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Abstract

a-Synuclein causes Parkinson’s disease if mutated or aberrantly produced in neurons. a.-
Synuclein-lipid interactions are important for the normal function of the protein, but can also
contribute to pathogenesis. We previously reported that deletion of the first 10 N-terminal amino
acids dramatically reduced lipid binding in vitro, as well as membrane binding and toxicity in
yeast. Here we extend this study to human neuroblastoma SHSY-5Y cells, and find that in these
cells the first 10 N-terminal residues do not affect a-synuclein membrane binding, self-association
and cell viability, contrary to yeast. Differences in lipid composition, membrane fluidity and
cytosolic factors between yeast and neuronal cells may account for the distinct binding behavior of
the truncated variant in these two systems. Retinoic acid promotes differentiation and a.-synuclein
oligomer formation in neuroblastoma cells, while addition of a proteasomal inhibitor induces
neurite outgrowth and toxicity to certain wild-type and truncated a-synuclein clones. Yeast
recapitulate several features of a-synuclein (patho)biology, but its simplicity sets limitations;
verification of yeast results in more relevant model systems is, therefore, essential.
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The a-synuclein protein (a-syn) causes familial Parkinson’s disease (PD), when mutated
(A30P, A53T, E46K) (Polymeropoulos et al. 1997; Kruger et al. 1998; Zarranz et al. 2004)
or over-produced as a result of gene multiplication (Singleton et al. 2003; Chartier-Harlin et
al. 2004). Moreover, a-syn is the major fibrillar component of Lewy bodies, present in cases
of sporadic PD (Spillantini et al. 1997). In vitro, a-syn is intrinsically unstructured (Weinreb
et al. 1996), but adopts an a-helical structure upon lipid binding to its amphipathic repeats
comprising ca. 100 N-terminal residues (Davidson et al. 1998), or forms p-sheet aggregates
upon prolonged incubation (Conway et al. 2000). We previously reported that deletion of as
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few as 10 N-terminal residues (DVFMKGLSKA) dramatically altered the properties of a-
syn in vitro and in yeast. N-terminal deletion decreases binding to anionic lipid vesicles, a-
helical structure propensity (Vamvaca et al. 2009), and aggregation (Zibaee et al. 2007).
Over-produced wild-type a-syn is toxic to Saccharomyces cerevisiae, localizes to the
plasma membrane and forms cytosolic inclusions (Outeiro and Lindquist 2003), whereas the
N-terminally truncated variant (del2-11) is nontoxic to yeast and homogenously dispersed
throughout the cytosol (Vamvaca et al. 2009).

The binding of a-syn to phospholipids via its N-terminus plays a key role in protein
function. a-Syn localizes to synaptic vesicles, where it interacts with certain protein
molecules (synphilin-1, CSPalpha, SNARE complex) to modulate synaptic plasticity and
neurotransmitter release (Ribeiro et al. 2002; Chandra et al. 2005; Burre et al. 2010). In
pathologic situations, however, high local concentrations of a-syn at the membrane may
promote abnormal protein—protein or protein—lipid interactions. For instance, A30P and
A53T a-syn can oligomerize into fibrillar pores, which permeabilize lipid vesicles like
bacterial toxins (Lashuel et al. 2002; Volles and Lansbury 2002). Excessive coating of the
membrane with non-fibrillar a-syn monomer may also disrupt cellular homeostasis by
hindering normal membrane-based processes (Volles and Lansbury 2007). At high
concentrations, wild-type and A53T a-syn bind to mitochondrial membranes as well,
inducing oxidative stress and apoptosis in SHSY-5Y cells (Parihar et al. 2008).

a-Syn toxicity can be exacerbated by proteasome inhibitors. For example, A53T and A30P
mutants cause proteasomal dysfunction in M17 neuronal cells, thereby increasing sensitivity
to proteasome inhibitors (Petrucelli et al. 2002). Insoluble filaments, soluble oligomers, and
to a lesser extent, monomers of a-syn impair proteasomal function (Snyder et al. 2003;
Lindersson et al. 2004; Emmanouilidou et al. 2010). Blockage of the proteasomal
degradation pathway either by external inhibitors or by endogenous a-syn itself, could lead
to accumulation of a-syn and further suppression of proteolytic activity.

