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Abstract
Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United
States. Diagnosis and grading of FL is based on the review of histopathological tissue sections
under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-
aided image analysis tools can help improve the accuracy of diagnosis and grading and act as
another tool at the pathologist’s disposal. Our group has been developing algorithms for
identifying follicles in immunohistochemical images. These algorithms have been tested and
validated on small images extracted from whole slide images. However, the use of these
algorithms for analyzing the entire whole slide image requires significant changes to the
processing methodology since the images are relatively large (on the order of 100k × 100k pixels).
In this paper we discuss the challenges involved in analyzing whole slide images and propose
potential computational methodologies for addressing these challenges. We discuss the use of
parallel computing tools on commodity clusters and compare performance of the serial and
parallel implementations of our approach.
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1. Introduction
Follicular Lymphoma (FL) accounts for 35% of all adult B cell lymphomas, and 70% of low
grade lymphomas in U.S. clinical trials. A grading system adopted by the World Health
Organization (WHO) divides FL into three histological grades based on the average number
of centroblasts (CBs), in ten random, microscopic standard high power fields (HPF) [1].
Grade I has up to 5 CBs/HPF, grade II has 6–15 CBs/HPF and grade III has greater than 15
CBs/HPF. Grades I and II are considered indolent with long average survival rates and
patients with these grades of FL and low clinical stage do not require chemotherapy.
Moreover, since there is no evidence of benefit from chemotherapy for low grade FL, such
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patients commonly will not be treated to avoid side effects of chemotherapy. In contrast,
grade III FL is an aggressive disease that is rapidly fatal if not immediately treated with
aggressive chemotherapy. These differences underscore the importance of accurate
histological grading of FL to appropriately risk stratify FL patients and to guide crucial
clinical decisions of timing and type of chemotherapy. However, in a multi-site study, the
agreement among experts for the various grades of follicular lymphoma varied between 61%
and 73% [2]. Such a large disparity in FL grading underscores the need for additional
diagnostic tools to increase the accuracy of FL grading. One such tool that may greatly aid
pathologists in accurate FL grading is computer based image analysis.

Recent developments in imaging technology [3], [4], [5], [6] have led to the availability of
high resolution slide scanners that can scan and digitize histopathology slides at
magnifications up-to 40× microscope resolution. The availability of such technology has led
to a significant amount of research in computer aided analysis of tissue images in order to
provide a quantitative assessment of the disease [7], [8], [9]. Image analysis tools have been
developed for the automated grading of neuroblastoma [10], [11], follicular lymphoma [12],
[13], breast cancer [14], [15] and prostate cancer [16], [17].

Approaches to computerized analysis of FL have been studied in the past. Firestone, et al
[18] used texture and frequency domain based features for the classification of follicular
lymphoma. In [19], the authors used digital image analysis to study the quantification of
staining in KI-67 based immunohistochemical stained FL tissue. Kaufman, et. al [20]
studied the use of computer aided image analysis tools for follicle finding in H&E
(Hematoxylin and Eosin) stained tissue with the conclusion that the use of computerized
methods to quantify histologic features can assist pathologists in the diagnosis of follicular
lymphoma. More recently, Neuma, et al [21] developed a methodology for identifying
nuclei in immunohistochemically stained FL tissue section. This approach was based on
color segmentation using an experimentally determined threshold, followed by an adaptive
thresholding and watershed algorithm. The reported results showed an average error of 11%.
These approaches have concentrated on the task of grading and classification of follicular
lymphoma. Our group has been developing tools for computer-aided diagnosis of follicular
lymphoma [12],[13] with promising results. The work described in [13] develops tools for
the detection of follicles using H&E and immunohistochemically (IHC) stained tissue by
analyzing the morphological and textural features of the images. Using these results, we
developed models to describe tissue histology for classification of FL grades [12].

