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Abstract
Defective catabolite export from lysosomes results in lysosomal storage diseases in humans.
Mutations in the cystine transporter gene CTNS cause cystinosis, but other lysosomal amino acid
transporters are poorly characterized at the molecular level. Here we identified the C. elegans
lysosomal lysine/arginine transporter, LAAT-1. Loss of laat-1 caused accumulation of lysine and
arginine in enlarged, degradation-defective lysosomes. In mutants of ctns-1 (C. elegans homolog
of CTNS), LAAT-1 was required to reduce lysosomal cystine levels and suppress lysosome
enlargement by cysteamine, a drug that alleviates cystinosis by converting cystine to a lysine
analog. LAAT-1 also maintained availability of cytosolic lysine/arginine during embryogenesis.
We showed that LAAT-1 is the lysosomal lysine/arginine transporter and suggested a molecular
explanation for how cysteamine alleviates a lysosomal storage disease.

Defects in exporting hydrolytic degradation products from lysosomes cause lysosomal
storage diseases such as cystinosis, which is characterized by intralysosomal accumulation
of free cystine because of mutations in the lysosomal cystine transporter gene CTNS
(cystinosin) (1-4). The most effective therapeutic agent for cystinosis, cysteamine (an
aminothiol), converts lysosomal free cystine to cysteine and the mixed disulfide of cysteine-
cysteamine, which is thought to be exported from lysosomes as a lysine analog through a
lysine/cationic amino acid transporter (5-7). The molecular identity of the transporter
remains unknown. Although biochemically detected, most mammalian lysosomal amino
acid transporters have not been molecularly characterized (1).

From a forward genetic screen for C. elegans mutants with increased embryonic cell
corpses, we isolated a recessive mutant qx42 that accumulated many refractile corpse-like
objects and lysotracker-positive puncta, suggestive of abnormal lysosomes (fig. S1, A to G).
Using NUC-1::mCHERRY, which labels lysosomes (8, 9), or lysotracker staining, we found
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that qx42 lysosomes were on average twice the volume of wild type (1.3 versus 0.5 μm3;
Fig. 1, A to F”’ and fig. S1, H to K).

We next examined whether qx42 affected lysosomal cargo degradation. Apoptotic cells are
phagocytosed then degraded in lysosomes. Cell death and cell corpse engulfment were
normal in qx42 mutants (fig. S2). However, degradation of apoptotic cells in
phagolysosomes (indicated by GFP::RAB-7 or NUC-1::mCHERRY) as measured by loss of
HIS-24::GFP or H2B::GFP (which label chromatin in all somatic and germ nuclei, including
cell corpses, respectively) was severely affected in qx42 mutants, with HIS-24::GFP
persisting >4 times as long as in wild type (Fig. 2A and fig. S2, L to O). Yolk lipoprotein is
degraded throughout embryogenesis to nourish developing cells (10, 11). In qx42 mutants,
intestinal secretion of yolk reporter VIT-2::GFP and uptake by oocytes were normal (fig. S3,
A to B’). However, qx42 embryos accumulated significantly more VIT-2::GFP in enlarged
puncta, which overlapped with NUC-1::mCHERRY, suggesting defective lysosomal yolk
degradation (Fig. 2, B to D and fig. S3, C to H’). Cell surface proteins CAV-1 and RME-2,
which are internalized and degraded in wild-type embryos, accumulated in enlarged
lysosomes in qx42 embryos (fig. S4) (12). Damaged organelles and protein aggregates are
delivered via the autophagy pathway to lysosomes for degradation (13). Autophagy
substrates SEPA-1 and T12G3.1 (the C. elegans homolog of mammalian p62) were cleared
during embryogenesis in wild type, but persisted in late-stage qx42 mutant embryos and
overlapped with NUC-1::mCHERRY, indicating defective autolysosomal degradation (Fig.
2, E to G and fig. S5) (14, 15). Thus, qx42 impairs lysosomal degradation of phagocytic,
endocytic and autophagic cargoes.

