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Prediction of Therapy Tumor-Absorbed Dose Estimates
in I-131 Radioimmunotherapy Using Tracer Data

Via a Mixed-Model Fit to Time Activity

Matthew J. Schipper,1 Kenneth F. Koral,2 Anca M. Avram,2 Mark S. Kaminski,3 and Yuni K. Dewaraja2

Abstract

Background: For individualized treatment planning in radioimmunotherapy (RIT), correlations must be estab-
lished between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate
this correlation for tumors.
Methods: The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and
imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-
squares fit to a single tumor’s measured time-activity data, estimation was accomplished via a biexponential
mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose
estimates were determined by patient-specific Monte Carlo calculation.
Results: The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance
phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence
times (r = 0.98; p < 0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed
doses (r = 0.86; p < 0.0001) were very high. The predicted and delivered absorbed doses were within – 25% (or
within – 75 cGy) for 80% of tumors.
Conclusions: The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment plan-
ning when individual least-squares fitting is not possible due to inadequate sampling points. The good corre-
lation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer
study for tumor dosimetry-based treatment planning in RIT.

Key words: mixed model, radioimmunotherapy, SPECT/CT, tumor dosimetry

Introduction

Therapy with internal emitters has shown much promise
in the treatment of cancer. Some of the best response rates

in radionuclide therapy have been achieved with I-131-
labeled radioimmunotherapy (RIT) of non-Hodgkin’s lym-
phoma, which is considered a relatively radiosensitive
malignancy.1,2 There is, however, much room to improve the
efficacy of the treatment with dosimetry-based treatment
planning, especially in the refractory (previously treated with
chemotherapy) group of patients where the reported overall
response rates range from 54% to 71%. Currently, in external
beam therapy, treatment planning with a precise calculation

of the tumor-absorbed dose is mandatory before treatment. In
radionuclide therapy, including I-131 RIT, such calculations
are not part of the treatment protocol. In the most widely used
protocol for I-131 tositumomab RIT, the therapeutic activity to
be administered is calculated based on delivering 65–75 cGy
to the whole body, determined from a pretherapy diagnostic
(tracer) administration.2 Instead of this conservative ap-
proach, there has been much recent interest in potentially
tailoring treatment plans on a patient-by-patient basis to de-
liver an effective therapeutic dose to the tumor while avoiding
critical organ (usually bone marrow) toxicity. To make ad-
vances toward this goal, correlations must be established
between the absorbed dose and the outcome as well as
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between absorbed doses predicted by the tracer study and
those delivered by the therapy. The focus of the present study
was on the latter correlation, specifically in tumor. Correla-
tions for normal organs, including bone marrow, will be in-
vestigated in the future. Tumor dose–response correlations
also of much importance for dosimetry-based treatment
planning were the focus of a separate publication.3

In internal emitter therapy, the pharmacokinetics of the
injected radiolabeled drug typically varies from patient to
patient because of their unique physiological characteristics.
There has been a common practice to use a tracer quantity of
the radiolabeled drug-injected pretherapy to predict the ki-
netics of the therapy administration, usually for the whole
body or a dose-limiting organ. In pharmacokinetic analyses,
cumulative exposure is estimated by the area under the
time–activity curve (AUC). Methods to estimate the AUC
include the trapezoidal method and more commonly, inte-
gration of a fitted smooth function such as a mono-
exponential or biexponential. Monoexponential curves are
frequently used and are most appropriate for the whole
body, in which uptake is instantaneous. A monoexponential,
although commonly used, is less appropriate for individual
tumors where uptake is not instantaneous and where biex-
ponential curves are more appropriate to model the uptake
and clearance of the radiopharmaceutical. Whatever func-
tional form is chosen, added efficiency may be gained
through the use of mixed models. An important advantage
to a mixed-model approach is that it allows for borrowing of
strength across subjects. Such an approach results in separate
fitted time-activity curves for each tumor, but assumes that
the parameters (from the many tumors) defining these
curves follow a particular distribution, thus increasing the
statistical efficiency. The utility of mixed models is well es-
tablished in population pharmacokinetic modeling,4 which is
based on the same class of nonlinear mixed-effect models
utilized in this article.

