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Abstract

Long-standing type 1 diabetes (T1D) is associated with an absolute loss of endogenous insulin
secretion (circulating C-peptide is undetectable) and a related defect in glucose counterregulation
that is often complicated by hypoglycemia unawareness, markedly increasing the risk for severe
hypoglycemia. Both the transplantation of isolated islets and a whole pancreas can restore 3-cell
secretory capacity, improve glucose counterregulation, and return hypoglycemia awareness, thus
alleviating severe hypoglycemia. The transplantation of islets may require more than one donor
pancreas, and the recovery of endocrine function for now appears more durable with a whole
pancreas; however, islet transplantation outcomes are steadily improving. Because not all patients
with T1D experiencing severe hypoglycemia are candidates to receive a whole pancreas, and since
not all pancreata are technically suitable for whole organ transplantation, islet and pancreas
transplantation are evolving as complementary approaches for the recovery of endocrine function
in patients with the most problematic T1D.
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Introduction

The transplantation of isolated islets and a whole pancreas are both potential therapies for
the treatment of type 1 diabetes (T1D), particularly when complicated by recurrent episodes
of severe hypoglycemia (1). Both approaches can restore insulin secretion, but the
transplantation of islets isolated from more than one donor pancreas is often required to
achieve insulin independence. The durability of insulin independence is superior following
whole pancreas transplantation (2), especially when a pancreas is transplanted at the same
time as a kidney (simultaneous pancreas-kidney or SPK (3)). The majority of islet recipients
will return to requiring some insulin therapy by three years following transplantation, but
they can expect continued amelioration from episodes of severe hypoglycemia for the
duration of graft function that is currently retained in 90% of recipients at four years (4).

Please address all correspondence and reprint requests to: Michael R. Rickels, M.D., M.S., Perelman School of Medicine at the
University of Pennsylvania, Institute for Diabetes, Obesity & Metabolism, 12-134 Translational Research Center, 3400 Civic Center
Boulevard, Philadelphia, PA 19104; Phone 215-746-0025; Fax 215-898-5408; rickels@mail.med.upenn.edu.

Disclosure
Conflicts of interest: M.R. Rickels: was a Scientific Advisory Board Member, 2011, for Schulze Diabetes Institute, Univ. of
Minnesota.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rickels

Page 2

With more durable insulin independent graft function, severe hypoglycemia episodes may
be eliminated in the majority of SPK recipients for more than a decade (5;6).

Presently, islets are transplanted either alone into patients with T1D who are experiencing
severe problems with hypoglycemia or into patients who have already received a kidney
transplant and so are already committed to immunosuppressive therapy. A whole pancreas is
usually transplanted as a SPK because of superior long-term graft function when compared
to the transplant of a pancreas alone (3), and because this approach limits the risk of
additional surgery. Thus, the transplantation of isolated islets and whole pancreata are
evolving as complementary approaches for patients with T1D who are experiencing
recurrent severe hypoglycemia or requiring a concomitant kidney allograft. This review will
focus on the endocrine defects responsible for the development of severe hypoglycemia in
T1D and the physiologic recovery from those defects currently afforded by islet or pancreas
transplantation.

Functional B-cell mass in type 1 diabetes

T1D results from autoimmune destruction of the insulin-producing p-cells in the endocrine
pancreatic islets of Langerhans. The endocrine pancreas normally contains ~ 1 million islets
that comprise 2 - 3% of the total pancreatic mass. After a variable period of months to years
of autoimmune destruction, clinically overt diabetes is diagnosed when the functional p-cell
mass has been reduced to that nearly sufficient to meet daily insulin needs. Functional g-cell
mass is best estimated from the B-cell secretory capacity, a measure that correlates with
calculated B-cell mass in animal models of B-cell reduction (7), with resection (8) and
transplantation (9-11) of a hemi-pancreas in humans, and with transplanted islet mass in
successful human islet autotransplantation (12). The p-cell secretory capacity is derived
from glucose-potentiation of insulin or C-peptide release in response to injection of a non-
glucose secretagogue such as arginine or glucagon. Glucose-potentiation involves the
creation of controlled hyperglycemia that serves to prime the p-cells by inducing the
recruitment of secretory granules to a readily releasable pool that is subsequently released in
response to membrane depolarization induced by arginine or glucagon.

