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Abstract

Compound Danshen Formula (CDF) is a widely used Traditional Chinese Medicine (TCM) which has been extensively applied
in clinical treatment of cardiovascular diseases (CVDs). However, the underlying mechanism of clinical administrating CDF
on CVDs is not clear. In this study, the pharmacological effect of CDF on CVDs was analyzed at a systemic point of view. A
systems-pharmacological model based on chemical, chemogenomics and pharmacological data is developed via network
reconstruction approach. By using this model, we performed a high-throughput in silico screen and obtained a group of
compounds from CDF which possess desirable pharmacodynamical and pharmacological characteristics. These compounds
and the corresponding protein targets are further used to search against biological databases, such as the compound-target
associations, compound-pathway connections and disease-target interactions for reconstructing the biologically
meaningful networks for a TCM formula. This study not only made a contribution to a better understanding of the
mechanisms of CDF, but also proposed a strategy to develop novel TCM candidates at a network pharmacology level.
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of death

in the world. In 2008, about 17.3 million people died from CVDs,

representing 30% of total global deaths. The number has been

estimated to increase to 23.6 million by 2030 [1]. Although diverse

drugs and medications have already been employed on CVDs,

developing new therapeutic tools are still in urgent need and under

intensive investigation. As one of these efforts, modernization of

Traditional Chinese Medicine (TCM) has attracted a lot of

attention [2].

Compound Danshen Formula (CDF) is one of TCM recipes for

treatment of CVDs which is composed of Radix Salviae Miltiorrhizae

(Labiatae sp. plant, Chinese name Danshen), Panax Notoginseng

(Araliaceae plant, Chinese name Sanqi), and Borneolum (Crystal-

lization of the resin and volatile oil in Cinnamomum camphora

(L.) Presl, Chinese name Bingpian), at a ratio of 450:141:8 (g) [3].

CDF is officially registered in Chinese Pharmacopoeia [3] and has

been widely used to treat CVDs in China, Japan, United States

and Europe [4]. Clinical studies have revealed a variety of

desirable pharmacological effects of CDF on CVD, such as

increasing coronary flow rate, activating superoxide dismutase,

dilating coronary vessels etc, which contribute significantly to the

survival rate of CVD patients [5–7]. However, the molecular

details about how CDF can be administrated on CVD are still

unclear.

Studies on CDF’s pharmacological effect have confronted

several major challenges. First, isolation and identify chemical

constituents possessing desirable pharmacological effects are labor-

intensive, time-consuming and costly, given the fact that most

medicinal herbs may contain tens of thousands constituents.

Second, a certain ingredient may function on several relevant or

irrelevant biological targets, which makes its pharmacological and

toxicological effects difficult to be evaluated independently. Third,

and most importantly, TCMs, such as CDF, have traditionally

been administrated as an integrated prescription for treating

diseases which implicate a complex, and highly dynamic

ingredient-ingredient interaction network may underlying the

overall clinical effect [8,9].

Systems pharmacology has emerged as a promising subject to

overcome these challenges by providing powerful new tools and

conceptions. Network analysis is one of these approaches which

can evaluate TCM’s pharmacological effect as a whole unity [10–

14]. In this work, we proposed for the first time a systems-

pharmacological model by combining oral bioavailability predic-

tion, multiple drug-target prediction and validation, and network

pharmacology techniques, to shed new lights on the effectiveness

and mechanism of CDF. Different types of data, such as the
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physiological, biochemical and genomic information have been

collected to build the model which is based on an array of

computational approaches including the machine learning method

and network analysis. The proposed network-driven, integrated

approach would also provide a novel and efficient way to deeply

explore the chemical and pharmacological basis of TCMs.

Materials and Methods

As a combination of three plants, CDF contains a considerable

number of chemical compounds and some of which have been

demonstrated to possess significant pharmacological activities [15–

20]. This provides an important basis to bring systems biology

insights into the investigation of TCM theory and practice. In the

following part, we will introduce how to build database and

models for this CDF.