The use of these algorithms for analyzing the whole slide image requires significant changes
to the processing methodology since the images are relatively large (on the order of 100k ×
100k pixels). Therefore, while developing these methods, we have had to address the
computational issues involved. Past work has included research into the use of grid
computing [22] and graphics processing units (GPU) for efficient processing of
histopathological images of neuroblastoma [23]. These efforts focused on specific
implementations of image analysis algorithms for computer aided diagnosis. The use of
GPUs for computationally intensive parts of the application typically requires the use of C/C
++. In this paper, our focus is on the use of high level languages such as MATLAB© (The
MathWorks Inc., Natick, MA) which allow quick prototyping and debugging of algorithms.
Kong et al [24] developed a system for the evaluation of neuroblastoma in whole slide H&E
stained images through the use of a multi-resolution framework. Cambazoglu et al [22] have
proposed a grid-based framework for the processing of large histopathology images with
application to neuroblastoma prognosis.

This paper discusses our experience with the analysis of CD10 images using parallel
computing. Lessons learned from this will be used to parallelize centroblast detection
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routines which are run on 40X resolution images. The focus of this paper is on the
development of parallelization tools that can be used for several tasks in the computer aided
diagnosis of follicular lymphoma. In this paper, we discuss the challenges involved in
analyzing whole slide images and propose potential computational methodologies for
addressing these challenges. We discuss the use of parallel computing tools on commodity
clusters and compare performance of the serial and parallel implementations of our
approach. Specifically, we describe a methodology for applying a previously developed
algorithm for the detection of follicles in IHC (CD10 stained) slides [12], [25] to whole slide
images. In Section 2 we briefly discuss the grading of follicular lymphoma and the need for
IHC stains. Section 3 describes the proposed computer aided system for the detection of
follicles in FL slides along with the computational aspects of the algorithm used for follicle
segmentation. We highlight the challenges encountered in the processing of
histopathological images using existing software tools and present potential solutions.
Section 4 explains the serial processing of whole slides and the implementation of a parallel
algorithm for processing whole slide images in Section 5. Finally, we present results and
observations in Section 6.

2. Follicular Lymphoma Grading
Follicular Lymphoma grading is based on the number of centroblasts in ten representative
follicle regions in H&E stained tissues. H&E stained tissue is used for counting centroblasts
because the stain makes it possible to identify cellular details such as the nuclei and
cytoplasm in the tissue. However, identification of follicles is not always easy in H&E
stained images. In such cases, immunohistochemical (IHC) stained tissues can be used to
identify follicles. IHC stains are used to mark the tissue in hues of brown and blue color.
Follicles, which consist mostly of B-cells are stained dark brown and can be identified with
relative ease. One such example is shown in Figure 1, where follicle identification is
challenging in the H&E stained tissue (Figure 1(a)) and significantly easier in the IHC
stained tissue shown in Figure 1(b) and 1(c) respectively. The IHC stains typically used in
this task are CD10 and CD20. Samples of CD10 tissue sections at 4× resolution are shown
in Figure 2. In both images, the blue borders identify the follicle regions. These figures also
illustrate the wide variations in size and shape of the follicles, which makes it harder to
model them using well-defined geometric entities such as circles or ellipses.

In this study we have used twelve CD10 stained tissues to test the performance of our
follicle segmentation algorithm. Images varied in size and a summary is provided in Table 3.

3. System For Follicle Detection
We can broadly split the task of follicular lymphoma grading into two main procedures: (1)
Identification of follicles; and (2) Counting centroblasts in the follicles. This paper focuses
on the task of follicle segmentation in IHC stained whole slide images of follicular
lymphoma. Images of IHC stained tissues used in this research were scanned using an
Aperio ScanScope (Aperio, San Diego, CA) slide digitizer at 40× microscope magnification.
Depending on the tissue itself, scanned images can be as large as 100,000 × 100,000 in pixel
dimensions. For example, one of the images used in this study was 96,899 × 174,600 pixels
in size.