We created stable SHSY-5Y clones, constitutively producing either wild-type or del2-11 a.-
syn, and monitored membrane binding, self-association, and toxicity in cycling and
differentiated cells, both in the absence and presence of a proteasomal inhibitor. Contrary to
previous data in yeast, the first N-terminal amino acids are neither essential for a-syn
membrane binding nor do they significantly affect aggregation and toxicity of the protein in
neuronal cells.

Materials and methods

Generation of stable cell lines

The cDNA sequences of wild-type and del2-11 a.-syn were subcloned into the pIRES2-
enhanced green fluorescent protein (EGFP) vector (Clontech, Mountain View, CA, USA)
between its unique restriction sites Sacl/Sall and Nhel/Bglll, respectively. Both constructs
were verified by DNA sequencing; they contain the Kozak consensus sequence GCCACC
preceding the ATG start codon to increase translation efficiency. Naive SHSY-5Y cells (gift
from Dr D. Yamashiro, Columbia University, New York, NY, USA) were transfected with
pIRES2-EGFP (empty vector) or pIRES2-EGFP bearing the wild-type or del2-11 a-syn
gene in OptiMEM (Gibco-Invitrogen, Carlsbad, CA, USA) using Lipofectamine 2000
reagent (Invitrogen). Stable transformants were selected in the presence of 300 pg/mL G418
sulfate (Calbiochem, San Diego, CA, USA). Individual clones were pre-screened by EGFP
fluorescence, followed by western blot analysis.
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Human neuroblastoma SHSY-5Y cells were cultured in RPMI 1640 medium (Gibco-
Invitrogen), supplemented with 10% fetal bovine serum (Sigma, St. Louis, MO, USA), 2
mmol/L L-glutamine (Sigma), 1000 U/mL penicillin and 1 mg/mL streptomycin solution
(Biochrom AG, Berlin, Germany). Cells were grown in a humidified incubator at 37°C, in a
5% CO, atmosphere. Stable clones were maintained in 300 pg/mL G418 sulfate. Cells were
differentiated with 10 umol/L all-trans retinoic acid (RA; Calbiochem). The proteasome
inhibitor (PSI; benzyloxycarbonyl-L-isoleucyl-gamma.-t-butyl-L-glutamyl-L-alanyl-L-
leucinal; Calbiochem) was added at a concentration of 50 nmol/L 5 days after differentiation
was induced. In each experiment, RA-containing medium (x PSI) was replaced every 2
days.

EGFP fluorescence was monitored with a LEICA DM IRE2 fluorescence microscope, using
an excitation wavelength band-pass filter of 450-490 nm, a 20-fold magnification lens, and
a 250 ms exposure.

Western blot analysis

Proliferating and differentiated (RA added for 6 days) cells were washed with phosphate-
buffered saline (PBS; Gibco-Invitrogen), treated with 0.25% trypsin (wt/vol) — 1 mmol/L
EDTA solution (Gibco) and harvested by centrifugation (2000 g, 5 min). The pellet was
washed with PBS and subsequently resuspended in 150 mmol/ L Tris—=HCI pH 7.6, 150
mmol/L NaCl, 2 mmol/L EDTA, 1% Triton X-100 (vol/vol), containing protease inhibitor
mix (complete mini EDTA-free; Roche Molecular Biochemicals, Indianapolis, IN, USA).
Following 20-min incubation on ice, the cell lysate was cleared by centrifugation (13 000
rpm, 10 min). Protein concentrtion was determined by Coomasie blue (Bio-Rad, Hercules,
CA, USA). The soluble protein fraction was loaded on 16.5% (wt/vol) tris-tricine sodium
dodecyl sulfate (SDS)—polyacrylamide gel (7 g protein/lane), which is suitable for
resolution of proteins smaller than 30 kDa (Schagger 2006). Running buffer contained 100
mmol/L Tris—HCI, 100 mmol/L tricine (Applichem, Darms-tadt, Germany), and 0.1% (wt/
vol) SDS. Separated proteins were transferred from the gel onto a nitrocellulose membrane
(Whatman Protran, Dassel, Germany). Transfer buffer was composed of 100 mmol/L Tris—
HCI, 100 mmol/L tricine, 0.05% (wt/vol) SDS, and 20% (vol/vol) methanol. Membranes
were blocked in PBS containing 5 % non-fat milk (wt/vol) and 0.1% (vol/vol) Tween 20
(Applichem), and then probed with antibodies: (i) rabbit polyclonal a-syn C-20 (1 : 1000
dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA), (ii) mouse monoclonal p-actin
(1 : 5000 dilution; Sigma), (iii) mouse monoclonal GFP B-2 (1 : 1000 dilution; Santa Cruz),
(iv) mouse monoclonal lamp2 H4B4 (1 : 1000 dilution; Development Studies Hybridoma
Bank, University of lowa), (v) ERK2 rabbit polyclonal (1 : 4000 dilution; Santa Cruz).
Proteins were detected with horseradish peroxidase-conjugated secondary antibodies
(Pierce, Rockford, IL, USA).

