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Abstract
Diabetes causes a number of metabolic and physiologic abnormalities in the retina, but which of
these abnormalities contribute to recognized features of diabetic retinopathy (DR) is less clear.
Many of the molecular and physiologic abnormalities that have been found to develop in the retina
in diabetes are consistent with inflammation. Moreover, a number of anti-inflammatory therapies
have been found to significantly inhibit development of different aspects of DR in animal models.
Herein, we review the inflammatory mediators and their relationship to early and late DR, and
discuss the potential of anti-inflammatory approaches to inhibit development of different stages of
the retinopathy. We focus primarily on information derived from in vivo studies, supplementing
with information from in vitro studies were important.

1. Introduction
About 8 percent of the U.S. population has diabetes, and the number of people diagnosed
with this disease is increasing rapidly in the US and the world. DR is a major cause of visual
impairment, and is the leading cause of blindness in the United States for individuals 20-75
years of age (Kempen et al., 2004). The prevalence of DR in adult diabetic patients is greater
than 40%, with approximately 5%-10% developing vision-threatening complications,
including proliferative diabetic retinopathy (PDR), severe non-proliferative diabetic
retinopathy, or macular edema (Kempen et al., 2004).

Many mechanisms have been postulated to explain the pathogenesis of the retinopathy, but
many of these postulated mechanisms are focused on particular molecular abnormalities. In
this review, we review evidence that supports a hypothesis that inflammatory-like processes
play a critical role in the development of the early and late stages of the retinopathy, and that
the inflammation hypothesis can encompass many of the previously postulated mechanisms
under a broad “umbrella” hypothesis of the pathogenesis of diabetic retinopathy. We will
first review the lesions of the retinopathy, then discuss studies that support the postulated
role of inflammatory processes in the pathogenesis of diabetic retinopathy, as well as
weaknesses of the present inflammatory hypothesis, and future directions.
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2. Diabetic Retinopathy
The clinically visible lesions of diabetic retinopathy are mainly vascular in nature.
Consequently, diabetic retinopathy has been regarded as a vascular disorder for many years.
The natural history of the retinopathy has been divided into two stages based on the
proliferative status of the retinal vasculature: an early, nonproliferative stage (NPDR;
Fig1A), and an advanced, proliferative or neovascular stage (PDR; Fig1B). Neural
abnormalities have also been recognized, and are now being explored to determine their
clinical significance.

2A. Early stages of diabetic retinopathy
Changes during the nonproliferative stage of the retinopathy rarely have clinical significance
themselves, but increases in their presence and severity tend to predict progression towards
the more advanced and clinically significant stages of the disease. Patients with early
diabetic retinopathy commonly have retinal microaneurysms, which appear as red dots on
dilated funduscopic examination. These microaneurysms are localized dilatations of the
microvasculature which have been postulated to have developed as a result of localized
weaknesses in the vessel wall, pressure disturbances, or glial retraction/death (Kern, 2007).
An increase in the rate of appearance and disappearance of microaneurysms has been found
to mark progression of the retinopathy, and to predict future reductions in visual function
(Nunes et al., 2009). Microaneurysms have been detected also in diabetic dogs, cats, and
primates, but have not been found to develop reproducibly in diabetic rodents (Kern, 2008;
Zheng and Kern, 2010).

Capillary nonperfusion and degeneration also are important lesions of the early retinopathy
(de Venecia et al., 1976; Kohner and Henkind, 1970), because they have been regarded as
causal in the eventual progression to neovascularization (Shimizu et al., 1981) as
summarized in this simple flowchart:

Hypoxia stimulates the release of hypoxia-regulated vasoproliferative factors, such as
Vascular Endothelial Growth Factor (VEGF), but VEGF has been found to be increased in
retinas of diabetic animals also before capillary degeneration, indicating that also other
factors regulate its induction in diabetes. Capillary nonperfusion is not detectable clinically
without infusion of a fluorescent dye (fluorescein) into the blood (Fig 1C), but degenerate
capillaries are very apparent in isolated preparations of the retinal microvasculature (Fig
1D). Diabetes-induced degeneration of retinal capillaries has been observed to develop in all
animal species tested to date (Kern, 2008; Zheng and Kern, 2010), but the extent of capillary
nonperfusion and degeneration that has developed in diabetic animal models studied for
only a few years or less is modest compared to that in some diabetic patients (likely
explaining the failure of animal models to progress to preretinal neovascularization).

Retinal edema or thickening of the retina occurs in some diabetic patients, and is believed to
be due to breakdown of the blood-retinal barrier, resulting in localized increases in vascular
permeability that exceed the pumping capacity of the retinal pigment epithelium. This
increase in permeability occurs at the level of the vascular endothelium, and is both
correlated with and secondary to increases in expression of VEGF (Ehrlich et al., 2010). In
patients with early NPDR, the leakage seems to arise primarily from microaneurysms, and
result in focal areas of edema.
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Neural function and structure also are altered in the retina in diabetes. Diabetes results in a
reduction in contrast sensitivity and electroretinogram (ERG) in diabetic patients and
animals. Several studies of histologic material have demonstrated also that some retinal
neuroglia are lost in diabetic patients and rodents (Barber et al., 1998). In vivo use of
scanning laser polarimetry, optical coherence tomography and other techniques found a
thinning of the thickness of the nerve fiber layer or retina in diabetic patients, further
consistent with loss of retinal ganglion cells and their axons in diabetes (Kern and Barber,
2008).

2B. Advanced stages of diabetic retinopathy
The more advanced stages of diabetic retinopathy commonly are defined by retinal
neovascular events and impairment of vision. The mechanisms of DR-related vision loss
include vitreous hemorrhage, tractional retinal detachment from proliferative diabetic
retinopathy, development of a fibrovascular membrane in the vitreous, and macular edema.
Study of diabetic neovascularization and macular edema in laboratory animals has been
problematic, as most laboratory species lack a macula, and have not shown the retinal
neovascularization and thickening characteristic of advanced diabetic retinopathy in
patients.

2C. Current therapies for diabetic retinopathy
Several therapeutic approaches are in use clinically to inhibit the development or
progression of the retinopathy. The earlier stages of the retinopathy can be reduced by
aggressive intervention to control hyperglycemia (Diabetes Control and Complications Trial
Research Group, 1993; UK Prospective Diabetes Study Group, 1998), blood pressure, and
lipids (Chaturvedi et al., 1998; Mauer et al., 2009; UK Prospective Diabetes Study Group,
1998). Unfortunately, maintaining normal metabolic control has been very difficult to
accomplish in many diabetic patients. Data from studies showing a beneficial effect of lipid
or blood pressure control recently have been challenged (Mancia, 2010; Mitka, 2010).

Treatments to inhibit advanced stages of the retinopathy include laser and vitrectomy, anti-
VEGF therapies, and steroids. When used appropriately and in a timely manner, laser and
vitrectomy help reduce the risk of catastrophic vision loss from DR (The Diabetic
Retinopathy Study Research Group, 1981), although laser therapy is inherently destructive.
A number of studies have implicated VEGF as a major causative factor in diabetic macular
edema, retinal neovascularization and related complications (including vitreous hemorrhage
and tractional retinal detachments) (Zhang et al., 2009b). Macular edema in diabetic patients
can be significantly reduced by intravitreal administration of VEGF antagonists (Elman et
al., 2010; Kashani et al., 2010), or steroids (Gillies et al., 2006; Yilmaz et al., 2009).
Unfortunately, the beneficial effects of intravitreal steroids have been found to be temporary
compared to effects of standard laser photocoagulation (Grover et al., 2008), and
complications (cataract formation and steroid-induced glaucoma) have developed after
intravitreal steroids (Jones and Rhee, 2006).