Database construction
All chemicals of each herb were retrieved from Chinese

Academy of sciences Chemistry Database (www.organchem.

csdb.cn) and Chinese Herbal Drug Database [21] and literature

[15–17]. Finally, to the most extent 320 compounds were

collected, including 201 in Radix Salviae Miltiorrhizae, 112 in Panax

Notoginseng and 31 in Borneolum, respectively (The three herbal

shared the same 24 compounds). The structures of these molecules

were downloaded from LookChem (www.lookchem.com) or

produced by ISIS Draw 2.5 (MDL Information Systems, Inc.)

and further optimized by Sybyl 6.9 (Tripos, Inc) with sybyl force

field and default parameters [22,23]. The molecules were saved to

a mol format for further analysis. All information about the

molecules is provided in Table S1. Figure 1 depicts the flowchart

of the modeling procedure.

Oral bioavailability prediction
In our previous work, we have developed a robust in silico model

OBioavail 1.1 [24], which integrated with the metabolism

information to predict a compound human oral bioavailability.

The model was built based on a set of 805 structurally diverse drug

and drug-like molecules which have been critically evaluated for

their human oral bioavailability [25]. The multiple linear

regression, partial least square and support vector machine

(SVM) methods were employed to build the models, resulting in

an optimal model with R2 = 0.80, SEE = 0.31 for the training set,

Q2 = 0.72, SEP = 0.22 for the independent test set. In this work,

the compounds with OB $50% were selected as the Candidate

Compounds (Figure 1). The threshold determination is based upon

the careful consideration of the following rules: 1) Extracting

information as much as possible from CDF using the least number

of compounds. 2) The obtained model can be reasonably

interpreted by the reported pharmacological data.

Target identification
The targets were searched by PharmMapper Server (http://59.

78.96.61/pharmmapper/) [26], which is designed to identify

potential target candidates for the given small molecules (drugs,

natural products, or other newly discovered compounds with

targets unidentified) via a ‘reverse’ pharmacophore mapping

approach. The model is supported by a large repertoire of

pharmacophore database composed of more than 7,000 receptor-

based pharmacophore models that are extracted from Target-

Bank, DrugBank, BindingDB and PDTD. A strategy algorithm of

sequential combination of triangle hashing and genetic algorithm

optimization is designed to solve the molecule pharmacophore

best fitting task. In this work, the number of the reserved matched

targets is defined as 300 with the fitting score $3.00. The target set

is only limited to the human targets (2214); and all parameters

were kept as default. The information of the predicted target

candidates which have relationships with CVD was collected and

further verified from TTD (http://bidd.nus.edu.sg/group/ttd/)

[27], PharmGkb (www.pharmgkb.org) [28] and DrugBank

(http://www.drugbank.ca/) [29].

Target validation
Docking. To validate the compound-target associations

related with CVD, the molecular docking simulation was further

performed on each bioactive compound complexed with their

human target enzymes by AutoDock software (version 4.2, http://

autodock.scripps.edu/) (Figure 1). All the protein structures except

P-glycoprotein (P-gp) were directly downloaded from the RCSB

protein data bank (www.pdb.org) [30] with their resolutions being

carefully checked. The homology model of P-gp was obtained

from our previous work [31]. AutoDock tools (ADT) (version

1.4.5) were used for protein and ligand preparation. Generally, all

hydrogens, including non-polar, Kollman charges and solvation

parameters were added to individual molecules. For all ligands, the

Gasteiger charges [32] were assigned with the nonpolar hydrogens

merged [33]. The auxiliary program Autogrid was used to

generate the grid maps for each sample. The docking area was

defined by a 60660660 3D grid centered around the ligands

binding site with a 0.375 Å grid space. All bond rotations for the

ligands were ignored and the Lamarckian genetic algorithm (LGA)

was employed for each simulation process.

