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Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential
for myelin formation in the central nervous system. During
oligodendrocyte differentiation, MBP mRNA is kept in a
translationally silenced state while intracellularly transported,
until neuron-derived signals initiate localized MBP translation.
Here we identify the small non-coding RNA 715 (sncRNA715) as
an inhibitor of MBP translation. SncRNA715 localizes to
cytoplasmic granular structures and associates with MBP mRNA
transport granule components. We also detect increased levels of
sncRNA715 in demyelinated chronic human multiple sclerosis
lesions, which contain MBP mRNA but lack MBP protein.
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INTRODUCTION
The myelination of central nervous system (CNS) axons by
oligodendrocytes enables fast and energy-efficient propagation of
action potentials as well as axonal support [1,2]. The absence of the
second most abundant CNS myelin protein MBP results in severe
hypomyelination, shivering symptoms and premature death in
rodents [3]. MBP compacts myelin membranes, binds to
cytoskeletal proteins and is involved in oligodendroglial calcium
signalling [4,5]. Moreover, it regulates the molecular composition of
the glial plasma membrane, facilitating the formation of lipid-rich
myelin domains required for effective axon insulation [6,7].
Therefore, appropriate MBP levels are important to maintain
oligodendroglial homeostasis as well as functional myelin

membrane formation. During oligodendrocyte maturation, MBP
transcription precedes translation by about 1 day [8,9], but the
mechanisms underlying this translational repression of MBP remain
poorly understood. Axon–glial signalling mechanisms have been
described that induce MBP translation. These involve axonal
L1-CAM, laminins and action potentials signalling through F3/
contactin, b1-integrin and glutamate receptors, respectively [9–11].
The non-receptor tyrosine kinase Fyn has a pivotal role in
the translation of axonal signals into MBP synthesis and
myelination [12]. At the subcellular level, heterogeneous nuclear
ribonucleoprotein (hnRNP) A2 binds to a defined sequence in
the 30 untranslated region (UTR) of MBP termed the A2 response
element [13] resulting in cytoplasmic transport in RNA granules to
the axon–glial contact site [14]. Several proteins associate with MBP
mRNA granules during transport, including tumour overexpressed
gene (TOG) and the hnRNPs E1, K and F [9,15–17]. These may
contribute to the translational inhibition during transport, but it
is still only poorly understood how repression of MBP synthesis is
generally mediated. The role of small non-coding RNAs (sncRNAs)
such as microRNAs (miRNAs) or small interfering RNAs (siRNAs)
in translational regulation has been intensively studied in recent
years [18]. The absence of mature miRNAs in oligodendrocytes
results in abnormal oligodendrocyte differentiation and impaired
myelination [19–22] and a number of direct miRNA targets have
been identified in oligodendrocytes [23].

Here we identify sncRNA715 as a new essential regulator of
MBP translation. The levels of sncRNA715 and MBP protein
inversely correlate in vitro and in vivo and MBP translation
responds to experimentally altered sncRNA715 levels. We found
endogenous sncRNA715 to be present in cytoplasmic granular
structures and to associate with hnRNP A2 and MBP mRNA
biochemically, implying sncRNA715-mediated translational re-
pression during intracellular MBP mRNA transport. We demon-
strate the functional relevance of sncRNA715 for oligodendroglial
homeostasis as increased sncRNA715 levels affect cell morphol-
ogy and reduce cell numbers by apoptosis. Importantly, we show
that sncRNA715 is expressed in human brain and that its levels are
increased in chronic inactive multiple sclerosis (MS) white matter
lesions, which contain MBP mRNA but lack MBP protein.
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RESULTS AND DISCUSSION
SncRNA715 and MBP protein levels inversely correlate
We used the MicroCosm target tool [24] to search for miRNAs that
potentially regulate MBP mRNA and found that miR-715 has a
predicted binding site in the 30UTR of MBP mRNA that is
conserved in mouse, rat and human. During the course of our
studies it was revealed in miRBase [25], that the sequencing reads,
which initially classified this RNA as a miRNA, are not consistent
with the processing patterns of other miRNAs. At present, a clear
distinction of sncRNAs including miRNAs, piRNAs, endogenous
siRNAs and other non-canonical small RNAs is difficult [26]. We
hence refer to this molecule as sncRNA715 rather than miR-715
and characterized its expression thoroughly. SncRNA715-specific
northern blot analysis with a locked nucleic acid probe
recognizing the 21-nt long sequence of the initially annotated
mature miR715 (CUCCGUGCACACCCCCGCGUG) revealed the
presence of this small RNA in cultured primary oligodendrocyte
precursor cells (OPCs; Fig 1A). Reverse transcription and
subsequent PCR with specific primers for sncRNA715 confirmed
the presence of sncRNA715 in the OPC line Oli-neu [27] as well
as in primary mouse OPCs (Fig 1B). We transfected Oli-neu cells
with a synthetic sncRNA715 (715-mimic) or with a control siRNA.
RNA extraction, polyadenylation and reverse transcription with
oligo dT primers followed by PCR resulted in a single band of the
same size for endogenous sncRNA715 (control transfected) and
715-mimic–transfected cells (Fig 1C). This suggests that the
sequence of sncRNA715 is identical to the synthetic 715-mimic
and did not reveal potential 30-extensions as seen in precursor
molecules (for example, pre-miRNA). Transfection of 715-mimic
into primary OPCs also leads to strongly increased sncRNA715
levels, which we quantified by quantitative PCR (qPCR;
supplementary Figs S1A,B online).