Membrane fractionation

Proliferating and differentiated (after a 6-day RA treatment) cells were lysed in 50 mmol/L
Tris-HCI (pH 8), 1 mmol/L EDTA, containing protease inhibitor mix, and homogenized by
passing through a 29-gauge needle 10 times. The lysate was centrifuged at 600 g for 5 min,
and supernatant underwent ultracentrifugation at 100 000 g for 2 h to separate into
membrane (pellet) and cytosolic (supernatant) fractions. The membrane fraction was washed
thrice with lysis buffer at 4°C, to remove remaining cytosolic proteins. Soluble membrane
proteins were extracted with 150 mmol/L Tris—HCI pH 7.6, 150 mmol/L NaCl, 2 mmol/L
EDTA, 1% Triton X-100 (vol/vol), containing protease inhibitors, and isolated by
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centrifugation (14 000 g, 15 min). Protein concentration was determined by the Bradford
assay. Samples (14 g protein) were separated by 16.5% (wt/vol) tris-tricine SDS
polyacrylamide gel electrophoresis and analyzed by western immunoblotting.

Cell survival assay

Results

The viability of selected clones was compared with controls. 10° cells were plated onto 12-
well plates and differentiated with RA. After 3, 6 and 9 days, cells were washed with PBS,
treated with 40 pL trypsin-EDTA solution (Gibco), which was subsequently inactivated
with 80 uL. RPMI/10% fetal bovine serum, containing 1 mmol/L EDTA (Sigma). Cell
viability was assayed by trypan blue [0.4% (wt/vol) solution; Sigma] exclusion; intact cells
were counted using a hematocytometer (Hausser Scientific, Horsham, PA, USA). Cell
counts were performed at least in triplicate, and the data are presented as the mean value
standard deviation.

Stable SHSY-5Y cell lines produce high levels of wild-type and del2-11 a-syn

Wild-type and del2-11 a-syn cDNA sequences were each cloned into the pIRES2 EGFP
vector, between the immediate early promoter of human cytomegalovirus (Pcmy IE) and the
internal ribosome entry site (IRES) sequence, which precedes the EGFP coding region.
Pcmyv IE allows constitutive gene expression, and IRES enables translation of a-syn and
EGFP genes from a single bicistronic mMRNA molecule. In this way, a-syn and EGFP are
synthesized in parallel without being covalently attached. EGFP serves as a reporter for
transfected cells without disrupting the conformation of a-syn.

SHSY-5Y cells share many characteristics of dopaminergic neurons, including dopamine
synthesis and differentiation into a neuronal phenotype upon exposure to certain molecules.
Transient transfections confirmed that both a-syn proteins and EGFP can be produced at
high amounts under all conditions (xRA, £PSlI; data not shown). Stable clones were isolated
after a 3-week treatment with G418 antibiotic (pIRES2 contains neomycin resistance gene),
while all non-transfected control cells had died. For each cell line, three clones exhibiting
homogeneous EGFP fluorescence and high a-syn levels were selected. Polyclonal cell lines
were also collected to average clonal variability; a-syn levels in these lines were about 30-
fold higher than endogenous a.-syn levels in naive cells (Figure S1).