Studies on the validity of using a tracer study to predict
therapy kinetics and therapy-delivered doses are limited,
especially for tumors. The best correlation in I-131 RIT was
reported in a study of 7 NHL patients where radiation-
absorbed doses for whole body, organs, and tumor from tracer
and therapy administrations were within 14% of one an-
other.5 On the other hand, a review article has summarized a
considerable variation between dose estimates predicted
from post-tracer imaging compared to those obtained from
post-therapy imaging of the same patient.6 These limited
previous studies were carried out using two-dimensional
(2D) planar-imaging methods, which can be suboptimal due
to the inability to accurately correct for interference from
activity in overlying and underlying tissues. Quantitative
three-dimensional (3D) SPECT imaging provides major ad-
vantages over 2D planar methods of activity quantification
and the potential for improved dosimetric accuracy.7,8 When
iterative methods, such as ordered subset expectation maxi-
mization (OSEM), are used for SPECT reconstruction, com-
pensation for physical limitations can be accurately modeled
in the reconstruction process.9 Previously, we carried out a
limited investigation of the tracer–therapy correlation for
tumors based on SPECT data, by comparing the therapy to
the tracer SPECT uptake ratio (normalized by the injected
activity) at a single time point.10 The uptake ratio ranged
from 0.71 to 1.82. This study however was limited to 7 pa-

tients and due to the lack of SPECT data at multiple time
points did not allow for comparison of tracer and therapy
residence times or predicted and delivered radiation-
absorbed doses. In addition, this past study was carried out
at a time when integrated systems were not clinically avail-
able; hence, SPECT-to-CT misregistration could have been a
significant source of error.

Here, we examine the tracer–therapy correlation in 19
NHL patients who were imaged by SPECT/CT at multiple
points after the tracer and therapy administration of I-131
tositumomab. Much emphasis was placed on accurate ac-
tivity quantification, including corrections for high count-
rate effects such as deadtime and pulse pileup, volumes of
interest defined on CT at multiple time points to account for
tumor regression/deformation, SPECT reconstruction with
corrections for image-degrading effects, and a mixed-model
fit to tumor time-activity data. Cumulated activities were
combined with absorbed dose rates from Monte Carlo radi-
ation transport to obtain patient specific mean tumor-
absorbed dose estimates. The goal of the study was to
determine the correlation between tracer and therapy resi-
dence times and the correlation between tracer-predicted and
therapy-delivered mean tumor-absorbed doses to demon-
strate the potential for treatment planning in I-131 RIT based
on estimates from a pretherapy diagnostic study.

Methods

Patients

Patients were recruited from those undergoing I-131 tosi-
tumomab for the treatment of relapsed or refractory (previ-
ously treated with chemotherapy) follicular/low-grade or
transformed B-cell lymphoma at the University of Michigan.
The clinical treatment protocol has been described1 and in-
volves planar gamma camera measurements after the tracer
administration (185 MBq) from which the amount of radio-
activity necessary to deliver 65–75 cGy to the whole body is
determined for each patient. The therapy is administered 8
days after the tracer. For the present research study, this
protocol was unchanged, but the patients gave their separate
written informed consent for the SPECT/CT imaging that
was not the part of the treatment protocol. This imaging
received separate University of Michigan Internal Review
Board approval. Data are presented here for 19 patients
(12 men, 7 women; age range, 33–81 years; median age,
53 years). The administered therapy activity ranged from
2.15 to 5.68 GBq (58–153 mCi).

