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Abstract
Millions of genetic variants have been assessed for their effects on the trait of interest in genome-
wide association studies (GWAS). The complex traits are affected by a set of inter-related genes.
However, the typical GWAS only examine the association of a single genetic variant at a time.
The individual effects of a complex trait are usually small, and the simple sum of these individual
effects may not reflect the holistic effect of the genetic system. High-throughput methods enable
genomic studies to produce a large amount of data to expand the knowledge base of the biological
systems. Biological networks and pathways are built to represent the functional or physical
connectivity among genes. Integrated with GWAS data, the network- and pathway-based methods
complement the approach of single genetic variant analysis, and may improve the power to
identify trait-associated genes. Taking advantage of the biological knowledge, these approaches
are valuable to interpret the functional role of the genetic variants, and to further understand the
molecular mechanism influencing the traits. The network- and pathway-based methods have
demonstrated their utilities, and will be increasingly important to address a number of challenges
facing the mainstream GWAS.

Introduction
Genome-wide association studies (GWAS) have successfully identified over a thousand
genetic associations with human traits and diseases. Although millions of single nucleotide
polymorphisms (SNPs) are genotyped or imputed, GWAS typically investigate the genetic
effect of a single SNP at a time. Most genetic associations have a small effect and require a
rather large sample size (e.g., 10,000’s) across several cohorts to be robustly identified. On
the other hand, most common diseases are multigenic traits which involve a group of genes
functioning at various stages of disease development. Given the complex genetic
architecture and synergistic effects among these genes, the holistic effect of a gene network
or a pathway is expected to have a larger effect than the sum of individual effect of each
gene. In addition, it is usually challenging to interpret the genetic associations for their
functional connection with the trait only based on the annotation of a single gene. Therefore,
network- and pathway-based methods have been developed to boost the power to identify
the candidate genes and to provide functional links to bridge the knowledge gap between the
genetic variants and the phenotypes. Combining with the data and results from GWAS, these
approaches can assess whether a group of genes with related functions are jointly associated
with a trait of interest and generate specific hypothesis for follow-up experimental studies.
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In the following sections, I discuss the basic concepts of biological networks and pathways,
and review the network- and pathway-based analyses for genetic association studies.

Basic concepts of biological networks and pathways
Network is a collection of vertices (i.e., nodes) that are joined together in pairs by edges
(Newman 2010). Figure 1a is an example with ten vertices (A to J) and 45 edges connecting
all pairs of vertices. Networks have been widely used in many fields of biology to represent
the relationships between biological entities. In molecular biology and genetics, networks
are often used to represent the functional connections among large (e.g., protein, DNA) and
small molecules (e.g., carbonates, lipids) within cells and organisms. Several types of
biological networks, such as protein–protein interaction (PPI) networks, metabolic networks
and gene regulatory networks, have been constructed to illustrate the complex relationship
within the biological system. Rather than databases which capture a large number of
individual studies, these networks present the accumulated knowledge as an interconnected
illustration of all similar types of biological relationship. Some networks that contain the
edges representing relationship with a specified direction are called directed network (Fig.
1b). An arrowed edge represents the direction between two vertices. For example, B → A
can represent a transcriptional regulation mechanism in which the protein product of gene B
regulates the expression level of gene A. In another scenario, the relationship between two
biological entities is always bidirectional (e.g., protein binding). A network representing
these bidirectional relationships is called undirected network (Fig. 1a). A PPI network is an
undirected network. The knowledge base of these biological networks is quickly expanding
in the last decade with the new high-throughput technologies available in genomic studies.
These networks produced by high-throughput experiments provide extensive functional
information of genes.

