Ishikawa and ECC-1 cells, we screened for p53
mutations by PCR amplification and sequencing of the Variable Number Tandem Repeat
(VNTR) region in intron 1, and the protein encoding exons and introns (Fig. S1). Table 2
lists the observed p53 mutations and SNPs compared to the reference/ normal sequence.

In agreement with previous reports [31, 57], Ishikawa original and 3-H-12 cells harbor a
Met 246 Val mutation in exon 7. These two lines are also homozygous in the VNTR region
with 8 repeats of A4T, heterozygous in exon 4 for the Asp 49 Val mutation (nucleotide
G12069S), and heterozygous in intron 10 for deletion of the seventh T in a heptanucleotide
repeat (17822delT). The original Ishikawa sample has two additional heterozygous
mutations, 12724insA (intron 4) and 13764delA (intron 6), which are not present in the 3-
H-12 line (Table 2).

Possible ‘3-H-4’ sublines have a similar profile, but lack the intronic 12724insA and
13764delA mutations of poly A stretches, present in the original Ishikawa lines (Table 2).
An additional heterozygous mutation in intron 4 (G12299K (G+T)) was detected in some
Ishikawa 3-H-12 sublines. Interestingly, consistent with their closely matched STR profiles,
the ER-negative Ishikawa cells, despite their purported distinct origin, exhibit TP53
mutations identical to Ishikawa 3-H-12 and ‘3-H-4’ (not shown). TP53 mutations unique to
the original Ishikawa lines are insertions or deletions in homopolymer A or T stretches,
which are consistent with microsatellite instability due to mutations in the mismatch repair
system [46].

In agreement with their identical STR profiles, ECC-1 cells show the same TP53 mutations
as Ishikawa 3-H-12 lines, further evidence that ECC-1 are misidentified Ishikawa cells. In
contrast, EnCa-101 tumors have completely different TP53 mutations from the Ishikawa and
ECC-1 lines (Table 2), again demonstrating that ECC-1 cells are not derived from the
EnCa-101 tumor. ‘ECC-1’ cells shown to be contaminated with or identical to MCF-7 cells
were not subjected to TP53 analysis.

Finally, our data suggest that only one copy of the p53 gene is expressed in Ishikawa cells.
In the genomic DNA, both the A14063R (A+G) and G12069S (G+C) positions are
heterozygous. However, only the 14063G mutation is present in the cDNA sequence [31,
57], suggesting that the G12069C mutation is in the unexpressed copy of the gene.

Analysis of normal endometrial epithelial cells
Immortalized, non-transformed endometrial epithelial cells are a potentially valuable
resource to investigate normal uterine physiology and tumorigenesis. We profiled two such
lines, human endometrial (HES) cells [58] and hTERT-EEC [59], obtained from their
developers, which have been extensively used as models of normal endometrium. Neither
cell line was authenticated as they exhibited DNA profiles corresponding to HeLa and
MCF-7 cancer cells, respectively.

HES cells were established, in 1989, from a primary culture of benign proliferative
endometrium, which apparently underwent spontaneous transformation after serial passage
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[58, 60]. Profiling of these cells (Table 3) indicated they are identical at all loci to HeLa
cervical carcinoma cells, specifically the HeLaS3 variant. HES cells are also identical to
WISH cells, a cell line originally described as derived from human amnion [61] but
subsequently also identified as HeLa [7, 62, 63]. These results were independently
confirmed by the STR fragment analysis facility at Johns Hopkins University (D. Kniss,
Ohio State University; personal communication).

hTERT-EECs were isolated from normal proliferative phase endometrial epithelium and
immortalized by stable transfection with the catalytic subunit of human telomerase (hTERT)
[59]. Replicate STR profiling of the earliest available passages of multiple clonal lines
indicated all isolates of hTERT-EEC cells to be genetically identical to MCF-7 breast cancer
cells (Table 3). As for HES cells, this was not attributable to contamination as no other
profiles were detected in the samples.

Analysis of ovarian cancer cell lines
We obtained and genotyped fifty-one ovarian cancer cell lines (Table S1), many of which
are not available from public repositories. Two of the lines (IGROV1 and OVCAR-10) gave
mixed genotypes indicating cross-contamination and were excluded from further analysis.
The mixed genotype for IGROV1 was confirmed in multiple isolates including those
obtained directly from the National Cancer Institute.