Molecular dynamics simulation. All molecular dynamics

simulations were carried out using the Amber 10 suite of programs

[34]. The standard AMBER99SB force field was selected for

proteins [35], the ligand charges and parameters were determined

with the antechamber module of Amber based on the AM1-BCC

charge scheme [36] and the general atom force field (GAFF) [37].

All models were solvated in the rectangular box of TIP3P water

extending at least 10 Å in each direction from the solute, and

neutralized by adding sufficient Na+/Cl2 counterions. The cut-off

distance was kept to 8 Å to compute the nonbonded interactions.

All simulations were performed under periodic boundary condi-

tions, and the long-range electrostatics were treated by using the

Particle-mesh-Ewald method (PME) [38]. All bonds containing

hydrogen atoms were fixed using the SHAKE algorithm.

After initial configuration construction, a standard equilibration

protocol was performed for MD simulations. The systems were

minimized by 500 steps of steepest descent and 1000 steps of

conjugate gradient to remove the bad contacts in the structure,

then were slowly heated to 300 K over 50 ps using 2.0 kcal/mol/

Å22 harmonic restraints. Subsequently, a 50 ps pressure-constant

(1 bar) period to raise the density while still keeping the complex

atoms constrained and a 500 ps equilibration were conducted.

The production stage consisted of a total of 5 ns at constant

temperature of 300 K for each system, respectively. The

integration time step was 2 fs and the coordinates were saved

every 2 ps.

Binding free energy calculation. The energy of the

protein–ligand binding was computed using the Molecular

Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) meth-

odology [39] by the MM-PBSA, SANDER and NMODE modules

in Amber. In this approach, the frame of a MD trajectory was

stripped off counterions and water molecules, and the binding free

energy (DGbind) was calculated according to the following

equations:

Investigation into the Mechanisms of TCM
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DGbind~DHbind{TDSbind ð1Þ

DHbind~DEgas{DGsol ð2Þ

DEgas~DEintzDEvdW zDEele ð3Þ

DGsol~DGpbzDGnp ð4Þ

DGnp~cSASA ð5Þ

where DEgas is the molecular mechanical gas-phase energy, which

is the sum of the internal (DEint), van der Waals (DEvdw) and

electrostatics (DEele) energies. The solvation free energy (DGsol)

was calculated with a PB/SA model, which dissects the solvation

energy in two parts, that is, the electrostatic (DGpb) and the

nonpolar (DGnp) components. The DGpb was calculated using the

PBSA program with the default cavity radii. The dielectric constant

was set to 2 for the interior solute and 80 for the surrounding

solvent. The DGnp was computed based on eq. (5), where c
represents surface tension and was set to 0.0072 kcal?mol21Å22,

and SASA is the solvent-accessible surface area (Å2) determined

using the linear combination of pairwise overlaps model [40]. The

entropy contributions (TDSbind) arising from changes in the

translational, rotational and vibrational degrees of freedom were

calculated using statistical mechanics formulae [41]. Because the

contributions from translation and rotation are much smaller than

vibration, TDSbind was generally calculated using normal-mode

analysis by the NMODE module in Amber.

Network construction
The Candidate Targets and Potential Targets were respectively

used to build the Compound-Target Networks with the Candidate

Compounds. The Compound-Target Networks were generated by

Cytoscape 2.8.1 [42], a standard tool for integrated analysis and

visualization of biological networks. The Compound-Pathway

Network was produced by linking the Candidate Compounds and

the signal pathways in which they participated. The diseases

related with the Potential Targets were collected from the

PharmGkb, TTD and DrugBank databases and the obtained

disease-target interactions were further applied to build the

Target-Disease Network.