A biological pathway, such as a metabolic pathway or a signaling pathway, involves a series
of biochemical and molecular steps to achieve a specific function or to produce a certain
product (e.g., a metabolite or a protein). Although “genes” are usually emphasized in
biological pathways, they can also consist of other types of molecules in the cellular system,
including metabolites and other inorganic molecules. The graphic presentation of a
biological pathway is a special type of network that has a start and an end, and is usually
directed. Several large databases have been created to curate these pathways in eukaryotic
and prokaryotic organisms (Caspi et al. 2010; Kanehisa and Goto 2000). Pathguide
(http://www.pathguide.org) contains over 300 resources of biological pathways. Most
pathway-based genetic association studies treat these biological pathways as a set of related
genes which jointly perform a biological function, ignoring the specific and usually directed
relationship among the genes. For these studies, the pathway information is treated as a gene
set rather than a typical network. The biological networks discussed in this article represent
a global view of all connectivity among a large number of genes. Rather than defining a
function-centered pathway, a biological network focuses on the partnership among
molecules, regardless of the actual molecular functions they perform. These networks
mostly are composed of homogeneous vertices—usually “genes” which may represent
expression levels of genes (e.g., co-expression network) or proteins as gene products (e.g.,
PPI network). Because these networks are not limited to a certain functional outcome, they
do not carry an obvious boundary. A biological network is defined by all connected vertices
within a knowledge space. In other words, the collection of all known relationship among
the “genes” determine the network. Due to the advancement of high-throughput technology,
our understanding of these biological relationships is steadily growing. As a result, many of
these biological networks are constantly expanding and changing, and are less stable than
the well-curated pathways. Gene Ontology (GO) is another widely adopted source of
functional annotation (http://www.geneontology.org). GO is a controlled vocabulary of gene
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and gene product attributes including three primary categories, cellular component (CC),
molecular function (MF) and biological process (BP). GO is designed to be species neutral.
The relationship among GO terms are structured as a directed acyclic graph, with each term
having defined relationships to one or more other terms in the same or sometimes other
domains.

To conduct the pathway- or network-based analysis, a key step is to map the genotyped
genetic variants to a known gene. Although the mapping of SNPs to genes may affect the
analysis results, there is no consensus definition for such annotation. The membership is
usually defined by the chromosomal distance between the variant and the gene boundary
(i.e., transcriptional start site—TSS, and transcriptional end site—TES). However, the
suggested sizes of the flanking region vary from study to study, ranging from 10 Kb to 2.5
Mb (Askland et al. 2012; Lee et al. 2011; Schaid et al. 2012; Wang et al. 2007, 2010; Weng
et al. 2011). Although most known cis-regulatory elements are located within 5 kb around
the genic region, there are known enhancers which can be recruited to the promoter but are
located far from the transcriptional start site (measured by the base-pair distance). The
various sizes reflect the different choices of being inclusive or exclusive of assigning SNPs
to genes. Although a large size of flanking region can include more intergenic SNPs to the
gene-based analysis, it can also include more irrelevant SNPs and may further complicate
the interpretation in some gene-dense regions, when a single SNP can be mapped to multiple
genes. Interestingly, Lee et al. (2011) recently showed that using the flanking region
between 0 and 250 kb from the genes did not significantly change the boosting from the
network. The intuitive choice of chromosomal distance to define a genic region can be
limited when other functional data are available. For instance, both cis- and trans-eQTLs are
associated with gene expression levels. These associations with gene functions can be more
informative than the chromosomal distance to the genes. Adopting the new functional
genomics annotations for mapping SNPs to genes can potentially improve the pathway and
network analyses of GWAS data. A number of statistical methods have been developed to
conduct gene-level associations with disease traits by collapsing multiple rare and common
variants across a genic region. The statistical framework of these collapsing methods are not
limited to gene-based association and can be expand to multiple genes in a biological
pathway or a larger network. Given that these methods have been thoroughly reviewed
recently (Bansal et al. 2010; Dering et al. 2011; Sun et al. 2011), they are not discussed in
this article.