We next analysed the relative levels of sncRNA715 during
oligodendrocyte development in culture and in the optic nerve
in vivo by qPCR. We found that sncRNA715 is significantly
downregulated in mature oligodendrocytes and the optic nerve,
while endogenous MBP protein levels increase (Fig 1D–G). As a
control we analysed the levels of miR-124a, which are unaltered
(Fig 1D,F). Cell-type–specific qPCR analysis revealed strikingly
higher sncRNA715 levels in oligodendrocytes in comparison to
neurons, astrocytes and microglial cells (supplementary Fig S1C
online), leading to the conclusion that the observed changes in
the optic nerve originate from oligodendrocytes. The inverse
correlation between sncRNA715 and MBP expression further
encouraged us to investigate a regulatory function of sncRNA715
on MBP translation.

SncRNA715 regulates MBP translation
We increased the levels of sncRNA715 by transfection of synthetic
715-mimic into cultured primary mouse OPCs on the first day
in vitro (DIV). A striking reduction of all MBP protein isoforms was
detected 48 h later in western blots using equal amounts of total
protein lysate (Fig 2A, left panel). Preventing the endogenous
interaction of sncRNA715 with its targets by transfection of the
complementary sequence (715-inhibitor) leads to an increase of
MBP protein levels (Fig 2A, right panel). The levels of the myelin
proteins CNP (2’,3’-cyclic-nucleotide 3’-phosphodiesterase) and
MOG (myelin oligodendrocyte glycoprotein) and the loading
control GAPDH (glyceraldehyde-3-phosphate dehydrogenase)

were not affected in these experiments (Fig 2A). To distinguish
between a specific effect of sncRNA715 on MBP protein synthesis
or an influence on oligodendrocyte differentiation, we performed
densitometric analyses from several western blots. We normalized
the MBP to the MOG levels and related these normalized values in
715-mimic–transfected cells to control-transfected cells, as MOG
is expressed simultaneously or later than MBP in cultured
oligodendrocytes [28] (Fig 1E). A striking reduction of MBP
protein levels in the 715-mimic–transfected cells can be observed,
while 715 inhibition results in an increase of MBP levels (Fig 2B).

To analyse sncRNA715-mediated translational inhibition of
MBP in single cells, we transfected primary rat oligodendrocytes
(3 DIV) with 715-hairpin or control-hairpin plasmids, which
coexpress enhanced GFP (eGFP) and immunostained these
cells for the myelin proteins CNP, MAG (myelin-associated
glycoprotein) and MBP (Fig 2C) 48 h later. Untransfected and
control-hairpin-eGFP positive cells show normal levels for MBP,
CNP and MAG. In contrast, 715-hairpin-eGFP positive cells show
strongly reduced levels of MBP while they express MAG and
CNP protein. Cells with lower levels of 715-eGFP still contain
low levels of MBP (arrows in Fig 2C3), while cells with higher
715-eGFP levels lack MBP protein (asterisks in Fig 2C3). We
conclude that sncRNA715 levels correlate with the degree of MBP
reduction in single cells.

An additional approach confirmed the repressive effect of
sncRNA715 on MBP synthesis by co-transfection of a plasmid
coding for MBP14, including its 30UTR with either a 715-hairpin
or a control-hairpin plasmid into Oli-neu cells (Fig 2D).

Next we analysed if this translational inhibition is mediated
through the interaction of sncRNA715 with its target site in the
30UTR of MBP mRNA. The RNAhybrid tool [29] predicts a typical
minimum free hybridization energy of � 29 kcal/mol between
sncRNA715 and mouse MBP mRNA (supplementary Fig S2A
online). Co-transfection of a firefly luciferase reporter construct
containing parts of MBP mRNA’s 30UTR, including the binding site
for sncRNA715 (Fig 2E) [11] with a 715-hairpin plasmid, showed a
significant reduction in the amount of normalized luciferase activity
when related to co-transfection with a control-hairpin plasmid
(Fig 2F). Mutation of the sncRNA715 binding site (MBP 30UTR mut.
seed in Fig 2E) abolished the sncRNA715-mediated effect.