3.1. Identification of Follicle Regions
In [25], we propose an algorithm for identification of follicle regions in CD10 images.
Figure 3 shows the flowchart of the proposed algorithm. The proposed algorithm involves
calculation of color and grayscale features which are used as feature vectors for k-means
clustering. The color feature used is the hue channel from the HSV (Hue-Saturation-Value)
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colorspace conversion of the original image. The first texture feature used is the output of a
median filter of size 45×45 applied to a grayscale version of the image. The second texture
feature is the energy feature calculated from the co-occurrence matrix as defined by Haralick
[26]. The output of the clustering algorithm provides a segmented image that is further
processed by an iterative watershed algorithm followed by a boundary smoothing step. For a
detailed description of the algorithm, readers are referred to [25]. The images used in this
analysis were scaled down from the original 40× resolution to 4× resolution for processing
using the Aperio ImageScope software. A resolution of 4× was chosen because it was found
to be sufficient for the task of isolating follicles. If the structures inside the follicles are to be
analyzed, a higher resolution image will be needed.

3.2. Computation and Memory Requirements of Proposed System
The follicle detection algorithm described in this paper was applied to an image of size
9,690 × 17,460 pixels. This image is at 4× resolution and was scaled down from the original
size of 96,899 × 174,600 pixels. The algorithm was implemented in MATLAB© because of
the ease in prototyping and debugging. The two main challenges to implementing the serial
version of our algorithm were:

• Physical limits - Large amounts of memory is required to process the whole slide
image as described in Section 3.2.1. Even at 4× resolution, the images can be too
large to be processed as a single array. By employing a block-processing
methodology, we analyze whole slide images serially as described in Section 4.1.

• Computation time - Given sufficient amount of memory, the total computation time
can still be excessive, thus making the automated analysis impractical. Analysis of
the 4× image of size 9,690 × 17,460 pixels took one hour.

The follicle detection described here can be viewed in terms of three broad operations - two
dimensional (2D) filtering, clustering and post-processing. An analysis of the compute times
showed that the filtering and clustering operations were the most time consuming steps.
Table 1 lists the total time required for the most time consuming operations in the algorithm
as a percentage of the total algorithm run time. In Table 1, the “Block artifact removal”
basically involves application of the k-means algorithm to a specific region in the image, as
described in Section 4.1.1.

3.2.1. Memory Usage for Algorithm—In order to process an image of size 9,690 ×
17,460 pixels, we need approximately 507 MB (1 MB = 1 million bytes) of physical
memory for the RGB image itself because the image is of the 8-bit unsigned integer type.
Converting this image to the HSV colorspace for extracting the color features requires eight
times this amount (4 GB) because MATLAB stores the HSV image in double precision
format. Calculation of the texture features involves conversion of the RGB image to
grayscale, requiring another 170 MB of memory. The texture feature calculated from the
grayscale image is stored as a double data type and consumes approximately 1.3 GB of
memory. The second texture feature consists of the output obtained by median filtering the
grayscale image and when converted to the double data type, requires an additional 1.3 GB
of memory. Thus, simply reading in the entire image and calculating the features used for
clustering requires approximately 7.14 GB of memory. A summary of this memory usage is
presented in Table 2. The next step in the processing involves running the K-means
algorithm on a feature vector constructed from the color and texture features. Profiling this
computation step showed that the memory usage increases to over 27 GB. The maximum
memory usage during the K-means computations was found to be 36.4 GB. Since these
numbers are tightly coupled to the image size, any increase in the tissue size and/or the use
of higher resolution images (say 8× or 16×) imposes even greater requirements on the
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system. Thus, processing the entire image as a single array is impractical and alternative
methodologies are needed.

4. Whole Slide Processing
Our goal in the implementation of a computer aided system for follicular lymphoma
diagnosis is to analyze the entire tissue image for regions of interest. The analysis of whole
slide images leads to computational challenges described in Section 3.2. Here, we propose to
develop solutions that can be used to apply a variety of standard image processing
techniques to the analysis of whole slides.