SPECT/CT imaging

The imaging protocol on the Siemens Symbia TruePoint
SPECT/CT system has been described previously.11 The
SPECT camera field of view (FOV) was 39 cm in the axial
direction; hence, only a part of the body was imaged, fo-
cusing on the region with the largest tumor. In most patients,
multiple (up to 7) tumors were imaged. After the tracer ad-
ministration, patients were imaged three times, on day 0, 2,
and 6, and after the therapy administration three times, on
day 2, 5, and 7–9. The earliest post-therapy-imaging point
was at 2 days because of concerns about radiation safety and
high camera deadtime. At each time point, the tumor out-
lines were defined on CT, plane by plane, by a nuclear
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medicine specialist with radiology CT training. These vol-
umes of interest from each time point were used when
determining tumor time-activity curves and the mean tumor-
absorbed dose, thus accounting for any changes in the tumor
volume. This is especially important with malignant lym-
phomas, which can be highly sensitive to radiation and
can have dramatic tumor regression within days of the
treatment.11,12

SPECT activity quantification including corrections
for high count-rate imaging

In the present study, the I-131 activity administered for
therapy was 10–30 times higher than that administered
for the tracer study. During patient imaging, the count rate in
the photopeak window at the earliest post-therapy imaging
time point (2 days post-therapy) was up to 18,000 counts per
second. Therefore, it is important to correct the therapy-
imaging data for high count-rate effects such as camera
deadtime and pulse pileup. Deadtime correction by the de-
caying source method, which is based on the departure of
the observed count rate from the known exponential decay
of a source, has been described previously.13 For the present
SPECT/CT system, deadtime measurements with an I-131-
filled phantom imaged on multiple days confirmed the va-
lidity of a paralyzable deadtime model. The measured
deadtime constant was 2.5 ls, which was used to correct all
post-therapy SPECT projection data before reconstruction.
SPECT reconstruction was carried out using 35 iterations
(6 subsets) of a previously implemented 3D OSEM algo-
rithm.14 All reconstructions included detector response
compensation, CT-based attenuation correction, and triple-
energy window (TEW)-based scatter correction.

It was necessary to use a count rate-dependent calibration
factor to convert reconstructed counts to activity. This was
because of the observed change in the I-131 energy spectra at
high count rates, which was attributed to pulse pileup ef-
fects. Figure 1 compares I-131 energy spectra measured
during patient imaging at the first post-tracer time point with
that measured at the first post-therapy time point. Because of
pulse pileup during therapy imaging, the relative counts in
the higher-energy-scatter window increases, which leads to
an overestimation of scatter by the TEW method and hence
an underestimation of the scatter-corrected main window
counts. This change in the I-131 energy spectrum and its
association to pulse pileup have been noted previously,15

and are particularly relevant to our study comparing results
from tracer and therapy imaging. In the present study, to
account for this effect, the calibration experiment with a
known-activity hot-sphere phantom was carried out at three
different count rates (as the initial activity of 20 mCi decayed
over 1 month). The phantom count rates at the three mea-
surement points were 21, 9, and 2 kcps with the higher rates
typical of post-therapy imaging and the lower rate typical of
post-tracer imaging of the present patients. The corre-
sponding calibration factors were 1.46, 1.55, and 1.61 kcps/
mCi. To account for partial-volume effects, recovery coeffi-
cients (RCs) were applied to tumors of volume < 100 mL. The
experiment to determine RCs was carried out using a
phantom with multiple hot spheres in the range 4–100 mL
with known amounts of I-131. The RC was defined as the
ratio of SPECT-measured activity to true activity and ranged

from 58% to 99%. Based on the patient’s CT-defined tumor
volumes, tumor activities were adjusted using the RC-
versus-volume relationship.

Fitting of time activity: the mixed-model approach

One of the difficulties with the conventional approach of
fitting a single tumor’s curve individually is that we would
like to fit a biexponential curve (three parameters), but we
have only 3 data points. Partly as a result, there are often
many different combinations of parameters that fit the data
well, as demonstrated in Figure 2 for a typical patient. In
addition, the parameter estimates are sensitive to noise in the
data and not identifiable if 1 of the 3 timepoints is missing.
These different sets of parameters will also result in different

FIG. 1. Comparison of I-131 energy spectra measured dur-
ing post-tracer imaging and post-therapy imaging of a typical
patient (spectra were normalized to the same total counts).

