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During the last decade, the classical
view of a protein existing in equilib-

rium between discrete conformational
states has undergone a radical transfor-
mation. Experimental observations, par-
ticularly those obtained from NMR-
detected hydrogenydeuterium exchange,
indicate that even under native conditions
proteins need to be considered as complex
statistical ensembles (see for example refs.
1–13). In the view pioneered by Englander
and coworkers (1, 2, 4, 7, 8, 14) proteins
undergo local unfolding reactions scat-
tered throughout their entire structures.
These unfolding reactions occur indepen-
dently of each other, may involve only a
few amino acids, and give rise to a large
number of states in which each state is
defined by the presence of one or several
locally unfolded regions. This collection of
states defines the native-state ensemble.
The immediate, and perhaps most rele-
vant, consequence of these observations is
that the Gibbs energy of stabilization of a
protein is not uniformly distributed
throughout its three-dimensional struc-
ture. There are regions with high stability
constants and regions with low stability
constants (13, 15). Furthermore, under
native conditions cooperativity appears to
be local or regional rather than global.
The implications of these findings have
been mostly discussed in relation to the
protein folding problem; however, their
biological implications are tremendous
because the native state is the functionally
relevant state. If cooperativity is local or
regional rather than global, how do distal
sites communicate with each other? How
do regulatory allosteric interactions take
place? How are the functional properties
of a protein related to the distribution of
states within the native ensemble, and how
does ligand binding affect this distribution
and modulate function? Is the location of
stable and unstable regions a random
event or it is dictated by functional con-
siderations? How are protein function and
stability related?

The tools to begin addressing those
issues in a systematic way became avail-
able with the observation that a structure-
based algorithm (COREX) was able to
model reasonably well the hydrogen ex-
change protection data obtained for many
proteins (13, 15–19). Within the frame-

work of the COREX algorithm the pro-
tein is considered as a statistical ensemble
in which each state is characterized by
having some region or regions in a non-
folded state. These regions can be as small
as four or five amino acids or as large as
the entire protein. Depending on the size
of the protein the computation is per-
formed either exhaustively or by using a
sampling technique (19). The Gibbs en-
ergy of all of the resulting states and their
respective probabilities are calculated in
terms of an empirical structural parame-
terization of the Gibbs energy (summa-
rized in ref. 20). What the COREX algo-
rithm produces is a list of possible
conformations and their respective prob-
abilities, i.e., a probability distribution
function. As such it can be used to exam-
ine the effects of ligands and other chem-
ical or physical factors on that distribution.
Previously (21) it was shown that the
incorporation of the ligand linkage
equations into the COREX algorithm
(CORE_BIND) correctly predicted the
propagation of binding effects through the
structure of hen egg white lysozyme upon
binding of a specific antibody. The paper
by Pan et al. (22) in this issue of PNAS
explores the linkage between binding sites
in Escherichia coli dihydrofolate reductase
and makes a convincing case that the
coupling between these sites is also medi-
ated by shifts in the probability distribu-
tion of the conformational ensemble.

The COREX algorithm produces a
snapshot of the distribution of states ex-
isting under equilibrium conditions. For
an ergodic system this distribution is iden-
tical to the one that would be obtained if
a single protein molecule were observed
over a period sufficiently long for thermo-
dynamic averaging. Accordingly, ensem-
ble properties can be mapped into indi-
vidual molecules. This is illustrated in Fig.
1 for the structural stability of individual
residues in a Src homology 3 molecule
(18). In the ensemble view, the stability of
an individual residue is proportional to the
summed probabilities of all of the states in
which that residue is in the native state.
For an individual molecule, the structural
stability of a residue is proportional to the
fractional amount of time that the residue
spends in the native-state conformation.
A highly stable residue will spend most of

the time in the native state, whereas a
relatively unstable residue will make ex-
cursions into different regions of confor-
mational space. These excursions may
arise from different processes involving
local as well as longer-range fluctuations.
For an ergodic system, ensemble and time
averages are equivalent.