In the graphical networks, nodes represent the compounds,

proteins, signal pathways or diseases, and edges encode the

compound-target, compound-pathway or target-disease interac-

tions. The ‘‘Compound-candidate Target Network’’ (C-cT Net-

work) was constructed by linking the Candidate Compounds and

Figure 1. Flowchart of the model building.
doi:10.1371/journal.pone.0043918.g001
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all their Candidate Targets, while the ‘‘Compound-Potential

Target Network’’ (C-T Network) was built by linking the

Candidate Compounds and their validated Potential Targets. In

the ‘‘Compound-Pathway Network’’ (C-P Network), the signal

pathway was linked to a Candidate Compound if the compound

target exists in the pathway. In the ‘‘Target-Disease Network’’ (T-

D Network), the diseases were connected with those related

Candidate Targets. Finally, the quantitative properties of these

networks were analyzed by two plugins including NetworkAnaly-

zer [43] and CentiScaPe 1.2 [44].

Results and Discussion

TCM prescriptions usually contain several herbs called

‘‘Fufang’’ in Chinese based on the principle of ‘‘Jun-Chen-Zuo-

Shi’’ [45]. Up to today, more than 300 complex formulations

prescribed in accordance to this theory have been in use for

centuries [46]. And much effort has been made in proving the

TCM efficacy by the criteria of evidence-based medicine or

experience-based medicine [47–50], but the complexity of the

chemical components would make it extremely difficult to

understand this TCM principle from a molecular or systematic

level. Therefore, in addition to the specific focus on the issue of

CDF, the present work also attempts to interpret this formulation

theory of TCM through this relatively simple recipe.

Oral bioavailability prediction
Oral bioavailability, one of the most important pharmacokinetic

parameters among ADME properties (absorption, distribution,

metabolism and excretion), represents the percentage of an oral

dose that is enough to produce a pharmacological effect. High oral

bioavailability is often a key indicator to determine the drug-like

property of bioactive molecules as therapeutic agents [51].

As for TCM, it has been believed that most compounds in the

mixture fail to reach to the cellular targets since they lack

appropriate pharmaceutical properties, especially the oral bio-

availability [52]. Therefore, the valuation of oral bioavailability is

indispensable to determine whether a compound is pharmacolog-

ically active in a TCM prescription. In CDF, 90 compounds were

predicted satisfactorily to have high oral bioavailability ($50%),

which account for 28.1% of the total chemicals as shown in Table 1

and Table S1.

Radix Salviae Miltiorrhizae. As seen from Table 1, the

compounds with high oral bioavailability ($50%, 54/90) are

mainly contained in Radix Salviae Miltiorrhizae, the ‘‘emperor’’ in

the CDF formula. As the most abundant bioactive compounds

[53], salvianic acid A, protocatechuic aldehyde and cryptotan-

shinone have the OB values of 78.2%, 53.4% and 57.4%,

respectively. In addition, some other active compounds such as

tanshinone IIB, isotanshinone IIA, IIB, and miltionone II all show

a high oral bioavailability ($50%) [54]. One exception is

salvianolic acid B (Sal B), which has a very low oral bioavailability

of 3.01%. Sal B, one of the most abundant constituents in Salvia

species, shows good pharmacological effects on atherosclerosis

[55], obstruction of regional cerebral blood flow [56] and platelet

aggregation [57]. This raises the question that if this compound is

not orally bioavailable, how it can exert desirable bioactivities in

vivo. Further evidence shows that this compound is water soluble

and can be rapidly metabolized in vivo to several products such as

salvianic acid A (OB = 78.2%), isoferulic acid (OB = 67.7%) [58]

and protocatechuic aldehyde (OB = 53.4%) [59], and quickly

excreted into bile after oral administration [60]. All these data

explains why Sal B does not have a high OB, and might also

indicate that the pharmacological effects may not only be due to

the Sal B itself but also its metabolites.

In addition to Sal B (OB = 3.01%), compounds tanshinone I

(OB = 29.3%) and tanshinone IIA (OB = 20.3%) [61] are also

considered as ‘‘Candidate Compounds’’ because these three

molecules are the most abundant constituents in Radix Salviae

Miltiorrhizae (,.0.2%), although their OB values ,50%.