In one study of preclinical T1D the mean p-cell secretory capacity was 25% of normal (13),
and in another study of new-onset T1D the median p-cell secretory capacity was 25% of
normal (14), together suggesting this as the minimal functional $-cell mass required to avoid
overt diabetes. Many patients will maintain endogenous insulin secretion, as estimated from
levels of C-peptide, for up to 5 years, and the institution of intensive insulin therapy at the
time of diagnosis has been shown to slow the rate of B-cell loss (15;16). Nevertheless, the
majority of patients with T1D will lose all B-cell function by 10 - 15 years from diagnosis
and become C-peptide “negative” (reviewed in (17)).

The maintenance of low levels of endogenous insulin secretion in T1D is clinically
important. In the Diabetes Control and Complications Trial (DCCT) a 90 minute mixed-
meal stimulated C-peptide >0.6 ng/ml was associated with reduced incidence of retinopathy
and nephropathy, and a decreased prevalence of severe hypoglycemia; all effects were more
pronounced in those receiving intensive insulin therapy (18). Conversely, DCCT
participants who had undetectable C-peptide were at the greatest risk for severe
hypoglycemia regardless of treatment intensity (19). The protection from severe
hypoglycemia is best explained by the presence of residual islet p-cells maintaining the
paracrine signal for islet a-cell glucagon secretion in response to declining blood glucose
(20). Presently available assays for C-peptide have a lower limit of detection of 0.05 - 0.1
ng/ml, but may falsely detect C-peptide up to 0.2 ng/ml. In the Clinical Islet Transplantation
(CIT) Consortium, “C-peptide negative” has been defined as <0.3 ng/ml 90 minutes after
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mixed-meal (Boost® High Protein) stimulation (21). When the fasting C-peptide alone is
taken into account, an undetectable level is almost assuredly “negative” as long as the
concomitantly measured fasting glucose is not low. The selection of C-peptide negative
patients for islet or pancreas transplantation not only helps to identify those in whom
restoration of endogenous insulin secretion is most likely to benefit in terms of alleviation
from severe hypoglycemia, but is also useful for monitoring transplanted islet graft function
by paired levels of C-peptide and glucose (22).

Recovery of functional B-cell mass by islet transplantation

The transplantation of islets isolated from a deceased donor pancreas is accomplished in
humans via portal vein infusion accessed either by a percutaneous transhepatic or a
minilaparotomy approach with subsequent intrahepatic islet engraftment (23). To date, the
liver is the only site that has enabled sufficient survival of transplanted islets to consistently
reverse diabetes and achieve insulin independence in large animal models (24) and humans,
an attribute best explained by the provision of oxygenation via the portal circulation until
revascularization occurs from the hepatic arterial system (25). As intrahepatic islets
degranulate in the hours following intraportal infusion (26) and revascularization may not be
complete before a month in non-human primates ((27) and so presumably humans),
complete functional recovery of transplanted islets should not be expected for several weeks.
During this engraftment period intensive insulin therapy should be maintained to avoid
glucotoxicity (28) and reduce p-cell demand during this critical time of relative hypoxia.
Reduced insulin requirements to avoid hypoglycemia together with detectable C-peptide
indicate post-transplant islet survival. In the CIT Consortium, subjects at least 2 months
post-transplant who are able to taper off insulin therapy and at day 75 maintain a fasting
glucose < 126 mg/dl and a 90 minute mixed-meal stimulated glucose < 180 mg/dl (among
other criteria (21)) may be considered insulin-independent, whereas insufficient glycemic
control is an indication for resumed insulin management and consideration of a second (or
rarely third) islet infusion.