4.1. Overcoming Memory Limits
The problem of memory limits described in Section 3.2.1 can be solved by simply
processing the entire image in blocks of size BwxBh at a time and stitching together all the
individual blocks to form the final output. Here, Bw is the width and Bh is the height of the
block in pixels. By reading only an BwxBh block of the image, each sub-image can be easily
processed and the resulting blocks stored in a logical array that requires significantly lower
amount of memory. Thus, for an image of size w × h pixels, the resulting binary image will
only need w*h*8 bytes of memory. Using the earlier image size of 9,690 × 17,460, the
resulting binary image of the same size will only require 170 MB of data when it is stored as
a single logical array.

While block processing of the whole slide image solves the memory limitations on a single
machine, it also brings in additional challenges. The first challenge is the choice of the block
size used for processing the image. Block sizes 256×256, 512×512, 1024×1024 and
2048×2048 were tested. We chose 512 × 512 as the block size because using smaller block
sizes results in follicles being artificially split across blocks while larger block sizes can
cause merging of regions which can be difficult to detect and fix. The use of small blocks
also leads to a larger incidence of grid artifacts which require further post-processing, thus
adding to the total computation time. Additionally, the use of larger block sizes also imposes
a greater memory requirement on the system.

The second challenge is the introduction of block artifacts in the results. The block artifact
arises due to the fact that not all follicles fit completely inside each block of the image being
processed. This is due to large variations in follicle sizes and the fact that large follicles may
be split across successive blocks in the image. The block artifact manifests itself in the form
of objects that have artificially straight boundaries. Figure 4 illustrates this problem. The
green lines in Figure 4(a) represent the boundaries of the 512 × 512 sized blocks used to
process the image. It can be seen that the grid lines pass through the objects labeled 2, 3 and
8 without introducing artificial edges in the object boundaries. These objects do not need
further post-processing. However, objects 4, 6 and 7 display straight edges that are an
artifact of the block processing and thus need to be re-processed.

4.1.1. Identifying and Removing Block Artifact—In order to remove the block
artifacts, we propose a procedure that uses morphological reconstruction [27] to first identify
those objects that touch the tile borders. This is achieved by first generating a binary image
with a grid with spacing equal to the block size used for processing the image. The green
lines in Figure 4(a) represent the grid overlaid on the image being processed. Using
morphological operations, we isolate only those grid borders that touch the objects in the
image. In many cases, grid lines pass through objects as seen on object 3 in Figure 4(a). In
case of object 3, the grid border does not affect the overall object border itself. However, in
contrast, object 7 in the same figure is severely affected. The grid borders touching object
boundaries are identified as shown in Figure 4(b) after the appropriate application of
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morphological erosion, dilation and logical exclusive-or operation. Finally, a morphological
reconstruction of the original binary image shown in Figure 4(a) using the binary image
shown in Figure 4(c) as the marker results in an image that only contains the objects that
require further processing. These objects are shown in Figure 4(d).

Thus, referring to Figure 4(a), objects 2, 3 and 8 are eliminated since the grid line pass
through these objects. This leaves us with the grid lines that touch object boundaries and
using this image as a marker, the morphological reconstruction of the mask image gives us
the objects that need to be post-processed. Each object is then re-processed to eliminate the
artificial border created by the block processing step. Since the feature vectors used for
clustering have already been computed, the re-processing step involves running the K-means
algorithm on the region of interest. It is important to note that the re-processing is done on
the object by including extra border regions in an attempt to ensure that the complete object
is identified. This extra processing can add a significant amount of time to the overall
algorithm run time.

4.2. Overcoming Time Limitations
Because of the excessively long time required to process whole slide images, we have
implemented a parallel version of our algorithm. The goals of implementing a parallel
version are as follows:

1. Enable the processing of large whole slide images by reducing the memory
footprint of the algorithm - By utilizing multiple systems, the total memory
required for the analysis can be distributed across several computers. Thus, each
individual computer does not need physical memory in the 30–40GB range.