RA induces a-syn oligomer formation in stably transfected cells

The generated cell lines were analyzed by western blotting under four different conditions
(xRA, £PSI; Fig. 1). Stable clones produced similar levels of wild-type and del2-11 a-syn,
which markedly increased in the presence of RA, along with EGFP levels. Moreover, RA
induced a-syn oligomer formation [soluble in 1% (vol/vol) Triton X-100; Figs. 1b and d],
while PSI alone did not (Fig. 1c). Despite clonal differences, wild-type and del2-11 a-syn
overall oligomerized at a similar extent.

N-terminal truncation does not affect a-syn membrane binding in SHSY-5Y cells

Membrane-bound proteins (with slow dissociation rate) were separated from their cytosolic
counterparts, using an established fractionation protocol (Liu et al. 2009). The lysosomal-
associated membrane protein lamp2 was almost exclusively detected in the membrane
fraction, whereas p-actin was mostly present in the cytosol. Western blot analysis revealed
(on average) similar levels of membrane bound monomeric wild-type and del2-11 a-syn,
both in proliferating and in differentiated cells (Fig. 2). We estimated for each clone (xRA)
the relative amount of a-syn monomer in the cytosolic and membrane fractions by
densitometry, and found no significant differences in the relative ratio of membrane bound
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to total a-syn monomer between wild-type and del2-11 clones (data not shown). Oligomeric
and truncated a-syn species appear to be relatively less populated in the membrane than in
the cytosol, suggesting weaker membrane binding than the full-length monomeric protein.
As previously observed (Fig. 1b), oligomers were detected in the differentiated state and no
significant differences between wild-type and del2-11 a-syn were observed in terms of their
oligomerization propensity. In this experiment, however, few oligomeric species were
visible in the cytosolic fraction of proliferating cells (Fig. 2a), probably because cell lysis
was performed under milder conditions (mechanical shearing in a detergent-free buffer).

Certain wild-type and del2-11 a-syn clones are toxic to SHSY-5Y cells, only in the presence
of RA and PSI

Stable SHSY-5Y clones constitutively expressing wild-type or del2-11 a.-syn represent a
good system for toxicity studies, given that the expression levels for the chromosomally
integrated a.-syn genes are ca. 30-fold greater than for the endogenous a-syn gene (Figure
S1). An EGFP fluorescent empty-vector clone with low endogenous a-syn levels served as a
negative control, along with naive cells. Proliferating wild-type and del2-11 a-syn clones
showed no growth disadvantage over naive or empty vector control SHSY-5Y cells (data not
shown), as previously reported (Vekrellis et al. 2009). Following a 6- to 9-day RA-
treatment, a-syn clones did not die faster than controls (Fig. 3 top). PSI addition, however,
promoted cell death of wild-type clone 3 at day 6 and caused massive cell death of wild-type
clone 2 and del2-11 clone 4 at day 9 (Fig. 3, bottom). The three clones displaying increased
vulnerability to PSI did not express more monomeric or oligomeric a-syn compared with
other clones (Figs. 1 and 2). Despite individual clonal differences, there was no overall
difference in toxicity between wild-type and del2-11 a-syn clones.

Cell morphology changes of wild-type and del2-11 a-syn clones upon RA/PSI treatment

Naive SHSY-5Y cells formed elongated processes upon differentiation. Following a 6-day
treatment with RA, wild-type clone 2 and del2-11 clone 4 remained primarily round-shaped
and lacked neuritic processes, whereas the rest of the clones adopted a differentiated
phenotype (Fig. 4 top), similar to that of controls. PSI addition (day 5) induced further
neurite outgrowth, detectable after 24 h. On day 9, wild-type clone 2 and del2-11 clone 4
PSI-treated cells massively detached from the plate surface, indicating cell death (Fig. 4
bottom). The effect was more pronounced in del2-11 clone 4, in accordance with the toxicity
data (Fig. 3). All clones and controls retained EGFP fluorescence until the end of the
experiment (Figure S2).