Panax Notoginseng. 29 compounds (2 overlap with Radix

Salviae Miltiorrhizae) from Panax Notoginseng have a good oral

bioavailability, including two documented bioactive molecules:

dencichine (71.7%) and quercetin (51.0%), which have been

reported to have good hemostatic [62], anti-cancer, and anti-

thrombotic [63] effects. However, triterpene saponins notoginse-

nosides and ginsenosides, the main ingredients in Panax Notoginseng,

are not orally bioavailable, as well as ginsenoside RF2

(OB = 36.4%) and other 18 saponins with OB ,17.7% (ginseno-

side Re). Considering that all these hydrophilic compounds have

sugar groups and can be easily hydrolyzed into liposolubles, four

main in vivo metabolites of these saponins, i.e., PPT (protopanax-

atriol), PPD (protopanoxadiol), ginsenosides C-K and F1 [64],

were additionally collected and their OB values are predicted to be

20.1%, 29.6%, 6.5% and 4.1%, respectively. The low OB for all

the saponins explains why only 3.29% Rg1 and 0.64% Rb1 can be

detected in rat serum for the orally administered ginsenosides [65],

and why the intact ginsenosides, notoginsenosides and their

metabolites are poorly absorbed in intestines or stomach [66,67].

It is shown that the poor OB may be attributed to the following

reasons: (1) pre-systemic elimination [68]; (2) gastrointestinal tract

metabolism [69]; (3) potent efflux transport [70]; and (4) low

membrane permeability. Among them, the membrane permeabil-

ity might be a key factor in judging which a drug reaches the

systemic circulation [69].

However, these findings are somehow contradictory to the

existing data that the Panax Notoginseng exhibits incredible

pharmacological activities, such as neuroprotection [71], antiox-

idation [72] and angiogenesis modulation [73]. Further analysis

shows that, even at a very low dose, ginsenoside could exert strong

pharmacodynamic effects [74,75]. More interestingly, the ginseno-

side metabolites by microflora, such as Prevotella oris [76],

Eubacterium A-44 [77], exhibited greater biological effects than

their intact ginsenosides [78,79].

This raises the question why Panax Notoginseng is effective while

possessing ingredients have poor oral availability. To answer this,

the compounds, including the intact ginsenosides and metabolites,

i.e., compound K, PPD (major metabolites of PPDs), ginsenoside

F1 and PPT (major metabolites of PPTs) [64] are also regarded as

Candidate Compounds and their targets are further analyzed in

Section 3.2.

Borneolum. 9 compounds (3 overlap with Radix Salviae

Miltiorrhizae) from Borneolum have good OB, including the most

abundant compound d-borneol (OB = 81.8%). The l-borneol and

Table 1. The distribution of compounds with oral
bioavailability in CDF formula.

Oral bioavailability Number of compounds Percentage (%)

$90% 6 1.88

$80% 15 4.69

$70% 31 9.69

$60% 53 16.56

$50% 90 28.13

doi:10.1371/journal.pone.0043918.t001
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isoborneol, both isomerides of d-borneol, also have good OB, 88.0%

and 87.0%, respectively.

Borneolum is a widely used herbal in TCMs, which often acts as a

‘guiding herb’ – leading other drug(s) to the target tissues or organs

[3]. The Borneolum is highly lipid-soluble, which can be absorbed

rapidly in the gastrointestinal tract and penetrates the Blood Brain

Barrier (BBB) [80]. Recent work found that it could increase the

number and volume of pinocytosis vesicles in the BBB cells, thus

accelerating the transport and leading medicine uplink [81,82].

Borneolum can inhibit the function of P-gp, one of the most

important efflux proteins in cell membrane [83]. As we know, the

P-gp inhibition may have a profound effect on the pharmacoki-

netics of drug absorption [84,85]. The molecular docking in this

work shows that d-borneol has high binding affinity to human P-gp

at the substrate recognition site [86] with a binding free energy of

26.34 kcal/mol. This might explain why the addition of Borneolum

can promote the oral delivery of drug molecules [87] as well as the

oral absorption of Radix Salviae Miltiorrhizae [88].