2. Reduce total computation time of the analysis - By utilizing multiple processors
(either single machine or multiple machines), the time required for analysis can be
reduced significantly.

Our parallel algorithms were also implemented in MATLAB©. There are several options
available for parallel computing using MATLAB [28], [29], [30] and the popularity of
MATLAB in the scientific and engineering community has led to several open source as
well as proprietary solutions. Currently, there are three popular parallel MATLAB
implementations that are actively developed and supported.

• Parallel Computing Toolbox : The Parallel Computing Toolbox™ (PCT) is a
commercially supported product developed by The MathWorks™. The PCT
provides the ability to use the familiar MATLAB desktop environment to develop
and debug parallel code on a user’s desktop and to scale the algorithm on a cluster
using the MATLAB Distributed Computing Server™.

• pMATLAB: The pMATLAB [31] toolbox, developed at MIT Lincoln Labs,
provides an open source solution to parallel computing using MATLAB. It
provides the ability to create distributed matrices in MATLAB through Partitioned
Global Array (PGAS) [31], [32] semantics. The underlying mechanism for
communication is the MatlabMPI [33] library.

• bcMPI: The bcMPI [34] library is an open source toolbox developed at the Ohio
Supercomputer Center. It is intended as an alternative to MatlabMPI and mainly
targeted towards large, shared supercomputers. The bcMPI library uses OpenMPI
to provide MPI [35] style message passing over the high speed network on a
cluster, thus giving the user control over fine grained communication.

The parallel MATLAB technologies listed here have their advantages and disadvantages.
We have used MATLAB and the Parallel Computing Toolbox™ (PCT) for implementing
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parallel versions of our algorithm because of the ease of development and testing. The PCT
provides the ability to create matrices that are distributed across multiple computers, thus
enabling one to work on significantly larger data sizes as compared to a single machine and
also provides tools for message passing between multiple processes. [36].

5. Parallel Implementation
5.1. Parallel Algorithm

A performance analysis of our serial algorithm implementation revealed three major
bottlenecks in the implementation: (1) median filtering, (2) calculation of texture measure
using co-occurrence matrix and (3) K-means clustering. Out of these, the median filter and
texture calculation can be implemented as 2D parallel filters. This implementation has been
generalized so that any 2D filtering operation that works on fixed sized windows can be run
in a parallel fashion using our parallel filter code as described in Section 5.2. The K-means
clustering was parallelized by simply using serial implementations of K-means on
distributed matrices. Figure 5 shows the flowchart of the parallel implementation of our
algorithm.

In order to parallelize our algorithm, our approach is to distribute the image data across
multiple processors. Each processor reads in only a subsection of the image and works on
the section of the image that is local to the specific processor. A small amount of
communication between the processors is necessary in order to exchange padding columns/
rows as described in the next section.

5.2. Parallel 2D Filtering
The median filtering and texture calculations are operations that are performed on a 2D
matrix using kernels of size m × m. Typically, square windows of odd sizes are used for
calculating the filter outputs. For example, in our algorithm the median filter is applied to 45
× 45 windows and the texture calculations are performed on 15 × 15 windows for 4×
resolution images. The rest of this section describes the implementation of a parallel filter
that operates on m × m kernels. While the median filter is used as an example, the same
approach is valid for any filter that operates on similar kernels.

A m × m median filter centered at pixel p(i,j) replaces the value of p(i,j) with the median
value of all pixels in the m × m neighborhood around p(i,j). This operation can be
parallelized by using the following approach -

i. Distribute 2D image matrix across Np processors along the columns. Each
processor now has h × wp section of the image, where h is the number of rows in
the original image and wp is the number of columns on processor p.

ii. All processors exchange (m−1)/2 padding columns of data with their neighbors -
This is illustrated in Figure 6 where processor 2 exchanges two columns of data
each with processor 1 and 3. This results in each processor having additional data
to process. The red dashed lines in the figure encompass the total amount data to be
filtered by each processor.

iii. Apply filter to local data on each processor - The 2D filter is applied to the padded
matrix on each processor. In Figure 6, the red dashed lines indicate the data on each
processor. Thus, each processor now applies the 2D filter to the padded array as
shown here.

iv. Discard padding columns and combine partial results from each processor to get
the final result.