Discussion

Deletion of the first 10 N-terminal amino acids from the a-syn primary sequence did not
affect self-association, membrane binding or toxicity of the protein in neuroblastoma cells,
contrary to previous findings in vitro and in yeast (Vamvaca et al. 2009). The behavior of
the wild-type protein and the truncated variant was studied both in proliferating and
differentiated SHSY-5Y cells. RA induces differentiation, inhibiting cell growth and
promoting neuritic outgrowth (Pahlman et al. 1984). RA treatment resulted in higher levels
of a-syn and EGFP, whereas B-actin control levels remained constant (Fig. 1). The Pcpy IE
promoter contains a RA-responsive element (Ghazal et al. 1992), whose activation probably
accounts for the elevated a-syn levels in RA-treated cells. Changes in cellular metabolism
(protein synthesis vs. degradation rates) upon differentiation may also contribute.
Interestingly, only in the presence of RA did a-syn form soluble oligomers, while N-
terminal truncation did not affect the propensity of the protein to self-associate (Fig. 1). The
observed increase in a-syn concentration, which favors protein—protein interactions, as well
as other RA-induced cellular responses are likely to promote a-syn oligomerization. For
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instance, tyrosine hydroxylase — a key enzyme in dopamine biosynthesis — is much more
abundant in differentiated than in proliferating neuroblastoma cells, suggesting a strong
increase in dopamine levels upon differentiation (Bourdeaut et al. 2009). Dopamine
stabilizes soluble a-syn oligomers both in vitro (Conway et al. 2001) and in RA-treated
SHSY-5Y cells (Mazzulli et al. 2006). N-terminal truncation did not affect a-syn
oligomerization in differentiated SHSY-5Y cells, while it dramatically decreased inclusion
formation in yeast (Vamvaca et al. 2009) and decelerated aggregation in vitro (Zibaee et al.
2007). Intracellular factors present in differentiated neuroblastoma cells but absent in yeast,
such as dopamine, may promote del2-11 a-syn oligomerization.

The membrane provides a nucleation site for oligomerization, given the high effective
concentration of lipid-bound protein. In fact, membrane-bound a-syn can seed aggregation
of the cytosolic form (Lee et al. 2002). The folding of a.-syn upon lipid binding is a two step
process (Bartels et al. 2010; Bodner et al. 2010). First, residues 3-25 anchor the protein to
the membrane, and subsequently, residues 26- to 100-fold into an a-helix. The first
conformation has a high propensity to aggregate because of exposed hydrophobic residues
(61— 95), whereas the second can undergo an a-helix to B-sheet conversion, yielding
fibrillar aggregates (Abedini and Raleigh 2009). Oligomeric a.-syn was less populated in the
membrane than in the cytosolic fraction of differentiated SHSY-5Y cells, relative to
monomeric a-syn (Fig. 2), possibly due to greater dissociation of oligomers from the
membrane to the cytosol, and/or lesser association of oligomers from the cytosol to the
membrane.

Surprisingly, del2-11 a-syn did not bind weaker than wild-type to neuroblastoma cell
membranes, contrary to previous data in yeast and in vitro (Vamvaca et al. 2009). In a
related study, deletion of amino acids 2-9 did not alter a-syn membrane binding in
SHSY-5Y cells (Wang et al. 2010). The weaker affinity of del2-11 a-syn for yeast
membranes, compared with neuronal cell membranes, is probably caused by differences in
membrane lipid composition, fluidity, and curvature between the two cell types (Kjaer et al.
2009). a-Syn preferentially binds to anionic phospholipids embedded in a liquid-disordered
rather than liquid-ordered domains (Stockl et al. 2008). Cholesterol plays a key role in the
interaction of a-syn with lipid rafts, mediating synaptic localization of the protein (Fortin et
al. 2004). In contrast to neuronal cells, lipid rafts in S. cerevisiae yeast plasma membrane are
highly-ordered gel domains lacking ergosterol, the yeast counterpart of cholesterol (Aresta-
Branco et al. 2011). Moreover, proteins in brain cytosol — likely absent in yeast — promote
A30P a-syn membrane binding (Wislet-Gendebien et al. 2008).