Gene set enrichment methods
Gene set enrichment methods Gene set enrichment analysis (GSEA) was initially proposed
to identify the enriched gene sets without preselecting significant genes in transcriptomic
studies(Subramanian et al. 2005). When the set of genes are closely related and their
expression levels are associated with the outcome, the statistical power of identifying the
association can be potentially increased by borrowing the signals across multiple genes in a
set. In practice, the gene set can be defined by known pathways, GO terms or any group of
genes sharing similar or related biological characteristics. The original GSEA method
implemented a variation of a Kolmogorov–Smirnov statistic to calculate an enrichment
score (ES) for each pre-specified gene set. Considering a collection of gene sets S1, S2,…,
Sk, we compute test statistic Gj for each gene in our data (total of N genes). Let Gk = (G1,
G2,…, Gm) be the gene scores for the m genes in gene set Sk. The genes are ranked based on
the correlation between their expression and the outcome. GSEA computes a gene set score
ESk (Gk) for each gene set Sk. ES reflects the degree to which a set Sk is overrepresented at
the extremes (top or bottom) of the entire ranked list (Subramanian et al. 2005). The GSEA
method performs permutations of the sample labels to compute the null distribution of the
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ES statistic on each permuted data set. Finally, the significance level is corrected for
multiple testing using the false discovery rate of the list of significant gene sets.

Although GSEA is an effective method to study gene sets, and has been widely adopted in
the analyses of transcriptomics, other approaches of gene set enrichment have been proposed
to address the limitations of the original GSEA (Efron and Tibshirani 2007;Newtonet al.
2007). For example, the choice of Kolmogorov–Smirnov statistics in GSEA is reasonable
but not necessary. Efron and Tibshirani developed a new procedure based on the
“maxmean” statistic that has superior power characteristics (Efron and Tibshirani 2007).
They showed that the new statistic has better power than GSEA and increased
reproducibility. A “restandardization” procedure, which combines the permutation of sample
labels and row randomization of gene sets, was also proposed to generate an unbiased null
distribution of the “maxmean” statistic (Efron and Tibshirani 2007). To evaluate the
performance of these gene set enrichment methods, Abatangelo et al. (2009) compared four
of these approaches including GSEA using both simulated and real data. The performance of
the naïve Fisher’s exact test was markedly worse than the other three methods. Although
differences in the results from these enrichment methods are observed, the other three
methods are all capable of identifying relevant gene sets known from the data sets. No
method is uniformly dominant over all scenarios, and GSEA performs more consistently in
finding enriched gene sets (Abatangelo et al. 2009).

Gene set enrichment analysis for GWAS data
GWAS surveys millions of SNPs on human genome for disease-associated loci. Many of
these genetic variants are located in or close to a genic region. Borrowing ideas of gene set
enrichment from transcriptomic studies (Efron and Tibshirani 2007; Newton et al. 2007;
Subramanian et al. 2005), several methods are implemented to conduct pathway-based
analyses using the GWAS data and have been recently reviewed (Askland et al. 2009; Chen
et al. 2010; Holmans 2010; Holmans et al. 2009; Kraft and Raychaudhuri 2009; Luo et al.
2010; Schaid et al. 2012; Wang et al. 2007, 2010; Weng et al. 2011; Zhang et al. 2010).
These methods examine whether a set of related genes in the same biological pathway are
jointly associated with a trait of interest and differ in the choice of summary statistics of
genes and pathways. For example, Wang et al. (2007) assigned the highest statistic value
among all SNPs mapped to a gene as the statistic value of the gene, and utilized the
framework of GSEA to evaluate the statistical significance through permutation and
correction for multiple testing. GSEA-SNP computes all SNPs annotated to a pathway
without using a gene-level summary statistic (Holden et al. 2008). Chen et al. (2010)
proposed a principal component approach to identifying “eigenSNPs” for each gene to
assess their joint association. MAGENTA uses GWAS results to test for enrichment of
genetic associations in predefined biological processes or sets of functionally related genes;
it can be used for either hypothesis-testing or hypotheses-generating analyses (Segre et al.
2010). The in-depth comparison and application of these methods can be found in a recent
review article by Wang et al. (2010). This article only discusses the most recent pathway-
based methods for GWAS analysis that are not covered by previous reviews.