FIG. 2. An illustration of the difficulty of using individual
curve fits using functional forms with as many parameters as
data points.
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AUC values. In the case of the mixed model, we obtain a
unique set of parameter estimates and thus a unique estimate
of AUC. Note that % injected dose in Figure 2 and through-
out the article refers to the percentage activity normalized by
the administered activity (without correcting for I-131 phys-
ical decay). In this section, we describe how a statistical mixed
model, fit to all tumors from all subjects simultaneously, may
be used to estimate cumulated activity and residence times.
Mixed models refer to models containing both fixed and
random effects and are widely used in a variety of applica-
tions 4, 26. The estimates of the random effects in these models
are referred to as empirical Bayes. A key feature of these es-
timates is that they tend to shrink or penalize unlikely values.
Practically, this means, for example, that if data from a tumor
show an increasing activity during the clearance phase due to
noise, the fitted curve from the model will still retain the
standard exponential decay shape over this time interval. We
discuss some of the issues involved and illustrate some of the
benefits of a mixed-model approach to estimation over indi-
vidual tumor curve fitting. The mixed model may be conve-
niently specified in two stages. The first stage specifies the
functional form of the time–activity curves, whereas the sec-
ond specifies the probability distribution of the individual
parameter values across the population of tumors.

Stage 1: We assume that each tumor’s time–activity curve
may be specified by a biexponential curve. Specifically, we
assume that the time–activity curve for tumor j of subject i is
given by

Aij(t)¼ (keij � kaij=(clij � (kaij� keij))) � (exp (� keij � t)

� exp (� kaij � t))þ eij(t) (1)

where Aij(t) is the measured activity at time t expressed as
percentage of injected dose; eij(t) is a normally distributed
error term with mean 0 and a variance proportional to the
mean of Aij(t). In this parameterization, cl is typically referred
to as a clearance parameter, or more empirically as a pa-
rameter that scales the curves up or down. Parameters ke and
ka are typically referred to as the elimination and absorption
rate constants, respectively. They control the shape of the
curve, specifically how quickly it rises and falls. At this stage,
the model is much like what might be assumed before doing
a least-squares fit to a single tumor’s data to obtain estimates.

Stage 2: In the mixed-model approach, we further assume
that the keij, kaij, and clij are, on the log scale, random ob-
servations from normal distributions:

kaij¼ exp ( log (ka)þ b1ij), b1ij~N(0, r2
ka)

keij¼ exp ( log (ke)þ b2ij), b2ij~N(0, r2
ke) (2)

clij¼ exp ( log (cl)þ b3ij), b3ij~N(0, r2
cl)

Thus, ka, ke, and cl, are the median parameter values
(across all tumors in the population), and b1ij, b2ij and b3ij are
tumor-specific deviations from the population median values.
Equations (1) and (2) specify likelihood for the observed data.
In population PK modeling, the parameters ka, ke, and cl and
variance parameters rka, rke, and rcl are of primary interest.
Our goal, however, was a tumor level prediction, and thus in
the estimation of keij, kaij, and clij, that is, we were interested in
the estimated time-activity curve for each individual tumor.

The model described here is part of a class of models
typically referred to as nonlinear mixed-effect models. Stan-
dard maximum likelihood methods may be used to fit these
models and obtain empirical Bayes estimates of the random
effects keij, kaij, and clij. Details of estimation are given in
Davidian and Giltinan.4 Estimates of AUC may be obtained
as the analytical integral of Aij(t) by plugging in empirical
Bayes parameter estimates. The software package SAS V9.2
was used for model fitting.

In the present application, because the last imaging time
point was typically about 145 hours postadministration for
tracer and 190 hours postadministration for therapy, in com-
puting AUC, we chose to integrate to 300 hours rather than to
infinity. As discussed later, results from integration to 300
hours or infinity were very similar for all but 1 patient. Since
one of our primary goals here was to assess the ability of tracer
data to predict the therapy-delivered mean tumor-absorbed
dose, we fit completely separate mixed models to tracer and
therapy data. Our estimates of the correlation are thus not
positively biased as could occur if we used a combined model.