Given the limitations and side effects of current treatments of diabetic retinopathy, there has
been a continuing effort to understand the molecular mechanisms that contribute to the early
changes seen in the retinas of diabetics. One hypothesis that is gaining considerable
experimental support as a cause of diabetic retinopathy is inflammation.
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3. Inflammation and diabetic retinopathy
3A. What is inflammation?

Inflammation is a nonspecific response to injury that includes a variety of functional and
molecular mediators, including recruitment and/or activation of leukocytes. Inflammation
typically has beneficial effects on an acute basis, but can have undesirable effects if
persisting chronically. The classic cellular inflammation model has been recognized for
decades, but current discussions of inflammation include also molecular changes and
mechanisms (Fig 2). Inflammation is one of the means by which the innate immune system
of a host rapidly protects itself after exposure to an antigen or microorganism. Recognition
of pathogens by the innate immune system is mediated by specific binding of the pathogen
to pattern recognition receptors, such as Toll-like receptors (TLR) and Receptor for
Advanced Glycation Endproducts (RAGE). The ligands for these receptors are categorized
as classes of molecules, termed “pathogen-associated molecular patterns” (PAMPs).
Activation of TLRs results in the production of cytokines such as Tumor Necrosis Factor-
alpha (TNFα) and interleukin-1-beta (IL-1β), which act to induce the expression of pro-
inflammatory proteins. Inflammation normally resolves promptly through a coordinated
program that includes resolvins, lipoxins, and protectins (Serhan, 2007).

The increased expression of many inflammatory proteins is regulated at the level of gene
transcription through the activation of proinflammatory transcription factors, including
Nuclear Factor-kappa-B (NF-κB). NF-κB activation eventually leads to the synthesis of
many cytokines, chemokines, acute phase proteins, and pro-inflammatory molecules. In
autoimmune disease and inflammatory conditions, proinflammatory proteins such as
cyclooxygenase-2 (COX-2), IL-1β, the inducible isoform by nitric oxide synthetase (iNOS),
and TNFα are induced.

3B. Inflammation and early stages of diabetic retinopathy
A possible contribution of inflammation to the development of diabetic retinopathy
developed out of initial reports that diabetic patients taking salicylates to treat rheumatoid
arthritis had a lower-than-expected incidence of DR (Powell and Field, 1964). Since then, a
variety of physiologic and molecular abnormalities that are consistent with inflammation
have been found to be increased in the retinas or vitreous humor of diabetic animals and
patients. Microarray analyses likewise have shown an inflammatory response in retinas from
diabetic rodents (Brucklacher et al., 2008).

These pro-inflammatory changes are consistent with the innate immune pathway and have
been reviewed also elsewhere (Adamis and Berman, 2008; Kaul et al., 2010; Kern, 2007).
Many of these inflammatory changes seem important in the development of diabetic
retinopathy because inhibiting them blocks the development of lesions characteristic of the
retinopathy in animals. Inflammatory molecules that have been shown to contribute to
structural or functional alterations that are characteristic of the retinopathy are summarized
in Table 1, and more detailed information about each of these abnormalities follows in
Sections 3B1 and 3B2. Subsequently, this chapter includes a discussion of how these
abnormalities apparently interact (Section 4), and a discussion of which of these
inflammatory abnormalities might be good therapeutic targets at which to inhibit the
retinopathy (Section 5). Our present understanding of the role of inflammatory processes in
the pathogenesis of diabetic retinopathy is at an early stage, and needs to be expanded.

3B1. Molecular changes in diabetic retinopathy
iNOS and nitric oxide (NO): Upregulation of iNOS has been found in retinas of
experimental diabetic rodents and patients in most studies (Zheng and Kern, 2009). A
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possible role of this enzyme in the pathogenesis of diabetic retinopathy was suggested
initially by the studies using aminoguanidine. Aminoguanidine is an inhibitor of iNOS, and
has been found to inhibit the diabetes-induced increase in NO production and iNOS
expression in retina (Du et al., 2002), as well as the development of the microvascular
lesions of diabetic retinopathy in diabetic rats, dogs, and mice (Zheng and Kern, 2009).
Nevertheless, aminoguanidine also has other effects, so this therapy does not prove a role of
iNOS in the pathogenesis of the retinopathy. The role of iNOS in the development of the
early stages of diabetic retinopathy recently has been demonstrated directly using mice
genetically deficient in iNOS (Leal et al., 2007; Zheng et al., 2007a) (Fig 3). In those
studies, diabetic mice in which iNOS had been deleted or inhibited did not develop diabetes-
induced structural (including capillary degeneration) or functional (permeability)
abnormalities in the retina. This contribution of iNOS to development of the retinopathy
seems not to be necessarily true of other nitric oxide synthases, because deletion of
endothelial nitric oxide synthase exacerbates the retinopathy (Li et al., 2010b).

Production of nitric oxide results in both nitration and nitrosylation of retinal proteins (Ali et
al., 2008; El-Remessy et al., 2003a; El-Remessy et al., 2005; El-Remessy et al., 2003b; Zhan
et al., 2007), resulting in potentially toxic effects (Ali et al., 2008).

Eicosanoids and lipids: Diabetes alters the lipid profile of the retina (Tikhonenko et al.,
2010). Eicosanoids are metabolites of arachidonic acid, and are known mediators of
inflammation. Two major families of eicosanoids are the prostaglandins (synthesized by
cyclooxygenases) and leukotrienes (synthesized via lipoxygenases).

In retinas of diabetic animals, induction of COX-2 as well as increased production of
prostaglandins has been reported. In advanced stages of diabetic retinopathy, COX-2 was
identified in vascular endothelial cells in fibrovascular epiretinal membranes removed from
diabetic patients (El-Asrar et al., 2008). PGE2 production by retinas from diabetic rats was
significantly inhibited by celecoxib (a selective COX-2 inhibitor), but not by a COX-1
inhibitor (Ayalasomayajula and Kompella, 2004), suggesting that COX-2 is responsible for
the diabetes-induced increase in retinal prostaglandin production. Inhibition of COX-2 also
inhibited the diabetes-induced upregulation of retinal VEGF (Ayalasomayajula and
Kompella, 2003), increase in retinal vessel permeability and leukostasis (Joussen et al.,
2002), and death of retinal endothelial cells cultured in diabetic-like concentrations of
glucose (Du et al., 2004). The COX-2 inhibitor, Meloxicam, also reduced eNOS levels,
inhibited NF-κB activation in the diabetic retina, and partially reduced TNFα levels in the
retina (Joussen et al., 2002). The effect of selective COX inhibitors on histologic lesions of
diabetic retinopathy has not been studied, but less selective COX inhibitors (such as
salicylates) have inhibited the development of the retinal vascular histopathology in diabetic
dogs and rodents (Kern and Engerman, 2001; Zheng et al., 2007b). The COX inhibitor,
Nepafenac, inhibited the diabetes-induced increases in retinal prostaglandin production and
leukocyte adhesion in retinal vessels, as well as apoptosis of retinal capillary cells, and
degeneration of retinal pericytes and capillaries (Kern et al., 2007).