To assess if the sncRNA715-mediated effects are caused by
mRNA degradation, we quantified MBP or luciferase reporter
mRNA levels by qPCR and observed no changes (Fig 2G). We
conclude that sncRNA715 regulates MBP translation through its
binding site in the 30UTR of MBP mRNA.

SncRNA715 affects morphology and cell numbers
In the transfection experiments we noted a large number of
morphologically altered oligodendrocytes with shorter or abnor-
mally shaped processes (asterisks in Figs 2C 2,3) and quantified
this by classifying oligodendrocytes into three different categories.
We distinguished MOG-positive cells with a complex branching
of cellular processes (complex), more mature cells that form
membrane sheets (membrane sheets) and abnormally shaped cells
that are normally found only very rarely in oligodendrocyte
cultures (abnormal, Fig 3A). We found a significant increase
in the number of abnormal cells and a significant reduction of
complex cells after 715-mimic transfection compared with
control-transfected cells (Fig 3A). The number of cells with
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membrane sheets was relatively low at this differentiation stage in
culture and did not change significantly.

Furthermore, after 715-mimic transfection we observed a
reduction in the counted number of Sox10-positive oligodendro-
cytes [30] (Fig 3B) and also quantified this fluorimetrically in
primary OPCs and Oli-neu cells (supplementary Fig S2B online).
As measured by fluorimetric TdT-mediated dUTP nick end
labelling (TUNEL) assays, we found that 715-mimic transfection
results in a significant increase of apoptotic oligodendrocytes

(2 DIV) and Oli-neu cells comparable with the effects of the
apoptosis-inducing reagent staurosporine (Fig 3C). Possibly,
the observed morphological changes in cells with increased
sncRNA715 levels represent cells undergoing apoptosis. Alter-
natively, they may result from reduced MBP levels in response
to increased sncRNA715 levels. The importance of MBP for
the elaboration of the distinct molecular composition of the
oligodendroglial membrane (and myelin) has been demonstrated
in detail previously [6] and MBP is associated with the actin and

A B CNorthern blot endogenous
sncRNA715

Reverse transcription & PCR
endogenous sncRNA715

Reverse transcription & PCR-
transfected 715-mimic

OPC R
NA

DNA la
dder

Oli-
ne

u
Oli-neuOPC

71
5-

m
im

ic

Con
tro

l

sncRNA
715

G
P0 P10

NG2
(330 kDa)

MBP
(14–21.5 kDa)

GAPDH
(36 kDa)

MBP protein levels optic nerve

sncRNA
715

sncRNA715

5s rRNA

25 nt

(nt)

100

17/21 nt

m
iR

NA m
ar

ke
r

80

60

40

20

10

D sncRNA715 levels in
differentiating oligodendrocytes (qPCR)

R
el

at
iv

e 
ex

p
re

ss
io

n
to

 1
D

IV
 (l

og
2)

sncRNA
715

miR-124a

NS

*

n=3

3 DIV

6 DIV

8 DIV

2

1

0

–1

–2

–3

–4

E
MBP protein levels in

differentiating oligodendrocytes

MBP
(14–21.5 kDa)

MOG (28 kDa)

GAPDH (36 kDa)

DIV: 1 3 6 8

F

R
el

at
iv

e 
ex

p
re

ss
io

n
P

10
/P

0 
(lo

g2
)

sncRNA
715

miR-124a

NS

* n=4

sncRNA715 levels optic nerve (qPCR)
0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

Fig 1 | SncRNA715 expression in oligodendrocytes. (A) Northern blot (band at B21 nucleotides, nt) and (B) specific PCR and EtBr-stained agarose

gel show sncRNA715 in primary mouse OPCs (1 DIV) and Oli-neu cells. PCR products are B60-nt long due to the use of hairpin primers in the RT

reaction. (C) EtBr-stained agarose gel of 715-mimic and control small interfering RNA-transfected Oli-neu cells showing PCR products as indicated on

the right. (D–G) Total RNA or protein from cultured oligodendrocytes and mouse optic nerves was analysed for RNA/protein levels by qPCR and

western blotting, respectively. qPCR results depict relative quantification (DDCt) of indicated time points. In D,F and the following figures, number

of experiments (n) are indicated and bar graphs represent mean values ±s.e.m. (D) Unpaired t-test; (F) one-sample t-test. *P (P-value)o0.05. DIV,

day in vitro; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; NS, not

significant; OPC, oligodendrocyte precursor cell; qPCR, quantitative PCR; RT, reverse transcription; sncRNA715, small non-coding RNA 715.
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tubulin cytoskeleton [4]. It remains to be shown if sncRNA715
targets the synthesis pathway of other proteins in addition to MBP,
which may also lead to the observed effects on cellular
morphology and induction of apoptosis.