The Edmonton protocol for islet transplantation established that under glucocorticoid-free
immunosuppression a subsequent islet infusion from a second donor pancreas could
reproducibly achieve a sufficient engrafted islet B-cell mass to render the recipient insulin-
independent (29). A multi-center trial subsequently demonstrated that this approach resulted
in insulin-independence in 60% of recipients, although the majority of these patients
returned to insulin therapy by 2 years post-transplant (30). Nonetheless, 80% of recipients
maintained islet graft function as indicated by a reduction in insulin requirements and C-
peptide production for the 2 years of follow-up (30), that in Edmonton was maintained for 5
years with associated protection from severe hypoglycemia (31). Using the Edmonton
approach, we (32) and Paty and colleagues (33) have shown that after infusion of a mean
total 860,984 and 618,000 islet equivalents, respectively, insulin-independent recipients had
a p-cell secretory capacity only ~ 25% of normal. Using another glucocorticoid-free regimen
with islets transplanted from pooled donors to achieve insulin-independence, Keymeulen
and colleagues (34) also demonstrated a B-cell secretory capacity of ~ 25% of normal in islet
recipients. The lower functional islet p-cell mass for the numbers transplanted suggests early
loss of transplanted islets before engraftment due to nonspecific inflammatory and
thrombotic mechanisms (35). Collectively, these results indicate a markedly reduced
engrafted islet f-cell mass in transplant recipients that is just at the margin of what is
required to avoid hyperglycemia, and so helps to explain the eventual return to insulin
therapy experienced by the majority of recipients.

Important for a low functional islet B-cell mass, insulin sensitivity derived from the minimal
model in islet recipients transplanted according to the Edmonton protocol is improved when
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compared to T1D pre-transplant and not different from normal assessed both cross-
sectionally (36) and prospectively (37). Both studies demonstrated enhanced insulin-
mediated glucose disposal and free fatty acid suppression, suggesting correction of
hyperglycemia and elevated free fatty acids in T1D as mechanisms for the improved insulin
sensitivity following islet transplantation. The finding of improved insulin sensitivity in
human islet recipients is also noteworthy since the maintenance immunosuppression agents
tacrolimus and sirolimus used in the Edmonton protocol have been implicated in the
development of insulin resistance in a rat model of islet transplantation (38). As will be
discussed below for pancreas transplantation, modern dosing of the calcineurin-inhibitor
(CNI) tacrolimus does not appear to cause a significant impairment in insulin sensitivity
(39), and the use of the mammalian target of rapamycin (mTOR) inhibitor sirolimus did not
impair insulin sensitivity derived from the minimal model in a non-human primate model of
islet transplantation (40).

Excessive secretion of proinsulin relative to insulin, resulting in an elevated molar ratio of
proinsulin-to-insulin, can accompany increased B-cell demand with recruitment of immature
secretory granules containing an abundance of incompletely processed proinsulin (41). In
two studies involving insulin-independent (39;42) and dependent (42) islet transplant
recipients where the mean HbA1c was ~ 6.0%, fasting proinsulin-to-insulin ratios were
normal, as were proinsulin secretory ratios in response to glucose-potentiated arginine (39).
In contrast, another study of islet transplant recipients with a mean HbAlc level of 7.1%
exhibited elevated fasting proinsulin-to-insulin ratios (43). Because hyperglycemia increases
B-cell recruitment of immature secretory granules leading to relative hyperproinsulinemia
(44), these reports suggest that the maintenance of near-normal glycemia (HbAlc < 6.5%)
with insulin therapy when appropriate may protect islet recipients from secreting
incompletely processed proinsulin (reviewed in (45)). Moreover, the absence of relative
hyperproinsulinemia in islet transplant recipients with near-normal glycemic control
provides additional evidence against a clinically important increase in metabolic demand
imposed by tacrolimus and sirolimus immunotherapy.