SNP set enrichment analysis (SSEA) implemented an adaptive rank truncated product
method to select at least one representative SNP for each gene (Weng et al. 2011). For each
gene, the number of representative SNPs, K, is determined by minimizing the gene-level p
value with all possible K (in practice, K = 1 to 10 to reduce computational burden). To
correct for the various sizes of genes (measured by the number of tested SNPs), SSEA
forces an equal number of representative SNPs (i.e., K) for genes within a pathway by using
the average K of all genes in a pathway. Similar to the original GSEA, a weighted
Kolmogorov–Smirnov test was used to assess the enrichment of significance on the pathway
level. Applied to GWAS of schizophrenia, SSEA is able to identify statistically significant
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pathways that replicate in Caucasians and African Americans, two ethnic groups with
distinct genetic background (Weng et al. 2011). Askland et al. (2012) explored three
methods to adjust for various gene sizes and identified that ion channel genes were
consistently enriched in GWAS data sets of schizophrenia. Schaid et al. (2012) developed a
new score on the SNP-level test in the framework of generalized linear models. At the gene
level, the average of SNP-level score squared is used to summarize the joint association of a
gene. To score a gene set, the weighted average of the gene-level score is used, where the
weight is the inverse variance of the gene-level score. This general approach combines SNPs
to genes and to gene sets to assess the enrichment of a given gene set, and avoids the
cancelation of positive and negative effects of multiple trait-associated genes. It allows
SNPs to be mapped to multiple genes or gene sets based on chromosomal locations, and
directly adjust for linkage disequilibrium (LD) among SNPs within the same genic region
and between genes in the same gene set (Schaid et al. 2012).

These pathway- and gene set-based approaches consider the joint contribution of multiple
SNPs and genes involved in a biological pathway and highlight the potential functional
relationship between pathways and diseases. Taking advantage of the enrichment of multiple
associations which may not pass the genome-wide significance threshold individually, the
pathway-based SNP analysis could have better statistical power for detecting disease-
associated pathways than the single SNP analysis, with a smaller number of statistical tests.
At the pathway level, the statistical significance can more robustly reflect the functional
relationship and may be less affected by genetic structure than the single SNP test.
Therefore, the significantly associated pathways can be more consistently replicated across
ethnic groups compared to the SNP-level association. With the knowledge of these
predefined pathways, the findings of disease-associated pathways can be complementary to
the single SNP analysis in understanding the molecular mechanism of human diseases.

Network analysis
Network analysis has been extensively applied to study biological networks including
genetic networks (Newman 2010). The high-throughput technologies of genomic research
have produced a deluge of data to enable network studies. Large databases such as
BioGRID, DIP, HPRD, IntAct, IMID, and MIPS (Aranda et al. 2010; Keshava Prasad et al.
2009; Pagel et al. 2005; Stark et al. 2006; Warde-Farley et al. 2010; Xenarios et al. 2002)
document hundreds of thousands of physical and genetic interactions from a number of
organisms including humans. In this article, I focus on two types of molecular networks, co-
expression networks and PPI networks, which have been relatively well understood and
utilized in statistical genetic studies to potentially fill the gap of functional relationship
between the genetic variants and the trait of interests.