The gene affected in qx42, Y43H11AL.2, encodes a conserved protein containing seven
predicted transmembrane domains and two internal PQ (Proline-Glutamine) loop repeats,
characteristic of lysosomal cystine transporters (LCTs) (16) (fig. S6F). Cystinosin, the
archetypal LCT family member, is a lysosomal cystine transporter, abnormal function of
which causes cystinosis (4). We named the Y43H11AL.2 gene laat-1 (lysosomal amino acid
transporter 1) based on similarity with LCT family proteins and cellular functions (see
below). qx42 has an A>T mutation in laat-1 that creates a premature stop codon after
Asn127. Other independently isolated laat-1 mutant alleles also caused enlarged lysosome
and persistent cell corpse phenotypes (fig. S1, L to R and S2K). laat-1 was expressed in
various cell types in embryos, larvae and adults (fig. S7). GFP or mCHERRY fusion of
LAAT-1, which fully rescued qx42 defects (fig. S6, A to E), labeled membranes of NUC-1-
or lysotracker-positive structures and overlapped with lysosomal membrane protein
CTNS-1, the C. elegans homolog of human cystinosin (17), indicating that LAAT-1
localizes to lysosomal membranes (Fig. 1, G to H” and fig. S7, A to C”).
LAAT-1(Δ299-304)::GFP, which lacks the C-terminal dileucine-based lysosomal sorting
motif (18), stained plasma membranes instead of lysosomes and failed to rescue laat-1(qx42)
mutant phenotypes, indicating that LAAT-1 function depends on its lysosomal localization
(fig. S6, A to F and S7, D to E”).

We examined lysosomes purified from C. elegans embryos (fig. S8) and found that loss of
CTNS-1 caused cystine accumulation, suggesting that CTNS-1 mediates cystine efflux from
lysosomes like human cystinosin (Fig. 3A). In laat-1 mutant lysosomes, cystine levels were
normal but lysine and arginine levels were 16 and 8 times as high as wild type, respectively,
suggesting that LAAT-1 exports lysine and arginine from lysosomes (Fig. 3A and fig. S9A).
Macrophage-like coelomocytes from ctns-1 mutants contained huge granules (>6.5 μm in
diameter), which accumulated endocytosed cargo CHERRY and were labeled by lysosomal
membrane protein CUP-5 but not endosomal protein RME-8, indicating that they are
enlarged lysosomes (19, 20) (Fig. 3, B and C and fig. S9B). Most wild-type and laat-1(qx42)
coelomocytes contained small lysosomes (<4.5 μm) or 2-3 bigger ones (4.5 to 6.5 μm) (Fig.
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3C). Cysteamine treatment of ctns-1 mutants greatly reduced lysosomal cystine
accumulation and almost completely suppressed the enlarged lysosome phenotype (Fig. 3, C
and D). In laat-1(qx42)ctns-1(ok813) double mutants, however, cysteamine failed to deplete
lysosomal cystine and suppress enlarged lysosomes, which accumulated high levels of
cystine and the lysine analog mixed disulfide of cysteine-cysteamine (Fig. 3, C to E). These
data strongly suggest that LAAT-1 transports lysine out of lysosomes.

We tested whether LAAT-1 or its human counterpart PQLC2 transported lysine and arginine
using a whole cell-based transporter assay (4). Wild-type PQLC2::GFP localized to
lysosomes in COS-7 cells, while PQLC2 (ΔLL)::GFP, which lacks the lysosomal sorting
motif, associated with plasma membranes, indicating that PQLC2 is a lysosomal membrane
protein like LAAT-1 (fig. S6F and fig. S9, C to H”). Expression of plasma membrane-
targeted LAAT-1 [LAAT-1(Δ299-304)::GFP] or PQLC2 [PQLC2(ΔLL)::GFP] caused
increased uptake of lysine and arginine, which was almost completely abolished when the
invariant Pro in the first PQ loop was mutated to Leu (Fig. 3, F and G and fig. S6F). Uptake
of histidine but not alanine, glutamic acid, cystine or cysteine was increased in LAAT-1- or
PQLC2-expressing cells, suggesting specific transport of cationic amino acids (fig. S10).
laat-1 lysosomes did not significantly accumulate histidine, indicating that LAAT-1 is
probably not the major histidine transporter in vivo (fig. S9A).

laat-1 mutants were viable but developed slowly (Fig. 4A). External supplements of both
lysine and arginine completely rescued retarded embryonic development (Fig. 4B and fig.
S11, A and B) but did not reverse the enlarged lysosome or defective yolk degradation
phenotypes in laat-1 mutants (fig. S11C). Thus, loss of laat-1 affects lysosomal export of
lysine/arginine, which limits their cytoplasmic availability and thereby retards embryonic
development. When deprived of amino acids, eukaryotic cells trigger the amino acid
response (AAR) pathway through activation of GCN2 protein kinase, leading to repression
of global protein synthesis (21). Consistent with this, laat-1 embryos showed reduced
protein synthesis, which was efficiently rescued by supplementing lysine and arginine (Fig.
4C and fig. S11D) (22). The AAR pathway is essential for survival during amino acid
deprivation (23, 24). gcn-2(ok871) embryos developed normally but died when laat-1 was
defective. The synthetic lethality was completely rescued by supplying both lysine and
arginine but not glycine (Fig. 4D). Thus, loss of laat-1 limits cytosolic lysine and arginine,
causing embryonic lethality when the GCN-2-mediated AAR pathway is impaired (fig.
S11E).