Tumor dosimetry

The traditional approach to tumor dosimetry in internal
emitter therapy has been based on the unit-density sphere
model, which assumes that tumors are isolated unit-density
spheres with a uniform activity distribution. The absorbed
dose is then determined using published values of absorbed
fraction as a function of sphere mass16,17 or using the
OLINDA/EXM code, where the sphere model has been im-
plemented.18 This simplistic model does not account for any
crossdose to the tumor from activity in other organs. Because
of the limitations of this model, alternative approaches to
tumor dosimetry using dose-point kernel or Monte Carlo-
based methods have been used in some recent internal
emitter therapy studies.19,20 In the present study, we used
SPECT/CT-imaging data coupled with the Dose-Planning
Method (DPM) Monte Carlo algorithm21 to carryout patient-
specific estimation of the mean radiation-absorbed dose to
tumor. The calculation also provided 3D dose distributions
and results of the 3D dose measures, including dose re-
sponse, were reported in a previous publication3 and are not
the focus of the present work.

The estimation of the mean tumor-absorbed dose using
DPM has been described previously11 and is summarized
here. Because significant tumor shrinkage was observed over
the imaging period (6 days post-tracer and 8 days post-
therapy), the calculation of absorbed dose using DPM was
split over multiple time periods (3 periods for tracer and 3 for
therapy) to account for this shrinkage. Within each time
period, the tumor size was assumed to be constant, but
varied between periods according to the CT-defined volume.
The input to DPM for each calculation was the SPECT image
and CT-derived density map from a particular imaging time
point, whereas the output was the absorbed dose-rate map.
For each time period, the mean tumor dose rate was deter-
mined by summing voxel values of the DPM dose-rate map
that were within the CT-defined tumor outline. For each time
period, the residence time was determined by integrating the
fitted time-activity curve over that time period. For tracer
and again for therapy, tumor-absorbed doses for each time
period (determined from the residence times and dose rates
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corresponding to that period) were summed to obtain the
total mean tumor-absorbed dose. The therapy-delivered ab-
sorbed dose to the tumor was calculated based on data from
the three post-therapy imaging points. The tracer-predicted
absorbed dose to the tumor was calculated by scaling the
results based on data from the three post-tracer imaging
points by the ratio of therapy to tracer-administered activity.

Results

Table 1 gives population parameter estimates from the
mixed model for tracer and therapy. The ka, ke, and cl values
can be interpreted as parameter values for an average tumor.
Specifically, from (2), it can be seen that the median of the kaij

values is ka, since the b1ij values have median 0. Similarly, the
median of the keij values is ke, and the median of the clij
values is cl. It appears that therapy estimates for ke and ka are
somewhat larger and smaller, respectively, than tracer esti-
mates, potentially implying a differently shaped curve. Our
focus, however, is on individual tumor estimates, as dis-
cussed below and shown, for example, in Figures 3 and 4.

Fitted time-activity curves

Whole body. For all subjects, the whole-body time-
activity data were well fit by individual least-squares fitting
using a monoexponential function (R2 > 0.95 in all cases). Note
that whole body here refers to the body section within the
SPECT FOV. For all 19 patients, the mean and range of tracer
and therapy whole-body residence times are given in Table 2.

Tumor. Visual inspection of the biexponential time–
activity curves fitted with the mixed model showed close
agreement with the observed activity measurements. To
quantify this, we calculated the differences (fitted value–
observed), expressed as % injected dose. These values ranged
from - 0.0305 to 0.3550, with a median value of 0.0004 for
tracer, and from - 0.0706 to 0.0544, with a median value of
- 0.0002 for therapy. For tracer and therapy, 80% of differ-
ences were within – 0.007 and 0.004, respectively.