Over-produced a-syn is highly toxic to yeast (Outeiro and Lindquist 2003). In differentiated
SHSY-5Y cells, however, the toxic effects of a.-syn are observed only in certain PSI-treated
clones (Fig. 3), probably because of differences in the nature of gene integration sites.
Although N-terminal truncation ameliorated toxicity in yeast, faster dying SHSY-5Y cells
included both wild-type and del2-11 a-syn clones. Notably, these clones did not have
significantly higher a.-syn monomer or oligomer levels than the rest (Fig. 1). PSI inhibits
proteasomal degradation, leading to abnormal protein accumulation. The impaired clearance
of regulatory proteins likely affects cell-cycle progression, promoting neurite outgrowth in
SHSY-5Y cells (Fig. 4). Similarly, PSI induced process extension in PC12 cells (Giasson et
al. 1999), and several other proteasomal inhibitors also favored morphological
differentiation (Saito and Kawashima 1989; Fenteany et al. 1994). PSl-associated a.-syn
toxicity may be induced by abnormal protein accumulation itself and/or by processes linked
to differentiation. Interestingly, clones with increased vulnerability to a-syn are round-
shaped cells lacking neurites after a 6-day RA-treatment, as opposed to controls, and form
processes only in the presence of PSI (Fig. 4). These clones possibly ‘resist’ differentiation
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by RA in order to survive, whereas PSI ‘forces’ them to differentiate, thereby promoting cell
death.

Yeast is a simple PD model system, which reproduces several aspects of a-syn pathobiology
observed in higher eukaryotes, including cell death, proteasomal dysfunction, vesicle
trafficking defects, accumulation of lipid droplets and reactive oxygen species (Outeiro and
Lindquist 2003; Flower et al. 2005). A genomewide screen in yeast identified proteins
involved in endoplasmic reticulum-to-Golgi vesicle trafficking as major a.-syn toxicity
modifiers. Strikingly, a mammalian homolog of one such protein (Rabl) rescued neuronal
loss in a fly, worm and rat PD model (Cooper et al. 2006). Moreover, yeast data established
a genetic link between a.-syn and another PD-associated gene (PARK?9), suggesting
participation of a-syn in a highly conserved interaction network (Gitler et al. 2009).

Although yeast is a useful tool for gaining insight into a-syn toxic function, this study
revealed a discrepancy between data in yeast and in neurons. Deletion of the first 10 N-
terminal amino acids of a-syn dramatically reduced membrane binding, inclusion formation
and toxicity in S. cerevisiae, while it caused no such effects in human neuroblastoma cells.
Findings in yeast, therefore, do not necessarily reflect the situation in neurons, data
extrapolation is not always valid, and initial results require verification in more relevant PD
models. SHSY-5Y stable clones reported herein produce high levels of a-syn and EGFP,
being amenable to screening applications and a.-syn isolation for biochemical studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Western blots of wild-type and del2-11 a.-syn clones (a), plus RA (b), plus PSI (c), plus RA
and PSI (d). Cells were treated with 10 pmol/L RA for 6 days and PSI (50 nmol/L) was
added on day 5. Polyclonal cell lines (depicted as ‘p’) and naive SHSY-5Y cells (depicted as
‘n”) were also analyzed. Each lane contains 7 pg of soluble protein. B-Actin served as a
loading control. All four blots were processed in parallel, using identical conditions and

exposure times.
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Fig. 2.

Western-blot analysis of cytosolic (a, b) and membrane (c, d) fractions from proliferating
and differentiated (6-day RA-treatment) SHSY-5Y cells, respectively. Naive (marked as ‘n’)
and polyclonal cells (marked as ‘p’) were included in the analysis. Each lane contains 14 g
of soluble protein. Loading controls for the cytosolic and membrane fractions were B-actin
and lamp2 respectively. All four blots were processed in parallel, using identical conditions
and exposure times.
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Fig. 3.

Cell viability measurements of wild-type and del2-11 clones treated with 10 umol/L RA for
6 and 9 days; 50 nmol/L PSI was added on day 5 (bottom plot). Empty-vector control and
naive SHSY-5Y cells were used as a reference. The percentage of live cells on days 6 and 9
is expressed as a function of viable cells on day 3 (the % of live cells on day 3 is set to
100%). The data are presented as mean value + standard deviation of at least three
independent experiments (n = 3-9). p-Values (*p < 0.05, **p < 0.01) were derived from a
one-way ANOVA analysis followed by Tukey’s test, comparing individual clones with
empty vector control on days 6 and 9.
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Fig. 4.

Microscopy images of wild-type and del2-11 clones after a 6-(top) and 9-day (bottom) RA-
treatment in the presence or absence of PSI (added on day 5). Empty-vector and naive
SHSY-5Y cells were used as controls. PSI induced neurite outgrowth in all cells.
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