As pointed out by Pan et al. (22) clas-
sical linkage theories do not address the
mechanism by which different binding
sites communicate. The ensemble view
created by the COREX algorithm pro-
vides an opportunity to examine the long-
range effects of ligand binding and allo-
steric regulation. We can imagine that
different conformational states might
have different functional properties and
that, consequently, a redistribution in the
population of states may result in func-
tional changes. A change in the distribu-
tion of states is triggered by changes in the
Gibbs energy of the states that define the
ensemble. States with lower Gibbs ener-
gies will be preferentially populated with
respect to states with higher Gibbs ener-
gies. Therefore, the expression of a spe-
cific functional property can be triggered
by a decrease in the Gibbs energy of those
states that exhibit that property. In bio-
logical systems, this is usually accom-
plished by ligand molecules (activators or
inhibitors) that selectively bind to those
states that possess the selected property.
In the presence of a ligand X, the Gibbs
energy of any arbitrary state within the
ensemble will be affected by an amount
that depends on its binding affinity for the
ligand:

DGi 5 DGi
0 2 RT ln

~1 1 Ka,i@X#!

~1 1 Ka,0@X#!
, [1]

where DGi
0 is the Gibbs energy of state i in

the absence of the ligand, Ka,0 is the
binding constant to the reference state,
and Ka,i the binding constant to state i.
Those states that are able to bind the
ligand will be stabilized with respect to
those states that are not able to bind the
ligand, causing a change in the probability
distribution of states. Fig. 2 illustrates this
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situation with the binding of a proline-rich
helical peptide to a Src homology 3 do-
main. The protein ensemble can be con-
sidered as being composed of states in
which the binding site is intact and there-
fore binding-competent and states in
which the binding site is not formed and
therefore unable to bind the ligand. The
states that are binding-competent will be
stabilized according to Eq. 1, resulting in
a shift in the probability distribution. The
residue stabilities calculated in the pres-
ence of the ligand can be mapped into an
individual protein molecule as well as the
differences in Gibbs energy per residue, as
shown in Fig. 2. A notable result is that not
all amino acids are affected equally, a
consequence of the lack of global coop-

erativity in the native state. Under those
conditions the transmission of binding sig-
nals to distal sites involves only a subset of
residues. Their identification is important
not only from the point of understanding
a fundamental biological phenomena but
also from the point of view of protein
engineering and drug design.

Communication between sites occurs
when their behavior is coupled. For reg-
ulatory and active binding sites this cou-
pling is expressed in a correlation between
their binding competencies. For allosteric
inhibition, binding to the regulatory site
must trigger a destabilization of the active
conformation of the catalytic site such
that substrate either does not bind or
binds in a nonproductive fashion. In this

situation, the native-state ensemble can be
considered as being primarily populated
by two distinct subensembles: one suben-
semble of conformations that are catalyt-
ically active but are unable to bind the
inhibitor, and one subensemble of mole-
cules that lack biological activity but are
able to bind the inhibitor. The presence of
the inhibitor will shift the equilibrium
toward the inactive conformations be-
cause those conformations are the ones

Fig. 1. The COREX algorithm produces an ensemble representation of a protein. This representation can be mapped into a single molecule, because for an ergodic
system ensemble and time averages are equivalent.

Fig. 2. The binding of a proline-containing peptide (red) to the Src homology 3 domain (blue). Ligand
binding stabilizes only those conformations that are binding-competent, inducing a redistribution in the
conformational ensemble. The effects of binding can be mapped into a single molecule as shown on the
right. The blue regions are the ones most affected by binding and the red regions the ones least affected.
Notably, not all amino acids are predicted to be equally affected because of the lack of global cooper-
ativity. A consequence of this result is that communication between distal sites involves only a subset of
residues as elegantly shown by Pan et al. (22) for dihydrofolate reductase.