Additional evidence for the importance of avoiding hyperglycemia in islet recipients comes
from the finding of amyloid deposition in intrahepatic islets of 3/4 recipients on postmortem
examination ~ 2 - 5 years post-transplant (46;47). Islet amyloid is composed of islet amyloid
polypeptide (IAPP or amylin) fibrils deposited within and surrounding p-cells, where they
exhibit direct toxicity (48). IAPP is co-secreted from the p-cell with insulin (49), but
normally is inhibited from forming amyloid by appropriate proportions of insulin and other
factors in the p-cell (50). We demonstrated disproportionately increased IAPP-to-insulin
secretion during glucose-potentiated arginine testing in insulin-independent recipients (51),
suggesting that hyperglycemia may disturb regulation of insulin and |APP within
transplanted islets and facilitate the development of islet amyloid. Recently, we showed in a
non-human primate model that transplanted islets develop amyloid deposits coincident with
animal growth increasing the B-cell secretory demand, and that the presence of amyloid
predated a decline in B-cell secretory capacity and subsequent recurrence of hyperglycemia
(52). From these observations it follows that avoiding hyperglycemia and reducing
metabolic demand through the provision of exogenous insulin or increasing the engrafted
islet B-cell mass should improve long-term functional outcomes for islet recipients.

There is indirect evidence for a long-term benefit of establishing a functional reserve
capacity, i.e. > 25% of a functional B-cell mass, following islet transplantation in humans. In
the Collaborative Islet Transplant Registry (CITR) report of transplants conducted from
1999 to 2006, of those recipients who ever achieved insulin independence 75% maintained
islet graft function at 3 years whereas of those who never achieved insulin independence
only 25% had persistent function (53). In the most recent update from CITR, among
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recipients transplanted from 2007 to 2010, 95% of those who ever achieved insulin
independence retained islet graft function at 3 years compared to 70% for those who never
achieved insulin independence (4). These data support, in the absence of evidence for
alloimmune rejection or recurrent autoimmunity, the practice of performing a second islet
infusion when needed to establish insulin independence. Also noteworthy, in this most
recent period of CITR data less than half of recipients received a second islet infusion
compared to two-thirds of prior recipients (4), likely reflecting improved islet engraftment
with transplantation protocols developed since the Edmonton protocol.

New induction immunosuppression protocols from Minneapolis incorporating as well peri-
transplant anti-inflammatory and anti-thrombotic (54) therapy with similar low-dose
calcineurin inhibitor and mTOR inhibitor maintenance therapy as in the Edmonton protocol
appear to have improved rates of insulin-independence occurring more frequently with islets
isolated from a single donor (55) and being sustaining for a longer duration (56;57). One
regimen based on the polyclonal T cell depleting antibody rabbit anti-thymocyte globulin
(rATG) and the tumor necrosis factor alpha (TNFa.) inhibitor etanercept at induction and
low-dose tacrolimus and sirolimus for maintenance is presently being evaluated as part of
the multicenter CIT Consortium Protocol CITO7 (21). Our preliminary results using the
CITO7 protocol indicate a p-cell secretory capacity > 40% of normal at 75 days post-
transplant which is a significant improvement in engrafted islet B-cell mass over our
experience with the Edmonton protocol, particularly since the CITO7 subjects had more
often received islets from a single donor resulting in significantly less islet equivalents per
kg recipient body weight transplanted (58). In addition to improving the initially engrafted
islet B-cell mass to promote prolonged transplant function, other groups have advocated the
use of supplemental islet infusions at the time of recurrent hyperglycemia in the absence of
evidence of immune activation to restore the islet p-cell reserve and return to insulin
independence (59).