Samsi et al. Page 7

J Comput Sci. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While this example uses a column-based distribution of data across processors, we have also
implemented a row-based data distribution method.

Since each processor needs to exchange data with it’s neighbors, there is some
communication overhead that depends on the number of processors and the window size
used for the 2D filter. This communication results in a less than linear speedup as the
number of processors are increased. Using this approach any 2D filter that operates on small
kernels can be parallelized. Calculation of the texture energy from the co-occurrence matrix
was also implemented in a parallel way using this approach.

5.3. K-means On Distributed Matrices
The K-means clustering algorithm is a well studied approach to data clustering [37], [38],
[39]. Several parallel implementations of the algorithms have been developed [40], [41],
[42] including implementations that run on graphics processing units (GPUs) [43], [44]. We
have used the k-means++[45] algorithm written in MATLAB for selecting initial centers. As
implemented in our approach, the K-means clustering was parallelized by simply using
serial implementations of K-means on distributed matrices. This approach is much simpler
to implement and takes the advantage of much larger memory available by distributing the
data across multiple processors. The parallel implementations of the median filter and the
texture calculations produce the feature vectors that are used for clustering. The outputs of
the median filter and texture calculations are also distributed matrices. Since each processor
has a subset of all the feature vectors, the K-means algorithm can be run locally by each
processor. The K-means algorithm is also run using the block processing methodology
described in 4.1, with the block size being 512 × 512 pixels.

6. Results
This study focused on the analysis of CD10 stained images of follicular lymphoma. As
mentioned previously, the images used in this study were scanned using an Aperio™
ImageScope digitizer at 40× microscope resolution. All images were originally in the SVS
image format developed by Aperio and is a JPEG-2000 compressed TIFF format. Images
were down-sampled to 4× resolution and converted to uncompressed TIFF format using the
ImageScope [46] viewer provided by Aperio. Details of the downsampling technique used
by the viewer is not available at this time and to our knowledge it is not possible to change
the method used. A list of the 12 images used in this study and the image dimensions at 4×
resolution are shown in Table 3.

The serial and parallel implementations of our algorithm were applied to whole slides
images of follicular lymphoma. The analysis was done on the high performance computing
resources (HPC) at the Ohio Supercomputer Center [47]. The cluster is an AMD Opteron
based system consisting of 877 dual socket, dual core 2.6 GHz Opteron processors with 8
GB of RAM and 650 dual socket, quad core AMD Opteron with 24 GB of RAM. It also
includes ten systems with quad socket, quad core AMD Opteron with 64 GB of RAM.

The serial version was tested on a system with a quad socket quad-core AMD Opteron
processors with 64GB of physical RAM. On this system, there is sufficient memory to
actually perform the analysis on the entire image by treating it as a single array. In this case,
since the entire image can be processed as single array, the problem of block artifact
removal does not arise. The serial algorithm was also run on a system with dual socket quad-
core AMD Opteron processors with 24GB of RAM using the block processing approach
described in Section 4.1. Finally, the parallelized version of our algorithm was run on the
dual socket, quad core AMD Opteron systems described above. Each image was processed
using the parallel algorithm with the number of processors used ranging from 2 to 12. Each

Samsi et al. Page 8

J Comput Sci. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



image was analyzed using column distribution across all processors. The parallel algorithm
was run 10 times per image, per set of processors.