From the above, 101 compounds are finally regarded as

‘‘Candidate Compounds’’, including 77 readily absorbed com-

pounds, 17 intact ginsenosides, 4 main ginsenoside metabolites

and 3 most abundant compounds.

Target identification and validation
Cardiovascular disease has become a leading contributor to

mortality in all over the world [89]. Currently, only a small

number of proteins have been demonstrated as CVD targets for

those approved drugs despite more than 230 proteins are

confirmed related to the CVD [90]. The identification of novel

targets for known drugs, as well as the discovery of cross-

pharmacology relationships among targets has become urgent for

the development of new target connections and novel drugs.

Clearly, in a genome-wide way to search potential targets or target

interactions, the ‘‘dry’’ experiment (computational method) should

be the first choice since the ‘‘wet’’ experiment is time-consuming,

expensive, and also limited in small scale [91].

In this work, a pharmacophore modeling technique was firstly

applied to search potential targets based on the ‘‘Candidate

Compounds’’. In order to find as many as possible targets, the

proteins whose fit score are $3.00 in the top 300 high-ranking

proteins for each compound were considered as ‘‘Candidate

Targets’’. A total of 385 (Table S2) unique proteins were obtained

as ‘‘Candidate Targets’’, whereas 8 ‘‘Candidate Compounds’’

(compounds 216, 228, 254, 272, 274, 292, 299, 312) have no

‘‘Candidate Target’’ under this criterion. All these proteins were

further subject to PharmGkb, DrugBank and TTD to check if they

are related to CVD. Our results show that 42 positive targets and 4

‘‘Candidate Compounds’’ (compounds 221, 255, 339, 344) do not

have CVD-related targets.

In this pharmacophore-based target identification, the bioac-

tivity was assessed merely by the atom and bond features of a

tested molecule rather taking the whole ligand into consideration

[92]. To improve the liability of the obtained models, the

Candidate Targets related to CVD were further validated by

molecular docking, and only those with binding free energy

#25.0 kcal/mol were kept as the ‘‘Potential Targets’’. As a result,

one Candidate Target (heme oxygenase 1) and 4 ‘‘Candidate

Compounds’’ (compounds 209, 214, 273 and 338) are deleted, and

some receptors are not targeted by certain compounds any more.

For example, compounds 151 (salvianolic acid B) and 68

(tanshinol II) should not bind to ER-alpha (Estrogen receptor-

alpha) since their binding free energies are 29.75 and 8.62 kcal/

mol, respectively, although they are predicted to interact with this

protein by the pharmacophore method. After this docking process,

the number of interactions between the receptors (Candidate

Targets related to CVD) and ligands (Candidate Compounds) is

sharply reduced from 1580 to 735, with the ‘‘Potential Targets’’

and CVD-related ‘‘Candidate Compounds’’ to 41 (Table 2) and

85, respectively. The detailed interactions for these Candidate

Compounds and Potential Targets with their ligands are shown in

Table S2.

After the pharmacophore modeling and docking validation

process, 16 ‘‘Candidate Compounds’’ (compounds 216, 228, 254,

272, 274, 292, 299, 312, 221, 255, 339, 344, 209, 214, 273 and

338) are eliminated due to their low binding affinity with

receptors. Further analysis shows that all the remained 85 CVD-

related compounds are different from the above 16 CVD-

unrelated chemicals: 1) The optimal pharmacophore models

generally include at least 4 hydrophobic groups, 3 H-bond

acceptors and 2 H-bond donors. However, most CVD-unrelated

compounds have only 2 hydrophobic groups, 1 H-bond acceptor

and 1 H-bond donor or less. 2) The docking simulations show that,

in contrast to all the CVD-unrelated compounds (binding energies

.23.0 kcal/mol, average), the CVD-related compounds bind

well to their targets (binding energies ,26 kcal/mol, average).

Compared with pharmacophore modeling, molecular docking

might provide more reliable results. But these models are also

suffered from an over estimation of the protein-ligand binding.