Products of 5-lipoxygenase, including leukotriene B4 (LTB4) and leukotrienes C4/D4/E4, are
important in leukocyte recruitment and vascular permeability, respectively. Lipoxygenase-
derived 5-hydroxyeicosatetraenoic acid (5-HETE) and other arachidonate and
docosahexanoate-derived lipid autacoids are increased in the vitreous of diabetic patients
(Schwartzman et al., 2010). Deficiency of 5-lipoxygenase inhibited the diabetes-induced
degeneration of retinal capillaries, as well as leukostasis and superoxide generation in mice
(Gubitosi-Klug et al., 2008) (Fig 4). In contrast, deficiency of 12-lipoxygenase inhibited
leukostasis in the retinal vasculature of diabetic mice, but did not inhibit the degeneration of
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retinal capillaries. Antagonism of the BLT1 receptor inhibited LTB4-induced death of retinal
endothelial cells in culture (Talahalli et al., 2010).

Interestingly, retinas from nondiabetic or diabetic mice produce neither leukotrienes nor 5-
lipoxygenase mRNA, but addition of exogenous leukotriene A(4) to retina or retinal glial
cells results in robust production of leukotriene B(4) or cysteinyl leukotrienes. Thus, retinal
cells can produce pro-inflammatory/ toxic prostanoids, but only if they are provided the
initial substrate (LTA4) from another cell type (Fig 5). In contrast to retinal cells, bone
marrow cells (which mature into white blood cells) from diabetic mice produced greater
than normal amounts of LTB4 (Talahalli et al., 2010). This data suggests that marrow-
derived cells can generate LTA4, and that transcellular delivery of prostanoid precursors
from blood-borne cells to the retina can contribute to the death of endothelial cells, and
likely also, the chronic inflammation in diabetic retinopathy (Talahalli et al., 2010).

In contrast to pro-inflammatory effects of some lipids, docosohexanoic acid, resolvins and
other autocoids have been shown to have anti-inflammatory actions in retinal cells (Chen et
al., 2005; Opreanu et al., 2010). Busik and collaborators have reported also that
administration of docosahexanoic acid inhibits diabetes-induced degeneration of retinal
capillaries in animals (unpublished), but whether or not this is related to anti-inflammatory
effects remains to be learned.

Adhesion molecules and integrins: White blood cells bind to ICAM-1 on the surface of
endothelial cells in a multi-step process leading to adherence of the blood cells to the
endothelial wall, a characteristic of inflammation. ICAM-1 is upregulated by several stimuli,
including VEGF, PARP activation, oxidative stress, and dyslipidemia, at least in part via
NF-κB. VCAM expression also is increased in the retinal vasculature in diabetes. Diabetic
mice genetically deficient in ICAM-1 or its ligand (CD18) were protected from the expected
development of lesions of early diabetic retinopathy (including capillary degeneration,
pericyte loss and increased permeability) as well as leukostasis (Joussen et al., 2004).
Topical administration of a small molecule antagonist of leukocyte function associated
antigen-1 (LFA-1) to diabetic rats has been shown to significantly reduce retinal leukostasis
and blood-retinal-barrier breakdown (Rao et al., 2010).

Integrin alpha 4/CD49d has been identified as another mediator of leukocyte adhesion and
alterations of retinal vascular physiology in early diabetic retinopathy. Blockade of this
integrin attenuated the diabetes-induced inflammatory changes in retina, including activation
of NF-κB, upregulation of VEGF and TNFα, leukostasis and vascular leakage (Iliaki et al.,
2009).

VEGF: VEGF is known to be a pro-inflammatory molecule whose vitreal levels are highly
correlated with retinal neovascularization and edema. Intraocular delivery of anti-VEGF
therapies are now used widely to treat advanced diabetic retinopathy (for a review see
(Wirostko et al., 2008). The actions of VEGF to enhance permeability and endothelial cell
migration/proliferation during angiogenesis are well documented, and might occur via
vascular inflammation. VEGF has been shown to promote endothelial cell expression of
ICAM-1), leading to leukocyte activation and cytokine release, thereby causing further
increases in VEGF expression and amplification of the inflammatory response. Specific
blockade of endogenous VEGF(164) resulted in a significant suppression of retinal
leukostasis and BRB breakdown in both early and established diabetes (Ishida et al., 2003a).
VEGF is produced to a large degree in Müeller (glial) cells of the retina, and inhibition of
Müeller cell-derived VEGF significantly decreased expression of TNFα, ICAM-1 and NF-
κB in diabetic mice (Wang et al., 2010). Inhibition of VEGF in the retina using a sulfonated

Tang and Kern Page 6

Prog Retin Eye Res. Author manuscript; available in PMC 2012 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



oligosaccharide was associated with inhibition of leukostasis and ERG changes in diabetic
rats (Ma et al., 2009).

Cytokines and chemokines: Levels of IL-1β and TNFα are increased in retinas from
diabetic animals. Caspase-1 is the enzyme that generates active IL-1β from its precursor,
and the biological activity of IL-1β is mediated by binding to the cell surface receptor,
IL-1R1. Activity of caspase-1 is increased in retinas of diabetic mice, galactose-fed mice,
diabetic humans, and in retinal Müller cells incubated in elevated glucose concentration
(Mohr et al., 2002). Dietary antioxidants (Kowluru and Odenbach, 2004; Yulek et al., 2007)
or inhibition of caspase-1 using minocycline (Vincent and Mohr, 2007) inhibited the
diabetes-induced increase in IL-1β in retina, and inhibited degeneration of retinal capillaries
in those animals (Vincent and Mohr, 2007). As a further confirmation of the role of IL-1β in
degeneration of retinal capillaries, mice lacking the IL-1β receptor were protected from
degeneration of retinal capillaries in diabetes (Vincent and Mohr, 2007). One known action
of IL-1β is to activate NF-κB.

Eternacept, a soluble TNFα receptor that acts as competitive inhibitor to block effects of
TNFα binding to cells, reduced leukocyte adherence in retinal blood vessels (Joussen et al.,
2002) and blood-retinal barrier breakdown and NF-κB activation in the diabetic retina
(Joussen et al., 2009). Intravitreal injection of another TNFα-specific inhibitor,
pegsunercept, led to a significant reduction in pericyte loss and capillary degeneration in
diabetic rats (Behl et al., 2008; Behl et al., 2009), and mice genetically deficient in TNFα
were reported to have less diabetes-induced increase in vascular permeability and
leukostasis in diabetes (Huang et al., 2011), and pericyte and endothelial cell loss in
experimental galactosemia (Joussen et al., 2009). Consistent with a role of TNFα in the
diabetes-induced degeneration of retinal capillaries, DNA binding of transcription factor
Forkhead box O1 (FOXO1), which is regulated by TNFα, is elevated in retinas of animals
having type 1 and type 2 diabetes, and the diabetes-induced degeneration of retinal
capillaries and pericyte loss were inhibited by intravitreal injection of FOXO1 siRNA (Behl
et al., 2009).

Vitreal concentrations of proinflammatory cytokines (TNFα, IL-8,and IL-6), chemokines
(monocyte chemotactic protein-1 (MCP-1) and other proteins (endothelin-1, sE-selectin,
VEGF, ICAM-1, CXCL10/IP-10) have been found to be higher in patients with PDR or
diabetic macular edema than in controls. Vitreous samples and epiretinal membranes
obtained by vitrectomy in advanced DR also have significantly increased levels of IL-6,
IL-8, and MCP-1 in diabetic macular edema (Kocak et al., 2010).