We have identified LAAT-1 and its human homolog PQLC2 as the lysosomal lysine/
arginine transporter. Cysteamine treatment significantly reduced lysosomal free cystine and
efficiently suppressed the enlarged lysosome phenotype in ctns-1(lf) single mutants but not
laat-1(lf) ctns-1(lf) double mutants, which accumulated the lysine analog mixed disulfide of
cysteine-cysteamine in lysosomes, suggesting that LAAT-1 (and probably PQLC2) may
mediate cystine depletion by cysteamine. It is thus important to examine whether loss of
PQLC2 affects mammalian lysosome function and causes lysosome-related diseases. Our
finding that defective lysosomal export of lysine/arginine leads to retarded embryonic
development reveals the role of lysosomal amino acid transporters in maintaining cytosolic
amino acid availability during embryonic development, providing insights into the
pathogenesis of lysosomal transport disorders.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. laat-1 mutants accumulate enlarged lysosomes
(A to F”’) Enlarged lysosomes indicated by NUC-1::mCHERRY [(A) and (B), arrows] or
lysotracker red (LTR) [(E) to (F”’), arrowheads] were observed in a laat-1(qx42) embryo
(B) or cell [(F) to (F”’)] but not wild type [(A), (E)-(E”’)]. Lysosome volumes are quantified
in (C) and (D). Average lysosomal volumes (±SEM, n=100) in different strains are shown in
(D). **P<0.0001. (G and H) Fluorescent images of hypodermal (G) or sheath cells (H) in
wild-type animals expressing LAAT-1::GFP and NUC-1::mCHERRY. In (A), (B), and (G)
to (H”), insets show x4 magnification of lysosomes indicated by yellow arrows. Scale bars:
2 μm in (E), (F); 5 μm in other panels.
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Figure 2. laat-1 mutants are defective in lysosomal degradation of various cargoes
(A) Fluorescent images of wild-type and laat-1(qx42) embryos expressing HIS-24::GFP and
GFP::RAB-7 at different time points. Arrows indicate phagolysosomes. Quantification is
shown in the right panel with average duration (±SEM) shown in parentheses. (B to G)
Confocal fluorescent images of wild-type [(B) and (E)] or laat-1(qx42) [(C) and (F)]
embryos expressing NUC-1::mCHERRY and VIT-2::GFP [(B) and (C)] or T12G3.1::GFP
[(E) and (F)]. Arrows indicate overlapping GFP and mCHERRY; arrowheads indicate non-
overlapping GFP. Structures indicated by yellow arrows or arrowheads are magnified x4 in
the insets. Quantifications are shown in (D) and (G). At least 10 embryos were scored in
each strain. Data are shown as mean±SEM. **P<0.0001. Scale bars: 5 μm.
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Figure 3. LAAT-1 is a lysosomal lysine and arginine transporter
(A) The ratio of amino acid concentration in lysosomal versus cytosolic fractions prepared
from embryonic lysates was determined and normalized as 1 fold in wild type (y-axis). (B)
DIC and fluorescent images of wild-type and ctns-1(ok813) coelomoctyes expressing
secreted CHERRY (ssCHERRY) and the lysosomal marker GFP::CUP-5. Lysosomes are
labeled by CHERRY and CUP-5 (arrows). Insets show lysosomes indicated by yellow
arrows. Scale bars: 5 μm. Quantification is shown in (C). (D and E) Cystine (D) and mixed
disulfide of cysteine-cysteamine (E) was determined in purified lysosomal fractions (PLF)
after cysteamine treatment and normalized as 1 (fold) in wild type. (F and G) Lysine and
arginine uptake was determined in (F) LAAT-1- or (G) PQLC-2-expressing COS-7 cells.
Data are shown as mean±SEM. **P<0.0001,*P<0.05; all other points had P>0.05. Data in
(A), (D), (E), (F), and (G) are representative of at least 3 independent experiments.
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Figure 4. LAAT-1 maintains lysine and arginine availability for normal embryonic development
(A and B) Retarded embryonic development in laat-1 mutants is rescued by external lysine
and arginine supplements. At least 88 embryos were examined. (C) Protein synthesis rates
determined by fluorescence recovery after photobleaching in wild-type, laat-1(qx42) and
laat-1(qx111) embryos expressing Plaat-1mCHERRY with or without externally supplied
lysine and arginine. At least 20 embryos were quantified in each strain/treatment. (D) Loss
of laat-1 and gcn-2 causes synthetic embryonic lethality. The y-axis indicates the percentage
of viable embryos in each strain/treatment. 3 independent experiments were performed with
at least 95 embryos examined in each. In panels (C) and (D), data are shown as mean±SEM.
**P<0.0001. In panels (B) to (D), lysine (K) and arginine (R) were supplied at 100 mM each
and glycine (G) was supplied at 200 mM.
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