Table 4 shows a comparison on the total algorithm time for the original serial version, the
serial version with block processing and the parallel version when run on 12 processors. In
this table we observe that the addition of block processing results in an increase in the total
processing time as compared with the serial version without using block processing. This is
because of the fact that the block processing approach leads to the introduction of grid
artifacts that have to be removed as described in Section 4.1.1. This removal process is
carried out with additional image data included on all sides on the object being re-processed
- thus leading to an increase in the total compute time for the serial algorithm. In the images
used in this study, the use of block processing in the serial implementation of the algorithm
led to a maximum of 29% increase in the total compute time for Image 1 in Tables 3 and 4.
However, the use of block processing enables the processing of larger images that will
require significantly greater amounts on memory for processing.

6.1. Parallel algorithm performance
From Table 4 we also observe that a non-linear speedup is observed when using 12
processors. There are primarily two causes of this non-linearity. The first is the introduction
of the grid artifacts which results in additional processing. These extra computations are
dependent on the amount of local data being re-processed and do not scale linearly with the
number of processors used. The second cause of the non-linear speedup is the imbalance in
the data distribution across processors.

The manner in which each image is distributed across the processors leads to a different
number of non-background pixels on each specific processor. For example, consider the
case of 10 processors using the image of size 9689 × 17459 (Image 1 in Table 3) and the
image being distributed along the columns. Each processor uses only non-background data
for k-means clustering. In this particular case, the number of non-background pixels on each
processor and the corresponding number of calculations per k-means iteration are as shown
in Table 5.

From this table, we see that processor 8 has to perform approximately 16.7 million
calculations per iteration of the k-means algorithm, whereas processors 2 and 3 have to
perform almost 4 times as many calculations per iteration. Thus, the time required for
processing the whole slide image could potentially be dominated by the time required for the
k-means step on processors 2 and 3, in addition to the actual number of iterations required
for convergence. The solution to this problem is to distribute the image across all the
processors in a block cyclic manner so that the regions containing the background of the
image are not concentrated on a single processor

Figure 7 shows the run time observed for the parallel texture energy calculations and the
parallel median filter with increasing number of processors for two of the largest images
used in this study. It can be seen that increasing the number of processors has a more
significant effect on the texture energy calculations. Starting at 10 processors, the
computation time starts to level off. This is caused by the fact that each processor now has a
much smaller amount of data and the added benefit of an increased number of processors
does not translate into a significant speed gain.

Figure 8 shows the time required for the parallel k-means implementation for two of the
largest images used in this study. The result of the K-means algorithm is used to threshold
each image block which identifies follicles in the image.
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Figure 9 shows the average time required for the parallel implementations of the median
filter, texture energy calculations and k-means clustering for four of the largest images used
in this study. It can be observed that the time required decreases with the number of
processors used for the parallel algorithm. The average time for the entire algorithm is
shown in Figure 10. The average time was calculated across all images and all processor
combinations. The timing clearly shows a trend of decreasing time required to process
whole slide images as the number of processors is increased.

7. Conclusion
In this paper we have presented an efficient parallel implementation of an automated
algorithm for detecting follicles in IHC whole slide images. The algorithm was developed
and originally tested on small images. We have presented the challenges encountered in
applying the same algorithm to find follicles in images of whole slides and we have
presented the use of parallel computing as one potential solution. The use of multiple
systems for processing one image can help reduce the total compute time required for the
analysis as well as overcome physical memory limits on a single system. The ability to use
high level languages such as MATLAB quickly prototype such algorithms and test on whole
slides using parallel computing can be a powerful tools towards the development of
automated computer-aided diagnosis systems. While the current implementation of the
parallel algorithm has been found to greatly reduce the computation time, the algorithm does
not perform load balancing across multiple processors. Investigation into this aspect of the
parallel implementation is needed to improve performance.
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Figure 1.
H&E (1(a)) and IHC (1(b), 1(c)) stained tissue: Adjacent tissue slices stained with H&E and
different IHC stains used to visualize different tissue components
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Figure 2.
Follicles in CD10 stained tissue shown at 4× microscope resolution
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Figure 3.
Flowchart for Follicle Detection in CD10 images
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Figure 4.
Detection of grid artifact in whole slide image: Artificially straight object borders indicate
the presence of grid artifacts produced as a result of block processing of large image
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Figure 5.
Parallel implementation: Image is distributed across Np processors and processed in Bw × Bh
blocks on each processor
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Figure 6.
Inter-processor communication: Data exchange between processors is indicated by the blue
lines. Processors need to exchange borders columns/rows of data
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Figure 7.
Run time for parallel median filter and texture energy calculation for two images used in the
study
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Figure 8.
Run time for parallel k-means calculations for two images used in the study
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Figure 9.
Average timing for parallel median filtering, texture energy calculation and k-means
clustering for four CD10 stained tissue images used in the study
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Figure 10.
Computation time for parallel algorithm: Average time for entire algorithm calculated over
10 runs of the algorithm across all images used in the study
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Table 1