SncRNA715 localizes to cytoplasmic granular structures
The RNA binding protein hnRNP A2 recruits MBP mRNA to RNA
transport granules, which are transported from the nucleus to the
periphery of the cell where the initiation of MBP translation is
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mediated by Fyn kinase [10,11,14]. Having shown the repressive
effect of sncRNA715 on MBP translation, we next investigated if it
is part of the MBP mRNA localization complex. Visualization
of endogenous sncRNA715 in primary OPCs by fluorescence
in situ hybridization shows its presence in granular cytoplasmic
structures (Fig 4A). We analysed if sncRNA715 associates with
hnRNP A2-dependent MBP mRNA granules. We purified hnRNP
A2 by immunoprecipitation (IP; Fig 4B) and calculated the
enrichment factor for copurifying RNAs after reverse transcription
and qPCR as described previously [17,31]. This factor relates the
amount of RNA in the hnRNP A2 IP to the input and a control IP.
MBP mRNA and sncRNA715 are similarly enriched in the
hnRNP A2 IP compared to control RNAs glucose-6-phosphate
dehydrogenase and miR-124a, respectively (Fig 4C,D). As
additional specificity controls we analysed CNP and b-actin
mRNAs, which are not enriched (supplementary Fig S3 online).
Our results indicate that sncRNA715 is associated with hnRNP A2
and MBP mRNA and is present in cytoplasmic granular structures
suggesting an involvement of sncRNA715 in translational
repression during MBP mRNA transport.

SncRNA715 is upregulated in chronic MS lesions
In the course of MS, focal demyelination in the CNS can be
functionally compensated to a certain extent by remyelination [32].

This regenerative potential is ultimately lost and leads to neuronal
degeneration correlating with clinical decline. In demyelinated
lesions, activated CNS-resident OPCs increase the expression of
transcription factors like Olig2 that are required for oligodendrocyte
maturation [33]. It is not understood why these cells lose their
remyelination potential with the progression of disease. In the light
of our observed regulatory function of sncRNA715 on MBP
translation and the importance of MBP for the myelination
process, we addressed a potential correlation in MS. We analysed
post-mortem brain tissue from four MS patients (supplementary
Fig S4A online). As depicted in Fig 5A–F, chronic inactive MS
lesions contain Olig2-positive cells, while MBP immunoreactivity
is lacking in contrast to surrounding normal-appearing white matter
(NAWM). This is in agreement with previous observations [34]. We
analysed total RNA from these chronic lesions and surrounding
NAWM. As expected, MBP mRNA is more abundant in the NAWM
compared with the lesion (supplementary Fig S4B online), but we
still detected relatively high amounts of MBP mRNA in the lesion
samples (Fig 5G). Importantly, the levels of sncRNA715 are
increased in the lesion compared with NAWM, while control
miR124a levels are similar (Fig 5H). Our data indicate that high
levels of sncRNA715 inhibit the translation of MBP mRNA in these
chronic MS lesions. Previous studies have revealed the differential
expression of miRNAs in MS lesions [35] indicating the importance
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of sncRNAs in MS pathology [36]. Our results show the role of an
oligodendroglial sncRNA in the direct regulation of a key myelin
protein essential for the myelination process.

In summary, we identified sncRNA715 as a new regulator
of MBP translation, which is important for oligodendroglial
homeostasis and myelination. Our study may contribute to a

better understanding of remyelination failures in chronic MS
lesions and the development of new therapeutical strategies for
the treatment of MS.

METHODS
Cell culture. Oli-neu cells (provided by J Trotter, Mainz) and
primary rat or mouse oligodendrocytes were cultured as described
in the supplementary information online.
qPCR. SncRNAs were reverse transcribed by the TaqMan
MicroRNA Reverse Transcription Kit with stem-loop RT primers
specific for sncRNA715, miR-124a or snoRNA-135 sequence
(Applied Biosystems) and amplified with the Taqman Universal
Master Mix (Roche) with specific primers and probes for the
indicated sncRNAs (Applied Biosystems). The qPCR crossing
points were used for relative quantification based on the DDCt

method using REST software [37]. SnoRNA-135, 5S, Renilla
luciferase, b-actin and glucose-6-phosphate dehydrogenase were
used as reference genes.
RNA analysis. RNA extraction, northern blots and locked
nucleic acid–enzyme-labelled fluorescence–fluorescence in situ
hybridization are described in supplementary information online.
Luciferase reporter assay. Luciferase assays were performed by
using the Dual-Glo Luciferase Assay System (Promega), as
described previously [12], with modifications that are described
in supplementary information online.
Autopsy material. We collected chronic inactive lesions from
four patients with clinically diagnosed and neuropathologically
confirmed MS. The Netherlands Brain Bank received permission
to perform autopsies for the use of tissue and for access to
medical records for research purposes from the ethics committee
of the VU Medical Center (Amsterdam, The Netherlands).
See supplementary information online for details.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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