The time-activity data of Figure 3 illustrate some of the
benefits of a mixed-model approach to estimation over in-
dividual tumor curve fitting. One of the principle benefits is
when the measured data for an individual patient are in-
consistent, due to noise, for example (noise due to poor
counting statistics is not a concern during post-therapy im-
aging, but can be significant during post-tracer imaging es-
pecially at the latter time points). For example, in the patient
data of Figure 3A, the activity at the tracer-imaging time
point 3 is higher than the value at the time point 2. A fit to
just the 3 data points (black line) suggests unrealistically
slow clearance, whereas the mixed-model estimate produces
a curve of the expected shape. The individual curve is a
biexponential function with extreme parameter values that
do, nevertheless, optimize the least-squares criteria. Based on
the results for other tumors, we believe that the mixed model

Table 1. Mixed-Model Population

Parameter Estimates

Parameter
Tracer estimate
(standard error)

Therapy estimate
(standard error)

ka (hours - 1) 0.067 (0.011) 0.085 (0.014)
ke (hours - 1) 0.778 (0.094) 1.209 (0.145)
cl (hours - 1) 0.010 (0.001) 0.015 (0.001)
rka (hours - 1) 1.693 (0.314) 1.682 (0.312)
rke (hours - 1) 0.664 (0.157) 3.549 (0.481)
rcl (hours - 1) 0.153 (0.045) 0.121 (0.030)

FIG. 3. (A) A mixed-model fit to
noisy tumor time-activity data
and the least-squares fit to the
individual data points. (B) A
mixed-model fit to a tumor’s
therapy time-activity data with
only a single activity value and
the corresponding curve for tracer.
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yields a more realistic fitted curve (i.e., a curve with a shape
exhibiting the expected uptake and clearance phases).

Another benefit of the mixed-model approach is the ability
to obtain a realistic fit when there are missing data. In the
present study, although patients were scheduled to be im-
aged three times post-tracer and three times post-therapy, a
few subjects (3 out of 19) could not complete all the imaging
studies as scheduled. In the case shown in Figure 3B, the
patient completed the tracer imaging, but was imaged only
one time after the therapy administration. The mixed-model
fit to this single post-therapy data point was realistic with the
expected uptake and clearance phases closely matching the
mixed-model fit to the multiple tracer data points. The sim-
ilarity, which is what one expects based on physiology being
unperturbed by the level of the administered activity, gives
us confidence in the use of the mixed model in this case.

Note that the examples shown in Figure 3 with inconsis-
tent or missing data were exceptions, and in most cases, the
measured time-activity data behaved as expected and were
complete with results available for all 3 time points. A typical
tumor time-activity curve with the mixed-model fit for tracer
and therapy are shown in Figure 4. For all tumors, the tracer
and therapy residence times are compared in Table 2.

We compared estimated residence times if fitted curves
were integrated to infinity or were integrated to 300 hours. In
all but one tumor, the results were within 5% of one another.
In the one exception, the activity clearance from the tumor
was unusually slow, and in this case, the residence time

when integrating to infinity was 53% higher than the value
from integrating to 300 hours. We also compared estimated
residence times obtained from the mixed-model biexponen-
tial fit to those from simple least-squares monoexponential
fits to individual tumors. For tracer, the ratios of the latter to
the former ranged from 74% to 117%. For therapy, the same
ratios ranged from 68% to 141%. For several tumors, the
estimated value of ke was negative, implying increasing ac-
tivity over time. We thus imposed the boundary constraint
ke > 0 on the estimation procedure. For these tumors with
curves like that depicted in Figure 3A, the estimated resi-
dence time from the least-squares monoexponential fits
would have been infinite if we had integrated to infinity
rather than 300 hours. In contrast, the mixed model provided
finite and reasonable estimates when integrating to infinity.

Correlation between tracer and therapy

Whole-body residence times. For whole body, the cor-
relation between the tracer and therapy residence times of
Table 2 are plotted in Figure 5. The correlation was excellent
and statistically significant (r = 0.95; p < 0.0001), whereas the
slope and intercept were very close to unity and zero, re-
spectively. Since the scatter about the line is small, and the
intercept and slope are what one would ideally expect, this
result gives us confidence in the corrections (deadtime and
pulse pileup) that were made to account for the high count
rates during post-therapy imaging.