Complement activation: Deposition of C5b-9, the terminal product of complement
activation, has been observed within retinal blood vessels of diabetic humans (Dagher et al.,
2004; Zhang et al., 2002), and complement C3 and complement factor I, as well as
prothrombin, alpha-1-antitrypsin, antithrombin III and Factor XIII were increased in
vitreous of patients having PDR (Gao et al., 2008). Immunohistological study of pre-retinal
membranes from diabetic patients showed deposition of complement components within the
connective stroma and along new vessels (Baudouin et al., 1993), as well as the presence of
C3d, C5b-9, and vitronectin in the choriocapillaris of eyes with DR (Gerl et al., 2002).

Fas: Fas levels are increased in retinas of rats diabetic for 2 weeks, and blocking FasL in
vivo inhibited endothelial cell damage, vascular leakage, and platelet accumulation in
diabetes (Joussen et al., 2003).

NF-κB and other transcription factors: NF-κB is a widely expressed inducible
transcription factor that is an important regulator of many genes involved in inflammatory
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and immune responses, cellular proliferation and apoptosis. Activation of NF-κB results
most commonly in the translocation of p50-p65 heterodimers into the nucleus, where
transcription of a variety of pro-inflammatory proteins (including iNOS, ICAM, and
cytokines) subsequently are induced. Diabetes has been shown to activate NF-κB in rodent
retinas ( Zheng et al., 2004; Kowluru et al., 2006), and to cause migration of the p65 subunit
into nuclei of retinal endothelial cells, pericytes, ganglion cells, or cells of the inner nuclear
layer (Romeo et al., 2002; Zheng et al., 2007b). DNA-binding experiments also have
demonstrated increased DNA-binding activity of NF-κB in retinal endothelial cells or
pericytes exposed to elevated glucose concentration. NF-κB expression (mRNA and
immunohistochemical analysis) was higher than normal in epiretinal membranes of patients
with PDR (Harada et al., 2004; Mitamura et al., 2003).

There is increasing evidence in support of an important role of NF-κB in the pathogenesis of
early stages of DR. Seemingly selective inhibition of NF-κB activation using
dehydroxymethylepoxyquinomicin inhibited diabetes-induced increases in retinal
leukostasis and expression of ICAM-1 and VEGF in vivo (Nagai et al., 2007), but studies on
long-term histopathology were not conducted. Diabetes-induced degeneration of retinal
capillaries and expression of inflammatory proteins nevertheless were inhibited by less
selective therapies that inhibited activation of retinal NF-κB in diabetes (salicylates such as
aspirin, sodium salicylate, and sulfasalazine (Zheng et al., 2007b) or antioxidants (Kowluru
et al., 2003)). Deletion of p105, a precursor to the p50 subunit of NF-κB, resulted in
accelerated degeneration of retinal capillaries in diabetes (Veenstra and Kern, in
preparation). We postulate that deletion of p105 in our diabetic mice removes an important
potential regulator of NF-κB-dependent transcription, thus resulting in supranormal retinal
inflammation and subsequent histopathology.In addition to its well-recognized role in target
gene transactivation by forming heterodimers with RelA, RelB, or c-Rel , the p50 subunit
also can form p50-50 homodimers that block transactivation by the classical NF-κB
(Ziegler-Heitbrock, 2001).

A variety of other transcription factors are altered in the retina in diabetes (Kern,
unpublished), but these have not yet been implicated in the events that lead to diabetic
retinopathy. Additional research is expected to provide additional information about which
transcription factors contribute to the development of the retinopathy.

CCl2 (CC motif, ligand 2, also known as monocyte chemotactic protein1): Levels of
CCL2 have been detected in the vitreous of patients with proliferative DR (Hernandez et al.,
2005), increased levels of CCL2 mRNA or protein have been found to be increased in the
retina of diabetic rodents (Brucklacher et al., 2008; Zhang et al., 2009a). In vitro studies
indicate that NADPH oxidase, Akt and NF-κB are required for the CCL2 production.
Whether or not this change is causally related to development of lesions of the retinopathy is
not known at present.

Pigment epithelium-derived factor (PEDF): Pigment epithelium-derived factor (PEDF) is
a member of the superfamily of serine protease inhibitors with complex neurotrophic,
neuroprotective, anti-angiogenic, anti-oxidative, and anti-inflammatory properties
(Yamagishi et al., 2008; Yoshida et al., 2009). High glucose decreased the expressions of
PEDF in retinal Müller cells, and vitreous levels of PEDF were significantly lower in
patients with DME or PDR than in nondiabetic patients or diabetic patients without
retinopathy. This deficiency likely has proinflammatory effects, since intravitreal injection
of PEDF significantly reduced vascular hyper-permeability in rat models of diabetes and
oxygen-induced retinopathy, correlating with the decreased levels of retinal inflammatory
factors (including VEGF, VEGF receptor-2, MCP-1, TNFα, and ICAM-1) (Zhang et al.,
2006). Moreover, down-regulation of PEDF expression by siRNA resulted in significantly
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increasing the expression of IL-1β in retinal Müller cells (Shen et al., 2010). Long-term
administration of an angiotensin-converting enzyme inhibitor to diabetic rats inhibited the
diabetes-induced increase in VEGF-to-PEDF ratio, and inhibited capillary degeneration
(Zheng et al., 2009).

Angiotensin II: Angiotensin II (Ang II), a major effector of the renin-angiotensin system, is
now recognized as a pro-inflammatory mediator. This Ang II signaling causes transcription
of pro-inflammatory genes via NF-κB.(Ghattas et al., 2011; Jeganathan, 2011; Zhou and
Yang, 2010)

Rho/Rho kinase (ROCK) pathway: The Rho/Rho kinase pathway has been implicated in
diabetic microvascular disease via inflammatory mechanisms. Intravitreal injection of a
selective ROCK inhibitor significantly inhibited ICAM-1 expression, leukocyte adhesion,
and the number of damaged endothelium in retinas of diabetic rats (Arita et al., 2009).

RAGE: RAGE is significantly elevated in the diabetic retina (especially in Muller glia)
(Barile et al., 2005; Zong et al., 2010), and its inhibition reduced diabetes-induced capillary
degeneration (Barile et al., 2005; Li et al., 2011). RAGE signaling induces inflammatory
changes, as shown by the ability of RAGE inhibitors to block cytokine responses induced by
high glucose in vitro (Zong et al., 2010) and diabetes-induced upregulation of retinal ICAM
in vivo (Li et al., 2011).

3B2. Functional changes in diabetic retinopathy
Permeability: Breakdown of the blood-retinal barrier in diabetes has been attributed to
increases in leukostasis, cytokines and growth factors (Antonetti et al., 1999; Harhaj et al.,
2006; Joussen et al., 2001). Molecular alterations, such as in proteins of the tight junction
complex, also have been demonstrated to play a significant role in the diabetes-induced
increase in capillary permeability (Erickson et al., 2007). VEGF is known to be a key
molecule leading to retinal permeability in diabetes and other retinal diseases, and there has
been considerable clinical effort to inhibit DME using VEGF antagonists or traps. TNFα
likewise has been shown to increase retinal endothelial permeability increase via protein
kinase C zeta (Aveleira et al., 2010). Permeability has been reported to increase also in
diabetic animals, and a variety of therapies having anti-inflammatory effects have been
reported to inhibit the diabetes-induced increase in retinal vascular permeability. Whether
increased permeability causes retinal inflammation in diabetes, or if inflammatory changes
cause the diabetes-induced increase in permeability, or both, has not been adequately
addressed at present.