Co-expression network
Co-expression networks are weighted, undirected gene networks that represent the
correlation among gene expression levels. The vertices represent the genes or the probes
measuring the expression levels of gene transcripts. An edge between a pair of vertices
represents statistically significant correlation and is weighted by the quantitative
measurements of the correlation (e.g., correlation coefficient). Genes regulated by the same
transcriptional mechanism may have similar profile of gene expression levels. Therefore, the
co-expression network has been extensively studied to identify putative co-regulated genes
in multiple organisms (Ghazalpour et al. 2006; Ideker et al. 2001; Schadt et al. 2008; Zhu et
al. 2008). The network analyses of co-expression network may also suggest functional
domains in the molecular system, and can be particularly powerful when the perturbation
instruments are applied (Ideker et al. 2001). Over 20,000 functional genomic studies (e.g.,
gene expression microarray data sets) have been stored in the Gene Expression Omnibus
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(Barrett et al. 2011). A large number of co-expression networks have been generated to infer
genes with related functions and used to study the functional enrichment (Subramanian et al.
2005). The genetic association of the gene expression levels has also been extensively
studied to identify expression-associated SNPs (eSNPs) with cis and trans genetic effects
(Emilsson et al. 2008; Schadt et al. 2008; Stranger et al. 2005) and stored in databases
(Gamazon et al. 2010). These eSNPs are often known as expression quantitative trait loci
(eQTL). Several online databases, such as Genevar
(http://www.sanger.ac.uk/resources/software/genevar/), the eQTL Browser
(http://www.eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) and seeQTL
(http://www.bios.unc.edu/research/genomic_software/seeQTL/help.htm), have been built
and maintained based on the genetic associations of gene expression levels in multiple
tissues. GWAS hits overlapping with the eSNPs can suggest putative function of
transcriptional regulation. Several GWAS studies have observed that the significant
associations in GWAS overlap are enriched with eSNPs (International Consortium for Blood
Pressure Genome-Wide Association Studies et al. 2011; Teslovich et al. 2010; Zhong et al.
2010). The suggested role in transcriptional regulation can be followed up with functional
analysis to verify the impact on transcription. Schadt et al. developed a new model to
capture regulatory causality that relates the genetic variants to gene expression networks and
disease traits (Chen et al. 2008; Dobrin et al. 2009; Emilsson et al. 2008; Sieberts and Schadt
2007), This integrative model infers the putative functional association with transcriptional
regulation, as well as the putative causal relationship, which better facilitates the design of
follow-up study to empirically confirm the molecular function.

PPI network and interactome
The physical interactions between proteins are important for a wide range of biological
functions including biochemical reactions, cytoskeletal structures, signal transduction
systems and transcriptional regulation. Several high-throughput experimental methods (e.g.,
two-hybrid system and affinity purification-mass spectrometry) can measure the binding
affinity to identify the physical interactions among proteins. The yeast two-hybrid system
was used to screen over 4,000 human proteins and identified over 3,000 mostly novel PPI
interactions (Stelzl et al. 2005). Other high-throughput studies of human interactome also
identified a large number of PPI pairs (Gandhi et al. 2006; Sowa et al. 2009). Large
databases such as BioGRID (Stark et al. 2006) and MIPS (Pagel et al. 2005) have been
developed to document all known PPI information from multiple organisms including
humans. As a result, we are able to query thousands of identified interactions among human
proteins using these databases, to define the hypothesis-testing space for a new type of
evaluation of gene–gene interactions that integrates aspects of statistical and functional
evidence (Ma et al. 2012; Sun and Kardia 2010). Constructed PPI networks for genes within
associated loci for complex diseases also showed abundant physical interactions between
protein products of associated genes (Rossin et al. 2011). Integrated with the GWAS
analyses, the information of PPI can help to interpret the genetic associations with human
diseases, and provide hints to plausible functions of the genetic variants (Hannum et al.
2009; Jia et al. 2011).