While there may be benefit to the peri-transplant use of glucagon-like peptide-1 (GLP-1)
agonists for an anti-apoptotic effect on human islet B-cells (60), clinical studies adding the
GLP-1 agonist exenatide have also added etanercept and so attribution of benefit cannot be
ascribed to exenatide alone (59;61). In islet recipients with graft dysfunction the use of
exenatide does not improve glycemic control over the use of insulin (62;63). Because in islet
recipients GLP-1 increases proinsulin secretory ratios in response to glucose-potentiated
arginine (64) and exenatide disproportionately increases IAPP secretion following mixed-
meal stimulation (63), we worry that GLP-1 agonists increasing metabolic demand on a
marginal islet B-cell mass may be detrimental for long-term function, and so prefer insulin
as needed to maintain near-normal glycemic control (reviewed in (45)).

Recovery of functional B-cell mass by pancreas transplantation

The transplantation of a whole pancreas from a deceased donor is accomplished in humans
via pancreaticoduodenal grafting with exocrine drainage either by duodenojejunostomy
(enteric) or duodenocystostomy (bladder) and venous drainage into either the systemic or
portal circulation (5). This results in the transplantation of 100% of an islet B-cell mass that
is immediately vascularized, albeit at ~ 10% risk for immediate technical failure due to
vascular thrombosis or pancreatitis that often necessitates graft removal (3). While the
endocrine compartment of the pancreas graft is often expected to function completely from
the outset, as many as a third of pancreas transplants can be complicated by delayed graft
function (65) as occurs with the transplantation of other solid organs. Moreover, although
glucocorticoid-free immunosuppression regimens are being used for pancreas
transplantation, most centers continue to employ at least short-term high dose glucocorticoid
therapy that induces significant insulin resistance markedly increasing the metabolic demand
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placed on the pancreas in the early post-transplant period. Because most delayed pancreatic
graft function resolves by 3 months post-transplant (65), we advocate for continued insulin
therapy in the early post-transplant period to “rest” the islet p-cells until recovery,
particularly as long as glucocorticoid doses remain supraphysiologic.

Historically, the assessment of p-cell secretory capacity has been confounded by the
presence of hyperinsulinemia due to both glucocorticoid-induced insulin resistance and
systemic venous drainage that bypasses first-pass hepatic extraction of insulin secreted from
the pancreas graft (66). Moreover, as the pancreas recipients studied most often have
simultaneously or previously received a kidney transplant, renal clearance of both insulin
and C-peptide are reduced relative to healthy controls because of the decreased functional
renal mass present. In order to normalize elevated levels of insulin and C-peptide, some
reports have divided the insulin and C-peptide responses by their basal levels (67), a practice
that will always lower the adjusted responses in a pancreas transplant group. But
importantly, the magnitude of the B-cell secretory capacity responses following whole
pancreas transplantation appear normal, and may be sustained for more than a decade
despite ongoing immunosuppression drug exposure (10;11). Moreover, in the absence of
immunologic graft loss, the B-cell secretory capacity can remain stable for years during
longitudinal follow-up, while first-phase insulin response to glucose may decrease
coincident with lessening of glucocorticoid doses and improvement in insulin sensitivity
indicating appropriate functional adaptation of the secretory reserve of the transplanted
pancreas (11;68).

Insulin sensitivity in non-diabetic kidney transplant recipients is normal when receiving no
more than physiologic doses of glucocorticoid (< 5 mg prednisone) together with
calcineurin-inhibitors as assessed by euglycemic (69) or hyperglycemic (39;70) clamps, and
physiologic hepatic extraction of insulin can be achieved via portal venous drainage of the
pancreas graft (66). Thus, we evaluated insulin-independent recipients of whole pancreas
transplantation with portal venous drainage receiving 5 mg of prednisone with modern
dosing of tacrolimus (12 hour blood trough levels 6 — 10 pg/L) plus mycophenolate and
found the p-cell secretory capacity was 100% of that in a control group of healthy kidney
donors selected to account for renal clearance of insulin and C-peptide (39). Importantly, the
incremental insulin and C-peptide responses to glucose-potentiated arginine in the pancreas
transplant recipients that were equivalent to the kidney donor control group were also
identical to those seen in a normal control group (39), supporting that direct comparison of
incremental responses across groups with different pre-stimulus levels of insulin and C-
peptide is preferred over adjustment for basal levels. Finally, fasting proinsulin-to-insulin
and proinsulin secretory ratios in response to glucose-potentiated arginine are normal in
whole pancreas transplant recipients (39), providing additional evidence against a clinically
important increase in metabolic demand imposed by modern tacrolimus-based
immunosuppression.