Leukostasis: Leukocytes might contribute to microvascular damage by releasing cytokines
and superoxide via the respiratory burst, or by physically occluding the capillaries (Fig 6),
thereby causing a local ischemia downstream of the blockage. White blood cells interact
with, and bind to, ICAM-1 and VCAM on the surface of endothelial cells in a multi-step
process leading to adherence of the blood cells to the endothelial wall (leukostasis). This
leukostasis is known to be increased in retinal blood vessels of diabetic rats, mice and
monkeys, and is influenced by a variety of diabetes-induced abnormalities, including
oxidative stress, inflammatory molecules, and the renin-angiotensin system. Elevated
numbers of intravascular polymorphonuclear leukocytes have been detected adjacent to
areas of capillary nonperfusion in retinas of diabetic monkeys (Kim et al., 2005), and
leukocytes accumulated in choroidal vessels of diabetic humans (Lutty et al., 1997).
Leukostasis commonly is associated with diabetic retinopathy in animal models, and
deletion of proteins important in adherence of white blood cells to endothelium (ICAM-1
and CD-18) significantly inhibited diabetes-induced capillary degeneration (Joussen et al.,
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2004). Additionally, leukocytes from diabetic, but not control, rats induced endothelial cell
apoptosis in vitro (Joussen et al., 2003).

Nevertheless, other studies (Gubitosi-Klug et al., 2008; Kern et al., 2010) (Fig 5) suggest
that leukostasis as measured by the ex vivo technique (Joussen et al., 2002) probably is not
the cause of retinal capillary degeneration, because diabetes-induced degeneration of retinal
capillaries was not inhibited in some studies even though leukostasis was inhibited. Some
leukocytes do occlude retinal capillaries in diabetes (as demonstrated in vivo (Azuma et al.,
1998), but the ex vivo method to measure leukostasis has an additional potentially
confounding variable that comes from perfusion itself; it seems possible that perfusion to
wash free blood and leukocytes out of the vessels might artifacticiously lodge relatively stiff
white blood cells in the capillary bed.

Vision: Reductions in vision are a major cause of morbidity in diabetes, and diabetes
impairs visual acuity and contrast sensitivity also in mice (Barber et al., 2010; Li et al.,
2010a). Pharmacologic inhibition of p38 MAPK or RAGE from the onset of diabetes had no
effect on the defect in contrast sensitivity (Li et al., 2010a), raising questions about the
contribution of these inflammatory changes in the pathogenesis of these diabetes-induced
defects in visual function in diabetic mice. Additional work is needed to better determine
whether or not other diabetes-induced inflammatory processes in the retina play a role in the
development of diabetes-induced alterations in visual function.

3B3. Inflammatory changes in specific cell types
Endothelial cells: ICAM is known to be upregulated on retinal endothelial cells in diabetes
(McLeod et al., 1995; Miyamoto et al., 1999). In BREC, elevated glucose increased NO and
PGE(2) significantly, whereas expression of iNOS and COX-2 were unchanged (Du et al.,
2004). Interaction of AGEs with RAGE on endothelial cells enhances vascular activation,
vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and E-selectin, and
stimulated leukocyte adherence to the endothelium (Massaro et al., 2002; Schmidt et al.,
1995). Deposition of C5b-9, the terminal product of complement activation, has been
detected on endothelial cells of the retina and choriocapillaris in diabetic patients or animals
(Gerl et al., 2002; Zhang et al., 2002). In contrast to a number of studies using animals cells,
human retinal endothelial cells (unlike retinal pericytes or Muller cells) did not stimulate
endogenous ROS production, activation of NF-κB, or other pro-inflammatory changes when
exposed to elevated glucose, although they did show these pro-inflammatory changes after
exposure to proinflammatory cytokines (Busik et al., 2008). Whether or not the apparent
difference among species with respect to response to hyperglycemia is due to true species
differences or differences in the degree of contamination of the preparations remains to be
learned.

Pericytes: Continuous high glucose exposure for 2-12 days significantly elevated gene
expressions and protein concentrations of IL-1β , NF-κB, VEGF, TNFα, TGF-beta and
ICAM-1 in retinal pericytes (Kowluru et al., 2010; Romeo et al., 2002), and these
inflammatory changes persisted even after restoration of normal glucose concentrations
(Kowluru et al., 2010).

Müller (glial) cells: VEGF is produced in Müller cells of the retina, and inhibition of Müller
cell-derived VEGF significantly decreased retinal expression of TNFα, ICAM-1 and NF-κB
in diabetic mice (Wang et al., 2010). Other inflammatory proteins, including iNOS and nitric
oxide, ICAM, cytokines, and PGE2 are produced by Müller cells exposed to elevated levels
of glucose (Du et al., 2004). Diabetes significantly elevated RAGE expression in Muller glia
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(Barile et al., 2005; Zong et al., 2010), and pro-inflammatory responses by retinal Müller
glia in elevated glucose are regulated by RAGE (Zong et al., 2010).

Microglia: Microglia are considered one of the principal cells sensing abnormal stimuli to
neural tissue, and they release proinflammatory and neurotoxic substances when activated.
Microglial activation was observed In recent animal studies of early diabetic retinopathy
(Krady et al., 2005; Rungger-Brandle et al., 2000; Zeng et al., 2008), and therapies that
inhibited microglial activation (although not selectively) attenuated retinal inflammation in
diabetes (Ibrahim et al., 2010; Krady et al., 2005). A recent in vitro study suggests that
glycated compounds that react with microglial contribute to activation of the cells, and
secretion of TNFα (Ibrahim et al., 2011).

Bone marrow-derived cells: Diabetes-induced inflammatory changes, superoxide
production, and degeneration of retinal capillaries were inhibited in diabetic mice in which
inflammatory proteins (PARP-1 or iNOS) were deleted only from bone marrow cells (Li,
Veenstra, Talahalli, Wang, Gubitosi-Klug, Sheibani, Kern; under review). This provides
strong evidence that marrow-derived cells such as leukocytes play a critical role in
development of the retinopathy in animals.

4. Inflammatory molecules and the vascular lesions of diabetic retinopathy;
multiple mechanisms or a common pathway?

Inflammatory proteins described in this chapter have been associated with the diabetes-
induced microvascular disease in animal models, and inhibition of these proteins inhibits
development of the retinal microvascular disease. It seems unlikely that these different
inflammatory proteins cause capillary degeneration by different mechanisms, so we
postulate that these pro-inflammatory steps are part of a sequential pathway like that
summarized in Fig 7. This sequence of molecular steps was deduced by inhibiting or
deleting a particular enzyme, and then determining which additional molecular
abnormalities also are inhibited (those would be downstream of the targeted reaction). For
example, inhibition of p38 MAPK inhibited the diabetes-induced alterations in expression of
retinal iNOS and ICAM, as well as leukostasis and superoxide generation (Du et al., 2010).
Likewise, inhibition of iNOS inhibited the hyperglycemia-induced generation of
prostaglandin (Du et al., 2004), whereas the converse was not true (inhibition of
cyclooxygenase did not inhibit nitric oxide production). Thus, iNOS and ICAM, leukostasis
and superoxide generation likely are downstream of (and regulated by) p38 MAPK, and
iNOS regulates prostaglandin generation, but cyclooxygenase apparently does not regulate
nitric oxide production. Recent evidence indicates also that cyclooxygenase-2 and nitric
oxide interact with the VEGF system with respect to vascular permeability and
angiogenesis.