Integration of network analysis with GWAS
Several network-based methods have been developed to boost the power of gene
identification in GWAS and to bridge the functional connection between GWAS findings
and the pathophysiology of human diseases. Built upon the guilt-by-association (GBA)
algorithm, Lee et al. (2011) developed a naïve Bayes framework to identify disease genes
using a large human gene network and GWAS results of human diseases. The strength of the
genetic association is measured as additive Bayes factor to infer the disease genes in
addition to the prediction network. In Network Interface Miner for Multigenic Interactions
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(NIMMI), the disease- or trait-associated sub-networks are identified by combining the
weighted PPI network with the statistical significance from GWAS. The known trait-
associated genes are mostly found in the top-ranked sub-networks with better sensitivity
than the single locus analysis (Akula et al. 2011). A dense module searching method is
implemented in dmGWAS to identify sub-networks for complex diseases by integrating the
association signal from GWAS data sets into the human PPI network. This method can
utilize the local PPI module to define the gene set for testing the enrichment of genetic
associations (Jia et al. 2011).

Another integrative application of biological networks and GWAS data is to study epistasis
(i.e., gene–gene interaction), which may partially explain the large proportion of missing
heritability in the current GWAS study (Moore and Williams 2009; Zuk et al. 2012). In the
context of the network analysis, integrating the rich information available from PPI
databases and the high-throughput measurements of genetic variants, we have a unique
opportunity to relate the functional interaction between gene products (e.g., proteins), and
the statistical interactions associated with human traits. Several methods have used network
analysis to study epistasis (Davis et al. 2010; Hu et al. 2011; Sun and Kardia 2010). Sun and
Kardia (2010) demonstrated in their recent study that the functional epistasis and statistical
epistasis can be integrated to identify new interacting genetic loci. The candidate pairs of
interacting genetic loci were filtered by the PPI pairs among human genes, and the statistical
interaction models were tested to identify epistatic effects, which may function through a
protein complex with multiple peptides bound together. Although this study only examined
copy number variation (CNV), this approach can be extended to analyze genome-wide SNPs
by grouping the SNPs into genes.

Visualization of biological networks
Graphic visualization is a key component to analyze the networks and present the results. To
study large biological networks composed of thousands of vertices and several times more
edges, a specially designed computational tool is necessary. Cytoscape is a Java-based, open
source bioinformatics software platform for visualizing complex interaction networks and
biological pathways (Cline et al. 2007; Shannon et al. 2003). Through powerful and flexible
data integration, filtering, browsing and interactive visualization techniques, this software
allows the user to explore and analyze the relationship between disease phenotypes and
molecular networks and/or particular components of molecular networks (genes, proteins
and their interactions). The software facilitates the integration of information from a variety
of data sources (such as functional annotation, transcriptomic profiles, genetic association
tests, etc.) through user-configurable visualization schemes that display attributes of network
components using labels, colors, line shapes and physical proximity. Several network
analysis and visualization tools, such as statnet, sna and igraph, are also available as R
packages, which are convenient for users who need to integrate the network analysis with
other statistical analyses in a single programming environment.

Discussions
The network- and pathway-based methods essentially represent a framework to incorporate
biological knowledge into the statistical genetic studies of complex traits. These approaches
can integrate the biological networks and pathways at three major stages of genetic
association study (illustrated in Fig. 2). Current methods use networks and pathways to
preselect genetic variants for targeted analysis, to enrich the statistical associations and to
identify functional modules based on statistical significance, but mostly focus on a single
type of integration using one source of biological networks. As discussed in previous
sections, there are several types of networks providing functional information at different
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molecular levels (e.g., transcriptional regulation, gene expression and PPI). For all these
functional information of biological pathways and networks, centralized databases have
been built and constantly updated to track the information based on literatures and large-
scale studies. However, each type of functional information has its strengths and
weaknesses. On one hand, GO does not include the biological context, such as species,
tissue specificity and cellular environment, in the annotation. Compared to co-expression
and PPI networks, pathway or network analysis based on GO will only lead to the “domain”
knowledge, rather than the specific functional role underlying the pathophysiology of human
disease. With the proper design and careful selection of the research question, integration of
co-expression and PPI data to network analysis may generate new hypotheses of specific
molecular function that can be experimentally examined. On the other hand, limited by the
technology of measurements and the complexity of the functional relationship, the
completeness of these databases varies substantially, which may introduce bias into the
statistical analysis if not appropriately considered. For example, GO provides relatively
stable functional annotation for genes across species. Therefore, the results of the inferred
biological attributes from the statistical analysis are relatively consistent using different
versions. For less complete databases such as PPI networks and co-expression networks, the
network topology may change substantially after inclusion of a large-scale experimental
study. Thus, the statistical results based on such incomplete information may be biased,
especially when multiple pathways and networks are compared.