Several purported ‘ovarian cancer’ lines were genotypically identical to other known, non-
ovarian, cancer cells: BG-1[64] was identified as MCF-7 breast cancer cells, and CH1,
CH1cisR, and 222 as the teratocarcinoma line PA1. C13, A2008 and OV2008 were identical
to the ME-180 (ATCC: HTB-33) cervical cancer cell line, and confirmed to be HPV positive
(Table 4). The genotypically distinct 2008 cell line [65], obtained directly from the
originating laboratory of Dr. Peter Disaia [66], was HPV negative. Finally, SK-OV-4 and
SK-OV-6 lines matched HPV-negative C-33A (HTB-31) cervical cancer cells (Table 4).

Two ‘normal ovarian’ cell lines, NOSE06 and NOSE07, were genotyped as the ovarian
cancer line DOV-13. Similarly, Caov-2 was identical to the earlier NIH:OVCAR-2 line
(Table S4) and some samples of COLO-720E were found to be COLO-704 (not shown).
Ovary1847 cells genotyped as NIH:OVCAR-8.

The remaining ovarian cancer cell lines exhibited unique, uncontaminated genotypes and are
listed with their STR profiles in Table S4.

We noted disparate genotypes for several cell lines with similar names; 2008 cells are
distinct from A2008 and OV2008, and 167 differs from OV167 cells. In contrast, the
TOV-112D cell line is identical to TOV-21D, which appears to have arisen via transposition
of numbers and letters in the name. Some isolates of TOV-112D were misidentified and
matched TOV-21G cells.

The heterogeneity of ovarian tumor cells in ascitic fluid has previously lead to the
establishment of several cell lines with different phenotypic characteristics [67]. We profiled
very early passages of OV429 and OV433 [68, 69] and found identical genotypes, indicative
of either a common patient origin or early cross-contamination (Table S4). Of historical
note, OV433 was the cell line used originally to select for reactivity to the OC125
monoclonal antibody to the ovarian tumor marker CA125.

The cluster of PEO1/PEO4/PEO6 cells are known to originate from the same patient [70],
and genotype accordingly. Similarly, HEY/HEYA8/HEYC2 cells [71] are derived from the
same original line, and share identical genotypes (Table S4).
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Chemotherapy resistant derivatives mirror parental cell line genotypes
We tested five original and cisplatin-resistant paired cell lines and all five parent and
derivative combinations were confirmed by genotyping. However, as shown earlier (Table
4), the OV2008/C13 cells are cervical, not ovarian cancer cells and the CH1/CH1cisR lines
[72] are PA1 teratocarcinoma cells. Table S5 shows STR profiles of the matched cisplatin-
sensitive/ -resistant ovarian cancer cell lines. The 41M/41McisR, TYKnu/TYKnucisR and
A2780/A2780cisR pairs each have unique profiles. The paired lines demonstrate some
genetic instability, consistent with cisplatin-induced MSI [73]. Cisplatin-resistant A2780
cells have lost alleles at the D3S1358, FGA, D8S1179. D5S818, D7S820, CSF1PO, and
D2S1338 loci, and gained an allele at the D18S51 locus. The 41M/41McisR pair is more
stable, with the cisplatin-resistant line differing only at the vWA locus. The original
derivation of the 41M cisplatin-resistant lines lists three isolates (41McisR2, 41McisR4 and
41McisR6), which differed in their IC50 [74]. The subline profiled herein is unknown, as the
identifying number has been lost.

Discussion
Gynecologic cancer research is critically dependent on the use of cell culture models, to
investigate molecular mechanisms underlying the development and progression of tumors,
to design and test novel therapeutic strategies, and identify potential diagnostic or prognostic
markers. In this report, we profiled the most widely used endometrial and ovarian cell lines
and discovered several examples of misidentification, redundancy and cross-contamination.

Genotyping and HPV testing of ovarian cancer cell lines identified eight (BG-1 [64], CH1/
CH1cisR [72], 222 [75], C13 [76], A2008 [77, 78], OV2008, SKOV-4 and SKOV-6 [79]) as
previously existing, breast cancer, teratocarcinoma or cervical cancer cell lines. In addition,
two ‘normal ovarian’ cell lines, NOSE06 and NOSE07 [80], were genotyped as the ovarian
cancer line DOV-13 [81]. We also highlight the possibility for confusion of several ovarian
cancer cell lines with similar names, but distinct genotypes; e.g. 167 and OV167, 2008 and
A2008 /OV2008.