Tumor residence times. The correlation between tracer
and therapy tumor residence times of Table 2 is plotted in
Figure 6A. The correlation was excellent and statistically
significant (Pearson’s r = 0.98; p < 0.0001). We performed a
linear regression (with intercept set = 0) using tracer resi-
dence time to predict therapy residence time and tested
whether the slope was equal to 1. It is generally assumed that
this is the case, and our analysis confirmed this. The esti-
mated slopes are very close to 1 and the 95% CIs bracket 1
(Table 2). We also calculated the differences between tracer
and therapy, expressed as a percentage of the tracer value.
These differences ranged from - 67% to 103% and were
within – 41% for 80% of the tumors. When expressed in ab-
solute hours, the differences ranged from - 0.35 to 0.16 hours
and were within – 0.1 hours for 80% of the tumors.

Tumor-absorbed dose. Ultimately for treatment plan-
ning, we are interested in absorbed dose rather than resi-
dence times. The correlation between the tumor-absorbed
dose delivered by the therapy administration and the value
predicted from the tracer (Table 2) is plotted in Figure 6B.

FIG. 4. Time-activity curves for a typical tumor with
biexponential function fits using a separate mixed model for
tracer and therapy.

Table 2. Mean and Range (in Parenthesis) of Residence Times and Absorbed Dose

Tracer study Therapy study Pearson’s correlation Slopea

Whole body (within field-of-view)
residence time (hour)

32.0 (18.0–47.4) 32.1 (20.8–46.7) 0.95 0.983 (0.943,1.023)

Tumor residence time (hour) 0.31 (0.008–2.56) 0.27 (0.007–2.72) 0.98 0.993 (0.950, 1.035)
Tumor absorbed doseb (cGy) 293.6 (87.4–547.6) 319.5 (97.7–688.8) 0.86 1.043 (0.974, 1.112)

Also shown are correlation and slope estimates from linear regression models of tracer and therapy results.
aFrom a regression model accounting for within subject correlation and with intercept fixed at zero for the tumor results.
bPredicted value (tracer) and delivered value (therapy).
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This correlation (Pearson’s r = 0.86; p < 0.0001), while still
high, is lower than the correlation between tracer and ther-
apy residence times. The estimated slopes with 95% CIs from
a regression analysis are in Table 2. As above, we calculated
the differences between tracer and therapy, expressed as a
percentage of the tracer value. These differences ranged
from - 36% to 80% and were within – 25% for 80% of the
tumors. When expressed in absolute cGy, the differences
ranged from - 189 to 152 cGy and were within – 75 cGy for
80% of the tumors. Some scatter about the fitted line is visible
in Figure 6B. Possible explanations include inaccuracies in
tumor definition, methods to quantify observed activity, and
dose or sparsity of sampling time points.

Discussion

The tracer–therapy correlation in I-131 RIT was investi-
gated using SPECT/CT-imaging data for 57 tumors in 19

lymphoma patients with a mixed-model fit to tumor time-
activity. To our knowledge, this is the first application of
statistical mixed models in internal emitter dosimetry, al-
though this class of methods has found extensive application
elsewhere in pharmacokinetics. The potential for using such
a model in a radionuclide dose assessment was discussed in
a recent review article.22

Post-therapy imaging data were corrected for high count-
rate effects, including camera deadtime and pulse pileup.
SPECT quantification included 3D OSEM reconstruction and
CT-based tumor outlines at each time point. For whole body
(within FOV), excellent agreement was demonstrated be-
tween the tracer and therapy whole-body residence times
(r = 0.98; p < 0.0001) with individual least-squares fitting
using a monoexponential function.