Using the same immunosuppression regimen in whole pancreas transplantation with
systemic venous drainage, Gillard and colleagues (70) demonstrated in insulin-independent
recipients a B-cell secretory capacity of 63% of normal, and reasoned that peri-transplant
graft injury and post-transplant allo- and autoimmune insults likely explained the reduced
function p-cell mass. We agree that this best explains the slightly different findings in our
studies as the normal p-cell secretory capacity in nondiabetic kidney transplant recipients
receiving the same immunosuppression regimen reported by us (39) and Gillard and
colleagues (70) also indicates that modern tacrolimus-based immunosuppression does not
impose significant B-cell toxicity. Therefore, the p-cell secretory capacity may be useful as a
sensitive indicator of changes in functional islet B-cell mass post-transplant to identify
alloimmune rejection or autoimmune recurrence before there is substantial p-cell loss and
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recurrence of hyperglycemia. Also, given that some pancreas recipients may have an injury-
induced reduction in B-cell secretory capacity, prudence dictates counseling and monitoring
against the development of overweight/obesity (BMI = 27 kg/m?2) that has been associated
with the recurrence of hyperglycemia post-transplant of a hemi-pancreas with ~ 50% p-cell
secretory capacity (71).

Glucose counterregulation in type 1 diabetes

The risk of experiencing a severe hypoglycemic episode increases with the duration of T1D,
such that the risk is 3 times greater with more than 15 years compared to less than 5 years of
disease duration (72). This increasing risk occurs with the progressive development of
compromised physiologic defense mechanisms against a falling plasma glucose
concentration in the setting of therapeutic hyperinsulinemia. By 15 years of T1D essentially
all patients have developed a near total loss of insulin-producing p-cells (17), which
removes any autoregulatory capability to reduce excessive insulin. Furthermore, the loss of
endogenous insulin secretion produces an associated defect in glucagon secretion from a.-
cells (73), whereby the absence of an intraislet decrement in insulin secretion abolishes the
paracrine activation of glucagon secretion during hypoglycemia (74). This a-cell
dysfunction is specific for hypoglycemia since T1D patients release glucagon normally in
response to other stimuli such as arginine (73). Thus, T1D patients with established disease
(i.e. C-peptide negative) have lost the primary defenses against hypoglycemia, namely
inhibition of endogenous insulin secretion and activation of glucagon secretion, which
together normally serve to increase hepatic glucose production and prevent or correct low
blood glucose.

In the absence of intact islet cell responses to hypoglycemia in T1D, additional
sympathoadrenal (epinephrine secretion and autonomic symptom generation) and pituitary-
adrenal (growth hormone and cortisol secretion) counterregulatory responses become
necessary to increase hepatic glucose production, decrease peripheral glucose utilization,
and promote food ingestion, which together may correct low blood glucose (75).
Unfortunately, both the glycemic threshold (i.e. the glucose level that elicits the response)
and magnitude of these hormonal and symptom responses are impaired by recurrent
episodes of hypoglycemia leading to a syndrome of hypoglycemia unawareness that
increases the risk of life-threatening hypoglycemia twenty-fold in T1D (76). The shifting of
glycemic thresholds for counterregulatory responses to lower plasma glucose concentrations
is best explained by the hypothesis of hypoglycemia-associated autonomic failure (HAAF)
(77), which posits recurrent episodes of hypoglycemia blunt subsequent sympathoadrenal
and pituitary-adrenal responses to hypoglycemia via central adaptation to low blood glucose.
While strict hypoglycemia avoidance can normalize the glycemic thresholds for
counterregulatory epinephrine, autonomic symptoms, and growth hormone responses and
consequently reestablish awareness of hypoglycemia (78-80), the majority of patients
studied to date have had rather short disease duration, and the reversibility of HAAF in
patients with long-standing (> 15 years) diabetes has only been demonstrated after islet or
pancreas transplantation.