Although over a thousand genetic loci have been associated with human traits and diseases
by the GWAS approach, the functional variants within these loci are mostly unknown. The
next-generation sequencing (NGS) enables high-throughput survey of all genetic variants,
including functional variants of human genome. For instance, thousands of exomes have
been sequenced to identify variants in the coding regions, especially those variants with
lower frequency (Tennessen et al. 2012). Because of the low allele frequency, the power to
detect the genetic association for a single variant or even for a gene is limited. Pathway and
network analysis may play an important role in increasing the power for analyzing the
exomic data by combining multiple related genes in a pathway or a network, and to infer the
biological function underlying the disease traits. Furthermore, given the putative function of
these variants identified by NGS, and the knowledge of biological networks, we are able to
generate more specific hypothesis to guide statistical testing, such as variants affecting PPI
and transcriptional factor—regulatory element binding. These well-defined hypothesis
testing can be fruitful using the functional variants from whole exome sequencing data and
enhance our understanding of the causal variants and the molecular system of complex
human traits.

With continuing effort to improve the quality and the completeness of the biological
networks and pathways, new initiatives try to expand the knowledge space of biological
function and interaction (Ravasi et al. 2010). Developing databases that curate information
about all the molecular interactions within a cell (e.g., DNA–DNA, DNA–RNA, DNA–
protein, RNA–RNA, RNA–protein and protein–protein) would greatly assist in providing an
a priori biological hypothesis space for association testing (Pattin and Moore 2008, 2009).
Additionally, most studies of biological networks focus on the static relationship among
genes and proteins under a single experimental condition. From the vast amount of
documented linkages within the molecular systems, the knowledge base of the complex
genetic and physical architecture has been built to understand the biological functions and
processes. However, the biological networks are highly dynamic to adapt to the changing
environment and to maintain critical cellular functions. Differential network studies analyze
the dynamics of biological networks under different conditions and help to provide a more
complete understanding of the complexity of biological systems (Ideker and Krogan 2012).
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New approaches to integrating the multiple biological networks with genetic association
study may further bridge the gap between the genetic variants and complex traits.

For both hypothesis-testing and hypothesis-generating methods, p values are calculated
under a statistical null hypothesis. Depending on the different hypotheses and designs, such
as self-contained or competitive tests, the interpretation of the p values from the pathway
analyses can be very different from the single SNP association tests. For example, an over-
represented GO term with a significant p value indicated its enrichment among a large
number of GO terms given the input genes, which does not directly assess the association
between the genes and the traits. Therefore, it is critical to understand the test statistics of
these pathway analysis methods, to appropriately interpret and compare the p values from
various studies. In the context of gene expression analysis, Goeman and Bühlmann
discussed this methodological issue in great detail (Goeman and Buhlmann 2007).

Thomas has pointed out and re-emphasized that “incorporation of the underlying biology of
the disease” is one unique characteristic of genetic epidemiology (Thomas 2000; Thomas
2012). The network- and pathway-based methods provide an integrative framework to
enable such incorporation of biological knowledge. With the advancement of high-
throughput technology (Yu et al. 2011), and the availability of high-quality measurement of
the biological system, the integrative approach to studying the genetics of complex traits and
diseases will be more fruitful. These approaches will produce more interpretable results
which may lead to a better understanding of the diseases and better prevention, diagnosis
and treatment eventually.
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Fig. 1.
Examples of undirected and directed networks
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Fig. 2.
Integration of pathway and network information at different stages of genetic association
studies
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