Therefore, the binding of ligand with receptor in more realistic

complex systems was further probed by molecular dynamics

simulation and binding free energy analysis. Here, three systems,

i.e., REN-15, REN-94, VDR-176 were collected based upon a

careful consideration of following principles: 1) REN (renin) is an

approved target for CVD drugs hydrochlorothiazide [93] and

aliskiren [94], which is predicted to bind to compounds 15 (3a-

hydroxytanshinone IIA) and 94 (dihydrotanshinone I) and adopted

here as a positive control; 2) VDR (Vitamin D3 receptor) is an

important predicted potential target, which binds to compound

176 (tanshinone IIA); 3) The three compounds are all key

components in CDF with less than 25.0 kcal/mol docking

binding energy.

MD trajectories of the three complexes in explicit solvent were

calculated for 5 ns and the root mean square deviation (RMSD) of

protein Ca backbone atoms reveals very small changes (,1.8 Å),

which is indicative of the satisfactory performance of the

simulations. Subsequently, the absolute binding free energies of

the three systems using the single-trajectory MM-PBSA method

(Table 3) were calculated. In general, models with lower free

energy are expected to be more stable than those with higher

values. As seen from the Table 3, the low binding free energies

(221.24,227.14 kcal/mol) is indicative of high binding affinity

of the three compounds to their targets. According to the energy

individual components, the total electrostatic contribution (DEe-

le+DGpb) is unfavorable (positive) while the van der Waals and

hydrophobic interaction contribution (DEvdw+DGnp) is favorable

(negative) for the binding. This is in agreement with the fact that

the binding pocket of REN and VDR receptors are mainly

composed of hydrophobic residues.

Network construction and analysis
Currently it has been recognized that CVD may be caused by a

variety of complex reasons such as the disturbance of metabolism

and genetic variations [89]. With the growing understanding of the

complex disease, the focus of drug discovery has shifted from the

well-accepted ‘‘one target, one drug’’ model designed toward a

single target to a new ‘‘multi-target, multi-drug’’ model aimed at

systemically modulating multiple targets in body [95]. Interesting-

ly, as an empirical system of multicomponent therapeutics, TCM

Investigation into the Mechanisms of TCM
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Table 2. The Potential Targets and the related diseases.

No. Short Name Gene Name Protein Name PDB Related Diseases

1 ACE ACE Angiotensin-converting enzyme 1UZF Coronary artery disease, Arteriosclerosis,
Hypertension, Heart failure, Hypokinesia,
Stroke, Thromboembolism

2 ACE2 ACE2 Angiotensin-converting enzyme 2 1R4L Hypertension, Cardiovascular diseases

3 Aldose reductase AKR1B1 Aldose reductase 2DUX Cardiovascular diseases, Diabetes

4 Androgen receptor AR Androgen receptor 1GS4 Cardiovascular diseases

5 Ang ANG Angiogenin 1B1I Cardiovascular diseases

6 CA2 CA2 Carbonic anhydrase 2 1I9P Hypertension

7 Caspase-3 CASP3 Caspase-3 1RHR Venous thrombosis

8 Cathepsin K CTSK Cathepsin K 1TU6 Atherosclerosis

9 Cathepsin S CTSS Cathepsin S 1NPZ Atherosclerosis

10 Chymase CMA1 Chymase 1T31 Hypertension, Coronary artery disease

11 CYP2C9 CYP2C9 Cytochrome P450 2C9 1R9O Coronary artery disease, Heart diseases,
Hypertension, Thromboembolism

12 eNOS NOS3 Nitric oxide synthase, endothelial 3NOS Angina pectoris, Thrombosis, Heart failure,
Acute coronary syndrome, Cardiovascular
diseases, Myocardial infarction, Hypertension