Recovery of glucose counterregulation by islet transplantation

In T1D recipients of intrahepatic islet transplants there is recovery of the physiologic islet
cell hormonal responses to insulin-induced hypoglycemia whereby endogenous insulin
secretion is appropriately suppressed and glucagon secretion is partially restored (81).
Curiously, earlier studies reported that the glucagon response to hypoglycemia was not
improved by islet transplantation, but these reports lacked either T1D control subjects (82)
or euglycemic control experiments (82;83). Controlling for the inhibitory effect of
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hyperinsulinemia (used experimentally to induce hypoglycemia) on glucagon secretion (84)
is important since a lack of glucagon suppression may be misinterpreted as an absent
response when in fact representing activation quite distinct from that present in T1D subjects
or during hyperinsulinemia but euglycemia. Indeed, our work demonstrates that islet
transplant recipients secrete more glucagon during insulin-induced hypoglycemia than T1D
subjects, as well as more glucagon during hypoglycemic compared to euglycemic clamps
(81). That this islet a-cell response may only be partial is not unexpected given the
engrafted islet f-cell mass may only be ~ 25% of normal. Importantly, the glucagon
response to hypoglycemia is activated at a normal glycemic threshold (Figure 1; (85)), with
the normal decrease in endogenous insulin secretion supporting that the transplanted p-cells
provide the required intraislet signal to the transplanted a-cells to release glucagon.

Studies using continuous glucose monitoring systems in islet transplant recipients have
demonstrated significant decreases (in insulin requiring subjects) to abolition (in insulin
independent subjects) of time spent in the hypoglycemic range (< 60 mg/dl) (86). Because
even moderate hypoglycemia between 50 — 58 mg/dl has been shown experimentally in
humans to impair subsequent counterregulatory responses to hypoglycemia (87), the
avoidance of hypoglycemia after islet transplantation would be expected to ameliorate
HAAF. Indeed, in addition to normalizing the glycemic threshold for counterregulatory
glucagon secretion, we have demonstrated in islet transplant recipients normalization of the
glycemic thresholds for counterregulatory epinephrine, autonomic symptom, and growth
hormone responses, and here occurring in patients with ~ 30 years of T1D (Figure 1; (85)).
However, the magnitude of the epinephrine response remained less than normal, and
complete recovery of this response has only been reported in a third of islet transplant
recipients (81;83;88). Nevertheless, the normal glycemic threshold for epinephrine, as well
as normal magnitude of the autonomic symptom and growth hormone responses, evidences
recovery of central recognition of hypoglycemia that is the underlying defect in HAAF.
More recent work from our group using paired hyperinsulinemic hypoglycemic and
euglycemic clamps with stable isotope tracers in islet transplant recipients has preliminarily
shown the recovery of intact islet cell and sympathoadrenal responses is associated with a
restored endogenous (primarily hepatic) glucose production response that is what is
ultimately required to protect patients from the development of low blood glucose (89).