Previously, in tumor dosimetry studies related to I-131-
labeled antibodies, least-squares fitting of multiexponentials
has been used when 5–7 time points were available, typically
from planar imaging, whereas monoexponentials have been
used when fewer time points were available.5,19,23,24 Mono-
exponential fitting is inadequate to model the non-
instantaneous uptake and clearance in tumor, but obtaining
the necessary number of imaging time points for multi-
exponential fitting can be clinically unfeasible, especially in
the case of SPECT/CT imaging. In the present study, use of a
mixed-model approach to estimation of tumor time-activity
curves allowed for biexponential fits, even though SPECT/
CT-based activity measurement was available only at 3 time
points and removed the dependence on starting values that
are characteristic of the least-squares individual curve fits.
Patient results demonstrated some of the benefits of a mixed-
model approach to estimation over individual tumor curve
fitting. The mixed-model approach yielded more efficient
estimates and meaningful estimates even with noisy data or
missing time points. Then, there was good agreement be-
tween the tracer and therapy tumor residence times (r = 0.95;
p < 0.0001). The mixed-model biexponential fitting was also
compared with simple least-squares monoexponential fitting
to individual tumors. The tumor residence time determined
from a monoexponential individual fit sometimes varied

FIG. 5. Plot of the therapy whole-body residence time
versus the tracer whole-body residence time. The line of
identity is not drawn, as it overlaps with the regression line.

FIG. 6. Therapy-observed values
versus tracer-predicted values at
the tumor level for (A) residence
time and (B) absorbed dose.
Therapy and tracer values are
estimated via separate mixed
models. The linear regression-fitted
line has an intercept set to zero. The
line of identity is not drawn, as it
overlaps with the regression line.
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substantially from that obtained via the mixed-model biex-
ponential fit with the ratio of the former to latter ranging
from 68% to 141%.

If the conventional approach of estimating the absorbed
dose based on baseline tumor mass and the unit-density
sphere model was used here, the correlation between
tracer-predicted and therapy-delivered mean tumor-ab-
sorbed doses would be the same as the correlation between
tracer and therapy residence times. This is because the
absorbed fraction for tracer and therapy will be the same if
a constant mass is assumed, and the absorbed dose will
vary linearly with the residence time. However, in the
present work, we carried out a patient-specific Monte
Carlo dosimetry accounting for CT-measured changes in
the tumor volume during the imaging time period. In this
case, the correlation between tracer-predicted and therapy-
delivered mean tumor-absorbed dose can be different than
the correlation for the residence time. Our correlation for
absorbed dose was lower than the correlation between
tracer and therapy residence time, but was still high
(Pearson’s r = 0.86; p < 0.0001).

In our mixed model described here, we have not explicitly
modeled correlation between tumor responses within a subject.
Although we have demonstrated excellent predictive ability
with the present model, it is possible that this would further
improve prediction, and will be investigated in the future.
Accounting for both sources of correlation requires fitting
multilevel (tumor and subject) random-effect nonlinear models,
something not presently accommodated by most statistical
software packages. One option is to take a Bayesian approach
and fit the model via Markov Chain Monte Carlo (MCMC)
methods.25

Tracer-predicted and therapy-delivered absorbed doses
differed by < 25% for 80% of the tumors in the present
analysis. While this is highly promising, clinical im-
plementation of tumor dosimetry-based treatment planning
in I-131 tositumomab RIT will require establishment of the
tracer–therapy agreement for bone marrow and normal or-
gans as well. We plan to evaluate these relationships in the
future. In addition, robust correlations between dose and
response must be established. Although this is yet to be
achieved in I-131 tositumomab RIT of non-Hodgkin’s lym-
phoma, promising dose–response results were previously
reported using SPECT/CT-imaging-based dosimetry meth-
ods and radiobiological modeling.3

Conclusions

This study combined state-of-the-art quantitative SPECT/
CT imaging, a mixed-model fit to tumor time-activity and
patient-specific Monte Carlo-based dosimetry to evaluate the
correlation between residence times and tumor-absorbed
dose estimates from tracer and therapy studies. The strong
correlation between predicted and delivered tumor-absorbed
doses shown here demonstrates the potential for RIT treat-
ment planning to deliver tailored therapeutic absorbed doses
to tumors.
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