Fig. 3. Results of COREX and CORE_BIND analysis
of glycerol kinase and its allosteric inhibitor IIAGlc
(19). The binding site for IIAGlc (R) to glycerol
kinase contains regions of low structural stability.
In the absence of IIAGlc, those regions do not in-
teract strongly with the rest of the protein. Upon
binding IIAGlc, those regions become structurally
stable and initiate a sequence of interactions that
shift the catalytic site into an inactive conforma-
tion. According to the computational results only a
well-defined set of residues participates in the al-
losteric coupling of both sites.
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that are able to bind the inhibitor. Again
this redistribution of the ensemble can be
mapped into a single molecule to identify
those residues that are implicated in the
communication between sites. The allo-
steric enzyme glycerol kinase provides a
clear illustration of the above situation as
illustrated in Fig. 3. An allosteric inhibitor
of this enzyme is the protein IIAGlc.
IIAGlc binds to glycerol kinase at a site

located more than 30 Å away from the
active site. The binding of IIAGlc stabi-
lizes this region into a conformation ca-
pable of establishing specific contacts with
adjacent regions that result into the sta-
bilization of the inactive conformation of
the catalytic site. According to the results
of the COREX and CORE_BIND anal-
ysis only a small set of residues are in-
volved in the allosteric coupling between

regulatory and catalytic sites. The results
obtained for dihydrofolate reductase by
Pan et al. (22) emphasize those conclu-
sions and provide new tools for the inves-
tigation of long-range communication in
proteins.
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A. J. & Roder, H. (1990) Biochemistry 29, 10433–
10437.

2. Jeng, M.-F. & Englander, S. W. (1991) J. Mol. Biol.
221, 1045–1061.

3. Radford, S. E., Buck, M., Topping, K. D., Dobson,
C. M. & Evans, P. A. (1992) Proteins 14, 237–248.

4. Bai, Y., Milne, J. S., Mayne, L. & Englander, S. W.
(1993) Proteins 17, 75–86.

5. Kim, K.-S. & Woodward, C. (1993) Biochemistry
32, 9609–9613.

6. Woodward, C. (1993) Trends Biochem. Sci. 18,
359–360.

7. Bai, Y., Sosnick, T. R., Mayne, L. & Englander,
S. W. (1995) Science 269, 192–197.

8. Milne, J. S., Mayne, L., Roder, H., Wand, A. J. &
Englander, S. W. (1998) Protein Sci. 7, 739–745.

9. Schulman, B. A., Redfield, C., Peng, Z., Dobson,
C. M. & Kim, P. S. (1995) J. Mol. Biol. 253,
651–657.

10. Chamberlain, A. K., Handel, T. M. & Marqusee,
S. (1996) Nat. Struct. Biol. 3, 782–787.

11. Swint-Kruse, L. & Robertson, A. D. (1996) Bio-
chemistry 35, 171–180.

12. Dabora, J. M. & Marqusee, S. (1994) Protein Sci.
3, 1401–1408.

13. Hilser, V. J., Oas, T., Dowdy, D. & Freire, E.
(1998) Proc. Natl. Acad. Sci. USA 95, 9903–9908.

14. Milne, J. S., Xu, Y., Mayne, L. C. & Englander,
S. W. (1999) J. Mol. Biol. 290, 811–822.

15. Hilser, V. J. & Freire, E. (1996) J. Mol. Biol 262,
756–772.

16. Hilser, V. J., Townsend, B. D. & Freire, E. (1997)
Biophys. Chem. 64, 69–79.

17. Hilser, V. J. & Freire, E. (1997) Proteins 27,
171–183.

18. Sadqi, M., Casares, S., Abril, M. A., Mayorga,
O. L., Conejero-Lara, F. & Freire, E. (1999)
Biochemistry 38, 8899–8906.

19. Luque, I. & Freire, E. (2000) Proteins 4, 63–71.
20. Luque, I. & Freire, E. (1998) Methods Enzymol.

295, 100–127.
21. Freire, E. (1999) Proc. Natl. Acad. Sci. USA 96,

10118–10122.
22. Pan, H., Lee, J. C. & Hilser, V. J. (2000) Proc. Natl.

Acad. Sci. USA 97, 12020–12025.

11682 u www.pnas.org Freire