Recovery of glucose counterregulation by pancreas transplantation

In T1D recipients of whole pancreas transplants there is also recovery of the physiologic
islet cell hormonal responses to insulin-induced hypoglycemia whereby endogenous insulin
secretion is partially suppressed and glucagon secretion is normalized (90;91). That
endogenous insulin secretion is not completed suppressed during insulin-induced
hypoglycemia may be explained by the absent innervation of the transplanted pancreas (92).
Insulin, thought to mediate suppression of its own secretion through the sympathetic nervous
system, fails to suppress endogenous insulin secretion during euglycemic clamps (90;93).
This is different from intrahepatic transplanted islets where hyperinsulinemia does partially
suppress endogenous insulin secretion under euglycemic conditions (Rickels and colleagues,
unpublished data), and where complete suppression occurs with hypoglycemia (81). Re-
innervation of intrahepatic islets by the sympathetic nervous system has been demonstrated
in rodents (94) and likely accounts for the more appropriate suppression of endogenous
insulin secretion by transplanted islets in humans. Nevertheless, the suppression of
endogenous insulin secretion during hypoglycemia in whole pancreas transplant recipients is
sufficient to enable a normal glucagon response from the transplanted pancreas (90;95). In
support of the argument above that transplanted islet mass is important for recovery of the
glucagon response to hypoglycemia, recipients of pancreas segments release less glucagon
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during hypoglycemia than normal (96), a finding similar to that in recipients of intrahepatic
islets (81).

Similar evidence for the reversibility of HAAF in long-standing T1D as described above for
islet transplantation had been previously reported following pancreas transplantation.
Kendall and colleagues (91) showed that pancreas transplant recipients with ~ 25 years of
T1D exhibited normal glycemic thresholds for activation of epinephrine and autonomic
symptom responses to hypoglycemia. Again, despite the normal magnitude of the symptom
responses (and of the growth hormone response documented elsewhere (96)) evidencing
amelioration of HAAF, the magnitude of the epinephrine response, while greater than in
T1D, remained less than normal (91). This group subsequently showed that even after a
decade of successful pancreas transplant function the improved epinephrine response to
hypoglycemia was only partially restored (97). It has been shown that T1D patients with
documented autonomic neuropathy secrete less epinephrine in response to insulin-induced
hypoglycemia than those without autonomic neuropathy (98;99), and so structural
deterioration in the autonomic innervation of the adrenal medulla affecting patients with
25-30 years of T1D likely explains the residual impairment in the magnitude of epinephrine
secretion. Most importantly, whole pancreas transplantation has been shown to normalize
the endogenous glucose production response to insulin-induced hypoglycemia, thereby
affording recipients protection and recovery from low blood glucose (100).

Conclusions

The loss of functional islet B-cell mass in T1D leads to both insulin-dependence and an
associated defect in islet a-cell responsiveness to hypoglycemia with subsequent defective
glucose counterregulation eventually limiting the effectiveness of insulin therapy without
risk for severe hypoglycemia, particularly in patients with long-standing C-peptide negative
disease and hypoglycemia unawareness. In such patients the transplantation of isolated islets
or a whole pancreas restores both islet p-cell secretory capacity that may be associated with
insulin-independence, and islet a-cell responses to insulin-induced hypoglycemia that may
be associated with reversal of HAAF and restoration of glucose counterregulation. To date,
the magnitude and durability of endocrine recovery is superior following whole pancreas
compared to islet transplantation; however, evidence of improved islet engraftment and
functional survival with current protocols suggests that islets should now be considered
along with whole pancreas transplantation in patients not presently requiring a kidney
transplant. While simultaneous pancreas-kidney (SPK) transplantation remains the “gold-
standard” approach for T1D patients in need of a kidney transplant (5), there are many
patients desperate for endocrine recovery not eligible for SPK and many recovered
pancreata technically unsuited for whole organ transplantation that support the
complimentary development of both islet and pancreas transplantation as crucial therapeutic
options for T1D patients experiencing the most difficulty with this disease.
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Fig. 1.

Glycemic thresholds for the activation of counterregulatory hormonal and symptom
responses are restored in islet transplant recipients in normal hierarchical fashion (glucagon
> epinephrine > growth hormone = cortisol > autonomic symptoms) while impaired in long-
standing T1D complicated by hypoglycemia unawareness. (Data from Rickels et al. [85].)
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