Many cytokines and other signaling molecules are known to activate NF-κB and other
proinflammatory mediators, thus indicating that the inflammatory system and its relation to
diabetic retinopathy are considerably more complex than what is noted in the figure. For
example, NF-κB is able to directly induce expression of ICAM-1 and COX2. This working
model clearly will have to be updated in the future. Many of the steps identified in Fig 7
were represented also in Fig 2, suggesting that the molecular abnormalities that contribute to
the vascular abnormalities of diabetic retinopathy are consistent with a likely role of the
innate immune system in the development of some aspects of the retinopathy.
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5. What are good inflammation targets at which to inhibit the retinopathy?
Good glycemic control remains the best accepted means to inhibit diabetic complications,
but inhibition of inflammation might help inhibit the retinopathy even in the presence of
hyperglycemia. Based on animal studies to date, we have yet to see a strong advantage or
disadvantage for any particular anti-inflammatory therapy, at least to inhibit the diabetes-
induced degeneration of retinal capillaries. One exception to this is that inhibition of 5-
lipoxygenase was more beneficial at inhibiting capillary degeneration in diabetic retinopathy
than was inhibition of 12-lipoxygenase. There also are differences with regard to side-effects
that make some therapeutic approaches less desirable than others. Steroids, COX2 inhibitors
and high doses of aspirin have been reported to have undesirable side-effects that should be
avoided. Drugs that seem worthy of further examination for their ability to inhibit at least
the vascular abnormalities of early diabetic retinopathy include derivatives of salicylates
(such as salsalate) or minocycline, RAGE inhibitors, and inhibitors (or antagonists) of p38
MAPK, 5-lipoxygenase, or TNFα. Lipid mediators, including eicosanoids, can play
important roles in the regulation of inflammation in other tissues (Wall et al., 2010), but
evidence is now accumulating that supplementation with lipids like lutein or docosahexanoic
also show a beneficial effect in diabetic retinopathy (Arnal et al., 2009; Kowluru et al.,
2008a).

Inflammatory changes might contribute also to degeneration of retinal neurons in diabetes.
The potential role of inflammation in diabetes-induced neurodegeneration in the retina is
only beginning to be explored, but it is interesting that drugs with known anti-inflammatory
actions (minocycline and salicylates) inhibit death of cells in the retinal ganglion cell layer
in diabetic animals (Krady et al., 2005; Zheng et al., 2007b).

Immunohistochemical studies have demonstrated migration of NF-κB subunits into nuclei
of retinal neurons in diabetes (Zheng et al., 2007b), suggesting that this proinflammatory
transcription factor was activated in neurons in diabetes. This nuclear translocation (and
presumably activation) of NF-κB in retinal neurons was inhibited by salicylates (Zheng et
al., 2007b).

6. Therapies used clinically which also have anti-inflammatory actions in
the retina in diabetes

Diabetes-induced inflammatory changes in retina have been found to be inhibited also by
therapies whose major effect was believed to be on other targets. Retinal leukostasis and
expression of ICAM-1, VEGF, angiotensin II, and angiotensin II type 1 receptor were
significantly suppressed by blockade of the angiotensin II type 1 receptor (telmisartan), but
leukostasis was not inhibited by a angiotensin II type 2 receptor (valsartan) (Kim et al.,
2009; Nagai et al., 2007). A (pro)renin receptor blocker inhibited the diabetes-induced
increases in VEGF and ICAM expression, and leukostasis (Satofuka et al., 2009). In diabetic
Ren-2 rats, candesartan reduced retinal acellular capillaries, inflammation and iNOS and NO
(Miller et al., 2010). Administration of lovastatin and simvastatin to diabetic animals
normalized the expression of the diabetes-induced increase in ICAM-1, VEGF and TNFα,
and inhibited the decrease of tight junction (occludin) and adherens junction (VE-cadherin)
proteins (Al-Shabrawey et al., 2008; Li et al., 2009a). The mechanism by which statins
mediate this effect might involve mitochondrial-derived ROS (Zheng et al., 2010). Newer
coumarin derivatives have also been shown to attenuate diabetes-induced alterations in
retinal permeability, adhesion molecules, and cytokines (Bucolo et al., 2009).

If inflammation does indeed contribute to development of the retinopathy, it seems that
these therapies should inhibit the morphologic lesions of DR. It is well known that anti-
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VEGF therapies and steroids have potent effects on retinal edema and/or neovascularization,
and intravitreal steroids downregulate VEGF and ICAM-1 expression and inhibit the
activation of NF-κB (Wang et al., 2008). Similarly, blood pressure medications (such as
captopril (Zhang et al., 2007) and perindopril (Zheng et al., 2009) and lipid lowering drugs
(Zheng et al., 2010) inhibit capillary degeneration in diabetic retinopathy. These studies do
not prove that beneficial effects of these therapies on retinopathy are mediated via anti-
inflammatory actions, but it is worth further testing.

Salicylates are an anti-inflammatory group of drugs worth discussing, since their effect on
DR already has been studied in clinical trials and animal studies. Administration of aspirin
(dogs, rats) or other salicylates (rats) from the onset of diabetes significantly inhibited the
diabetes-induced degeneration of retinal capillaries (Kern and Engerman, 2001; Zheng et al.,
2007b). Prospective clinical trials in humans, however, yielded contradictory conclusions,
with one study showing a significantly lower mean yearly increase in the number of definite
microaneurysms in the aspirin-treated group (DAMAD Study Group, 1989), and the other
showing no benefit (or harm) of aspirin on the retinopathy (Early Treatment Diabetic
Retinopathy Research Group, 1991). The failure to inhibit retinopathy by the Early
Treatment Diabetic Retinopathy Research study might indicate that inflammation is not
primary in the development of the retinopathy, but this conclusion seems premature since
the dose of aspirin used was not high enough to have had anti-inflammatory effects, and the
severity of retinopathy likely was too advanced at the onset of the study to have been
promptly inhibited. The postulate that salicylates can inhibit the retinopathy if delivered at
anti-inflammatory doses is supported by a recent prospective, randomized study where
treatment with the NSAID, sulindac, inhibited development and progression of DR (Hattori
et al., 2007).

7. Inflammation in PDR and diabetic-like retinal neovascularization
Retinas or vitreous from patients with PDR have been found to contain elevated levels of a
variety of inflammatory mediators, including ET-1, TNFα, IL-6, and VEGF (Adamiec-
Mroczek and Oficjalska-Mlynczak, 2008; Adamiec-Mroczek et al., 2010; Aiello et al.,
1994). Experimentally diabetic laboratory animals have not been found to develop preretinal
neovascularization, so investigations of neovascularization instead have used models like the
oxygen-induced retinopathy model (Madan and Penn, 2003). In angiogenic models like this,
extensive leukocyte adhesion was observed at the leading edge of pathological, but not
physiological, neovascularization (Ishida et al., 2003b). Depletion of phagocytic cells
(including monocytes) by intravitreal injection of clodronate led to a reduction in
pathological neovascularization (Ishida et al., 2003b). In a model of choroidal
neovascularization, inhibiting monocyte recruitment by deleting the receptor for monocyte
chemoattractant protein-1 (Tsutsumi et al., 2003) or ICAM-1 or CD18 (Sakurai et al., 2003)
also led to significant inhibition of neovascularization. Prostanoids generated by COX-2 can
induce the expression of VEGF and other pro-angiogenic factors (Cheng et al., 1998), and
inhibition of COX reduced the production of VEGF and retinal neovascularization
(Ayalasomayajula and Kompella, 2003; Sennlaub et al., 2003; Wilkinson-Berka et al.,
2003). Thus, the inflammatory system can contribute to aspects of the neovascular response,
especially in the presence of hypoxia.