We profiled a number of variants of Ishikawa endometrial cancer cells. Results are
consistent with a common origin for these sublines, with variations and polymorphisms in
some STR loci attributable to genetic instability, mismatch repair defects, and high passage
number [75–77]. Analyses of mutations in the p53 gene (TP53) are consistent with previous
reports [31, 57] and provide additional genetic markers to perhaps distinguish the original,
3-H-4 and 3-H-12 Ishikawa lines. Furthermore, STR profiling, TP53 sequencing, and MSI
analysis confirm that currently available isolates of ECC-1 cells are not authentic but are
identical to Ishikawa cells, specifically the 3-H-12 line. This conclusion is reinforced by
evidence that the EnCa-101 tumor, from which the original EEC-1 line was purportedly
derived [42, 55], is genetically distinct from both Ishikawa and ECC-1 cells. We also
observed several ECC-1 isolates to be misidentified MCF-7 cells or a cross-contaminated
mixture of Ishikawa and MCF-7 lines.

ECC-1 cells were initially characterized as distinct from Ishikawa lines based on differential
expression of cytokeratin 13 and osteopontin [33]. However, both markers were present in
the two lines, which otherwise showed identical patterns of expression of steroid hormone
receptors and their coactivators [33]. The karyotypes of Ishikawa and ECC-1 cells also
exhibit some apparent differences [31, 33], but chromosomal number and structural
rearrangements in both lines were complex with high intercellular variability [31, 33].
Comparative cytogenetic analysis found that, given the evident heterogeneity and
differential capabilities of the techniques used (FISH or SKY) to detect abnormalities in
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small chromosomal segments, the karyotypic similarity was likely underestimated, and is
consistent with the two lines sharing a common origin.

Thus, we conclude that the original ECC-1 cell line has been lost, although the persistence
of the EnCa-101 tumor [56] provides an opportunity for its re-derivation. ECC-1 cells have
been extensively used as models of ER positive, type 1, endometrial cancers. Since Ishikawa
cells are also representative of such endometrioid tumors, our evidence that the two lines are
identical may not significantly impact conclusions drawn from these studies, beyond the use
of two redundant cell lines. However, the possible misidentification of MCF-7 breast cancer
cells as ECC-1, or cross contamination with the former, should be considered in interpreting
results using ECC-1 cells.

We identified the normal endometrial epithelial cell line (HES) as HeLa cervical carcinoma
cells. HES cells have been used as a model of benign endometrial epithelium to study
mucosal immunity [82], implantation [83, 84], decidualization [85] and endometriosis [86],
and have served as ‘normal’ controls for novel chemotherapeutics [87, 88] and analysis of
signaling pathways in the endometrium [89–93]. Similarly, the telomerase immortalized
endometrial epithelial cell line, hTERT-EEC [59], was an exact genotypic match to MCF-7
breast cancer cells. hTERT-EEC have been proposed as model to study steroids in normal
endometrial physiology, including, endometriosis and implantation [59, 94, 95]. Clearly,
conclusions derived from studies utilizing HES cells (HeLa) or hTERT-EEC (MCF-7)
should be interpreted with caution, in the light of evidence that they are neither normal nor
endometrial in origin.

Cell line authentication is essential for their meaningful use in research. We recommend that
cell lines be quarantined and authenticated by DNA profiling prior to use, and periodically
evaluated by STR genotype, to check for cross-contamination and validate construction of
stably transfected, genetically modified or clonally selected variants. Derivation of novel
cell lines should be accompanied, where possible, by STR profiles of the patient germ line,
tumor or tissue, and cell line DNA. We also suggest use of histological or phenotypic
markers to verify the tissue of origin, since STR profiling cannot provide this information
resulting in debate as to the tissue type of some cancer cell lines [2, 96].

The origins and mechanisms of cell line contamination, including poor tissue culture
technique, inadequate quality control, clerical and labeling errors, and aerosol transfer of
cells, have been reviewed previously [63] and, despite best laboratory practices, are
probably unavoidable. Accordingly, even among cell lines that exhibited unique profiles, we
found examples, from all sources, of individual aliquots that were misidentified or
contaminated, indicating a widespread and pervasive problem. STR profiling is a simple,
widely available and relatively inexpensive method to document and authenticate cell lines,
and has been recommended as an internationally accepted standard for human cells [22, 63,
97, 98]. Despite repeated calls for journals to require DNA profiling of cells for publication,
this practice has not been widely adopted [63, 99]. Complacency and denial of the existence
and extent of the problem with validation and authenticity of cell lines, while prevalent [7,
24, 63, 99], are antithetical to the conduct of responsible research in gynecologic oncology.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• STR DNA profiling was used to analyze ovarian and endometrial cell lines.

• Results demonstrate significant misidentification, duplication and cross
contamination.

• ECC-1 cells identified as Ishikawa cells and are not derived from EnCa-101
tumor.

• ‘Normal’ endometrial HES and hTERT-EEC cells identified as HeLa and
MCF-7, respectively.

• Expanded reference DNA profiles at 16 loci for endometrial and ovarian cancer
cell lines.
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