Average computation time for various operations in the serial implementation of proposed algorithm: Timings
are averaged over 5 runs for all images listed in Table 3

Operation Percent of total time

Median Filter 0.974 %

Texture calculation 56.722 %

K-means Clustering 16.33 %

Block artifact removal 17.141 %

Other operations 8.832 %
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Table 2

Memory usage for serial implementation when analyzing whole slide image of size 9,690 × 17,460 pixels

Data Memory Used

RGB Image 507 MB

HSV Image 4 GB

Texture energy feature 1.3 GB

Median filter output 1.3 GB
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Table 3

Image sizes for data used in this study

Image Size (in pixels)

Image 1 9689 × 17459

Image 2 7285 × 14565

Image 3 7186 × 14565

Image 4 7896 × 12185

Image 5 8657 × 10567

Image 6 8425 × 10662

Image 7 8859 × 9797

Image 8 7977 × 9234

Image 9 6910 × 9125

Image 10 7809 × 7491

Image 11 7064 × 8259

Image 12 7168 × 7396

J Comput Sci. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Samsi et al. Page 27

Table 4

Comparison of total algorithm time in seconds for serial algorithm with and without block processing and
parallel algorithm running on 12 processors and using block processing

Image Serial (Ts) Serial with block
processing

Parallel using 12
processors (Tp)

Speedup
Ts
Tp

1 1220.52 ± 127.36 1570.13 ± 8.96 151.26 ± 4.87 8.06

2 855.62 ± 40.08 974.78 ± 7.18 111.52 ± 13.47 7.67

3 802.63 ± 43.86 953.4 ± 11.95 98.25 ± 6.24 8.16

4 717.53 ± 67.32 868.83 ± 6.76 86.76 ± 5.55 8.27

5 699.56 ± 98.96 805.26± 5.76 84.70 ± 7.19 8.25

6 713.98 ± 35.19 890.61 ± 7.72 86.99 ± 6.68 8.20

7 776.53 ± 44.5 806.66 ± 9.52 81.42 ± 5.50 9.53

8 579.31 ± 59.53 701.41 ± 4.74 71.24 ± 5.34 8.13

9 543.22 ± 50.06 634.65 ± 10.74 77.03 ± 14.02 7.05

10 518.32 ± 31.65 559.21 ± 2.47 75.98 ± 23.391 6.82

11 466.91 ± 25.91 553.26 ± 9.43 64.08 ± 8.64 7.2

12 433.23 ± 20.89 487.51 ± 1.43 53.63 ± 3.34 8.07
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Table 5

Data distribution across ten processors

Processor
Number

Non-background pixels
(in millions)

Number of calculations
for 4 centers (in millions)

1 11.4467 45.8670

2 15.2282 60.9128

3 14.9236 59.6944

4 8.5181 34.0725

5 8.0459 32.1836

6 10.8125 43.2502

7 4.9670 19.8682

8 4.1810 16.7242

9 11.4379 45.7516

10 10.3697 41.4788
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