8. How does diabetes cause retinal inflammation?
Cell death is known to occur in the retina in diabetes, and this might induce an inflammatory
response. Retinal cell death in diabetes, however, seems to occur largely by apoptosis, thus
raising a possibility that the signal(s) required to induce the inflammatory state likely are
largely metabolic in origin.
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Hyperglycemia
Hyperglycemia itself has been regarded as a proinflammatory environment. Incubation of
retinal cells in high glucose causes upregulation of proinflammatory iNOS, COX-2 and
leukotrienes (Du et al., 2004; El-Remessy et al., 2005; Kowluru and Kowluru, 2007;
Madsen-Bouterse et al., 2010; Talahalli et al., 2010; Tawfik et al., 2009; Zheng et al., 2004).
Moreover, long-term experimental hyperglycemia (via a sugar (galactose)-rich diet) in the
absence of diabetes resulted in diabetes-like retinopathy, as well as increases in retinal
leukostasis and vascular permeability (Joussen et al., 2004).

In apparent contrast to the concept that endothelial cells respond to hyperglycemia, Busik
and coworkers have presented evidence that retinal endothelial cells do not respond to
hyperglycemia per se, but instead to cytokines produced by adjacent cells (Busik et al.,
2008) (see below).

Lipids
Diabetes-induced changes in retinal fatty acid metabolism lead to a significant decrease in
retinal n-3 polyunsaturated fatty acids (PUFAs), especially docosohexanoic acid (DHA)
(Tikhonenko et al., 2010), and these changes in fatty acid compositions may be related to the
chronic inflammation that occurs in the diabetic retina (Byeon et al., 2010). Hammes and
collaborators found that long-term administration of omega-3 fatty acids to diabetic rats
caused a significant increase in degeneration of retinal capillaries (Hammes et al., 1996).
Vitreous lipids, including proinflammatory lipoxygenase- and cytochrome P450
epoxygenase-derived prostenoids have been detected also in the vitreous of diabetic patients
(Schwartzman et al., 2010).

In contrast to pro-inflammatory effects of some lipids, docosohexanoic acid, resolvins and a
small number of other autocoids have been shown to have anti-inflammatory actions. Busik
and collaborators have reported that administration of docosohexanoic acid inhibits
diabetes-induced degeneration of retinal capillaries in animals (unpublished). Dietary
carotenoids inhibited diabetes-induced increases in retinal ICAM-1 (Kowluru et al., 2008b),
and administration of a HMG-CoA inhibitor (statin) inhibited diabetes-induced increases in
retinal inflammatory status and blood-retinal barrier (Li et al., 2009a).

Oxidative stress
Diabetes-induced oxidative stress clearly plays a role in development of the inflammatory
processes in the retina. Two months of diabetes in rats significantly increased retinal levels
of IL-1β and NF-κB, and antioxidants inhibited those increases (Kowluru and Odenbach,
2004). The diabetes-induced increase in retinal NF-κB activation also could be inhibited by
inhibiting activity of the pro-oxidant NADPH oxidase (Tawfik et al., 2009). Others have
demonstrated administration of N-acetylcysteine, baicalein and lutein, inhibited activation of
macrophage/microglia and VEGF increases in the retinas of diabetic animals (Sasaki et al.,
2010; Tsai et al., 2009; Yang et al., 2009). Oxidative stress has been postulated to be a cause
for the diabetes-induced increase in retinal inflammation and vascular permeability via Wnt
pathway activation (Chen et al., 2009).

AGE/RAGE
Interaction of advanced glycation endproducts with RAGE is known is known to have pro-
inflammatory consequences, and inhibitors of RAGE have been shown to have anti-
inflammatory effects in retina (Li et al., 2011) and other tissues. In a human retinal Müller
cell line, RAGE signaling via MAPK pathway caused cytokine production in high glucose,
and blockade of RAGE prevented cytokine responses induced by high glucose and S100B in
Müller glia (Zong et al., 2010). Pharmacologic inhibition of RAGE signaling (Barile et al.,
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2005; Li et al., 2011) significantly inhibited degeneration of retinal capillaries and other
lesions of early diabetic retinopathy in animals.

Cytokines
Busik and coworkers have presented evidence that retinal endothelial cells do not respond to
hyperglycemia per se, but instead to cytokines produced by adjacent cells (Busik et al.,
2008). In contrast to effects of incubating human retinal endothelial cells in high glucose,
exposure of the cells to the proinflammatory cytokines IL-1β or TNFα increased glucose
consumption, mitochondrial superoxide production, ERK and JNK phosphorylation,
tyrosine phosphorylation, NF-κB, and caspase activation (Busik et al., 2008).

Blood pressure
Hypertension exacerbates diabetes-induced retinal inflammation, as assessed by expression
of VEGF and ICAM-1 (Silva et al., 2007). Consistent with this, administration of
candesartan to Ren-2 diabetic rats attenuated retinal inflammation and vascular pathology,
apparently by restoring glyoxalase-I function. Whether or not the beneficial effects of
antihypertensive medications act solely through effects on blood pressure is not yet clear.

Endoplasmic reticulum (ER) stress
The diabetes-induced increase in retinal inflammation is associated with ER stress, and
inflammatory molecules in the retina were increased using a chemical stimulator of the
stress (tunicamycin) and decreased by a chemical chaperone (4-phenyl butyric acid) (Li et
al., 2009b).

9. Weaknesses of the inflammation hypothesis
In spite of a growing amount of data that is consistent with a contribution of inflammatory
processes to the development of diabetic retinopathy, there are short-comings in the current
hypothesis. If inflammatory processes do contribute to the development of diabetic
retinopathy, why don’t other inflammatory conditions in nondiabetic patients or animals
cause a diabetic-like retinopathy? For example, an increase in retinal leukostasis (which is
consistent with inflammation) has been observed in insulin-resistant animals who are not
diabetic (Abiko et al., 2003), yet insulin resistance generally does not cause a diabetic-like
retinopathy. Aging or hypertension in the absence of diabetes increase expression of pro-
inflammatory molecules in the retina (Silva et al., 2007; Xu et al., 2009), yet these
conditions do not cause a diabetic-like retinopathy. Moreover, induction of systemic
inflammation (produced by footpad injection of lipopolysaccharide) caused a reduction in
the severity of diabetes-induced retinal inflammation (as assessed by leukostasis and mRNA
expression of adhesion molecules) (Tamura et al., 2005).

Thus, it seems likely that systemic inflammation does not cause the retinal inflammation that
develops in diabetes (and which we postulate contributes to the development of early
diabetic retinopathy). The pro-inflammatory environment which we postulate initiates the
retinopathy must develop locally in the retina. An example of this is that diabetes-induced
increases in retinal vascular permeability and leukostasis were inhibited by blocking NF-κB
activation solely in glial cells (such as retinal Muller cells) (Bethea and Kern, unpublished).
Since both of these measured parameters involve the retinal vasculature, this indicates that
retinal glial cells contribute to local development of inflammatory changes that adversely
influence the retinal vasculature in diabetic animals.

Several other issues are worth considering in relation to the postulated role of inflammation
in the development or progression of diabetic retinopathy. An obvious weakness of the
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inflammatory hypothesis is that the inflammatory changes develop quickly in the retina in
diabetes, but the histopathology does not develop until considerably later (and pre-retinal
neovascularization has not developed reproducibly in animal models). This difference
remains to be explained. Another unanswered question pertains to why the retinal
inflammation doesn’t resolve in diabetes. Inflammation normally resolves with time, but the
abnormal environment of diabetes seems to create a non-resolving inflammation which
needs to be explained. Diabetes-induced increases in expression of inflammatory proteins
have been found to persist at elevated levels even after reestablishment of near-normal blood
sugars (Chan et al., 2010). This persistence is important because it parallels the tendency of
diabetic retinopathy to progress even after hyperglycemia is corrected (called “metabolic
memory”), and might provide new insight into the pathogenesis of the retinopathy. The
mechanism(s) by which diabetic retinopathy resists arrest by improved glycemia, and
whether or not inflammation contributes to metabolic memory, is not yet clear.

10. Future directions
Research topics that need to be addressed in order to more fully understand the significance
of inflammation in the pathogenesis of diabetic retinopathy are numerous, and some of these
are summarized below.

Laboratory research
Which metabolic abnormalities initiate diabetes-induced inflammation in the
retina? Are there advantages in inhibiting certain of these inflammatory processes
as opposed others?

Which retinal cell types exhibit or cause inflammation in diabetic retinopathy?
Accumulating evidence that nonretinal cells play a role in the pathogenesis of
diabetic retinopathy seems particularly noteworthy. This suggests that
investigations will need to expand beyond the traditional view of the retinopathy, to
include also leukocytes, stem cells, and possibly also other cell types. What is the
role of other aspects of the innate immune system (such as toll-like receptors and
PAMPs) in the etiology of diabetic retinopathy?

Do inflammatory processes play a role in diabetes-induced dysfunction of retinal
nerves?

What are the mechanisms by which pro-inflammatory changes in diabetes result in
dysfunction or death of retinal nerve and/or vessel cells?

Does inflammation contribute to metabolic memory, and by what mechanisms?

Why doesn’t retinal inflammation resolve in diabetes, and does correction of that
abnormality have beneficial effects on the retina?

Clinical research
The most serious weakness of the postulated role of inflammation in the pathogenesis of
diabetic retinopathy in patients is the paucity of clinical data in patients supporting the
concept. A critical need is to assess the validity of the concept that inflammatory molecules
play a critical role in the early stages of the retinopathy. Thus, clinical questions to be
addressed include:

Can markers of inflammation be demonstrated (preferably noninvasively) in retinas
of diabetic patients?

What are the best anti-inflammatory therapies to test the postulated role of
inflammation in development of diabetic retinopathy?
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Can the development and progression of diabetic retinopathy be inhibited with anti-
inflammatory doses of drugs?

What is the best route of administration of this therapy?

11. Conclusion and perspectives
We and others have postulated that inflammatory processes play an important role in the
development of early (and possibly also later) stages of diabetic retinopathy. Unlike in
uveitis, this diabetes-induced inflammation is not grossly apparent in the retina, and the
concept of DR having an inflammatory pathogenesis is based on the molecular
characteristics of inflammation (as opposed to the classical cellular definition of
inflammation). These molecular changes seem causally related to the development of at least
the diabetes-induced leakage and degeneration of retinal capillaries, since inhibition of the
inflammatory cascade at any of multiple points has inhibited these abnormalities that are
characteristic of the retinopathy in animals. It is possible that “inflammation” does not
perfectly describe the changes that ultimately cause the retinopathy, but this term seems to
describe the pathogenesis of the retinopathy better than previous concepts. It is likely that
this concept will become better focused with future research.

Two questions seem to have particular importance for understanding the role of
inflammation in the development of diabetic retinopathy. First, what is the mechanism(s) by
which inflammatory processes cause retinal cell death or visual dysfunction. and second,
why doesn’t retinal inflammation resolve in diabetes? Understanding these questions is
expected to provide new therapeutic targets at which to inhibit or prevent the retinopathy.

Administration of anti-inflammatory steroids or VEGF inhibitors reduce diabetic macular
edema in patients, but whether or not these or other anti-inflammatory therapies will inhibit
also earlier stages of diabetic retinopathy has not been adequately tested in patients.
Rigorous testing of this postulate will require clinical studies, but this seems worth the
investment since the available evidence indicates that inflammation can contribute both to
the early and late stages of diabetic retinopathy.
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Fig 1.
A. Fundus image of a patient with moderate nonproliferative diabetic retinopathy (NPDR).
Microaneurysms can be seen (black arrows) along with an area containing a flame-
hemorrhage (yellow arrowhead) and exudates (white arrow) temporal to the fovea. B.
Fundus image of a patient with proliferative diabetic retinopathy (PDR). Multiple areas
containing microaneurysms can be seen here (black arrows) along with an area of
neovascularization of the optic disc (yellow arrowhead) and exudates (white arrow)
superotemporal to the fovea. C. Fluorescein angiogram of patient seen in B. Areas of
profound retinal nonperfusion are identified by a star. Numerous white dots (white arrows)
indicate the presence of microaneurysms, which are more easily visualized on fluorescein
angiograms than color photos. D. Isolated retinal microvessels from a diabetic patient
demonstrating numerous capillary microaneurysms (thick arrows) and degenerate capillaries
(thin arrows).
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Fig 2.
Summary of the relation of the innate immune system to inflammation. As indicated in the
text, many of the components of this system are found to be abnormal in retinas of diabetic
animals. 1l-1R1, interleukin-1 receptor; AGEs, advanced glycation endproducts; HMGB1,
high mobility box group 1; TNFαR, receptor for TNFα; MyD88, Myeloid differentiation
primary response gene (88); IRAK, Interleukin-1 receptor-associated kinases; IKK, IκB
kinase; p38; p38 MAP kinase

Tang and Kern Page 28

Prog Retin Eye Res. Author manuscript; available in PMC 2012 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 3.
Genetic deletion of the proinflammatory protein, iNOS, inhibits diabetes-induced (a)
capillary degeneration and (b) pericyte loss in retinal vessels from mice diabetic for 9
months. N, nondiabetic; SD, streptozotocin diabetic; WT, wildtype; iNOS-/-, iNOS deficient.
(Used with kind permission from Springer Science+Business Media: Diabetologia. Critical
role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with
streptozotocin-induced diabetes. 2007 50(9):1987-96; Zheng L, Du Y, Miller C, Gubitosi-
Klug RA, Ball S, Berkowitz BA, Kern TS; Fig 4).
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Fig 4.
A. Deletion of either 5- or 12 lipoxygenase significantly inhibited diabetes-induced
leukostasis compared to nondiabetic controls. Wildtype mice and mice genetically deficient
in 5-lipoxygenase or 12-lipoxygensase were made diabetic for 9 months or kept as
nondiabetic controls. B. Inhibition of diabetes-induced capillary degeneration by deficiency
of 5-lipoxygenase, but not 12-lipoxygenase. N, nondiabetic; D, diabetic. (Copyright 2008
American Diabetes Association From Diabetes, Vol. 57, 2009; 1387-1393 Reprinted with
permission from the American Diabetes Association).
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Fig 5.
Schematic summarizing transcellular transfer between the retina and marrow-derived cells
that is postulated to contribute to inflammatory changes and cell death in diabetic
retinopathy.

Tang and Kern Page 31

Prog Retin Eye Res. Author manuscript; available in PMC 2012 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 6.
Adherence of a leukocyte to the wall of a retinal capillary (leukostasis). The vasculature has
been perfused to remove all free blood cells and plasma, and then the vasculature perfused
with Concanavalin A-FITC, which stains the endothelium light green, and adherent
leukocytes bright green (arrow).
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Fig 7.
Postulated scheme by which inflammation contributes to retinal capillary degeneration in
diabetes. The scheme shows a series of steps which were elucidated by inhibiting a specific
protein (such as iNOS), and then determining which other steps (or proteins) also were
inhibited (and thus were regulated by that protein). RAGE also fits into this scheme, but its
position relative to many of these other abnormalities is not yet clear.
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