13 ER-a ESR1 Estrogen receptor 1YIN Hyperlipidemia, Coronary artery disease

14 ER-b ESR2 Estrogen receptor beta 1NDE Hyperlipidemia, Coronary artery disease

15 E-selectin SELE E-selectin 1G1T Hypertension

16 F10 F10 Coagulation factor X 1MQ6 Coronary artery disease

17 F2 F2 Prothrombin 1TA2 Myocardial infarction, Thromboembolism

18 F7 F7 Coagulation factor VII 1DAN Thromboembolism, Cardiovascular diseases

19 GR NR3C1 Glucocorticoid receptor 1NHZ Hypertension, Cardiovascular diseases

20 HMG-CoA reductase HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase 3CD7 Myocardial infarction, Hyperlipidemias,
Cardiovascular diseases, Arteriosclerosis,
Hypertension

21 HSP90-a HSP90AA1 Heat shock protein HSP 90-alpha 1UYH Arteriosclerosis, Acute coronary syndrome

22 HSP90-b HSP90AB1 Heat shock protein HSP 90-beta 1UYM Arteriosclerosis, Acute coronary syndrome

23 iNOS NOS2 Nitric oxide synthase, inducible 1NSI Hypertension

24 LXR-a NR1H3 Oxysterols receptor LXR-alpha 1UHL Cardiovascular diseases, Hypertension,
Coronary artery disease

25 LXR-b NR1H2 Oxysterols receptor LXR-beta 1PQ6 Hypertension, Cardiovascular diseases

26 MIF MIF Macrophage migration inhibitory factor 1GCZ Arteriosclerosis

27 MMP-9 MMP9 Matrix metalloproteinase-9 1GKD Coronary artery disease, Heart failure

28 Mn-SOD SOD2 Superoxide dismutase [Mn], mitochondrial 1XDC Arteriosclerosis, Hyperlipidemia

29 MR NR3C2 Mineralocorticoid receptor 2AA5 Hypertension, Hyperlipidemias

30 PDE4D PDE4D cAMP-specific 3,5-cyclic phosphodiesterase 4D 1Y2K Heart failure, Arrhythmia

31 PPAR-a PPARA Peroxisome proliferator-activated receptor alpha 1K7L Hypertension, Coronary artery disease,
Hyperlipidemias, Cardiovascular diseases

32 PPAR-d PPARD Peroxisome proliferator-activated receptor delta 1Y0S Venous thrombosis, Hyperlipidemias

33 PPAR-ã PPARG Peroxisome proliferator-activated receptor gamma 1RDT Hypertension, Cardiovascular diseases,
Hyperlipidemias

34 RBP-4 RBP4 Retinol-binding protein 4 1RBP Coronary artery disease, Arteriosclerosis,
Hypertension, Hyperlipidemia

35 Renin REN Renin 2IKO Coronary artery disease, Arteriosclerosis,
Hypertension, Hyperlipidemia, Heart failure

36 RXR-a RXRA Retinoic acid receptor RXR-alpha 1FBY Hypertension, Cardiovascular diseases

37 RXR-b RXRB Retinoic acid receptor RXR-beta 1H9U Hypertension, Cardiovascular diseases

38 sPLA2-IIA PLA2G2A Phospholipase A2, membrane associated 1KQU Myocardial infarction, Coronary artery
disease

39 TGF-b1R TGFBR1 TGF-beta receptor type-1 1RW8 Cardiovascular diseases, Hypertension

40 VDR VDR Vitamin D3 receptor 1DB1 Cardiovascular diseases, Hypertension

41 VEGFR-2 KDR Vascular endothelial growth factor receptor 2 2OH4 Hypertension

doi:10.1371/journal.pone.0043918.t002
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might have the potential of addressing a relationship between

multicomponent and drug synergistic effects, which is capable of

systematically controlling various diseases such as the angiogenic

disorders [96,97]. And the complex network analysis approaches

might shed light on the mystery of TCM and uncover the

synergistic effects among different components in the mixtures.

And the application of network theory would be a very useful tool

for us to visualize and analyze the interaction data to capture the

complexity in a simple, compact, and illustrative manner. In the

following part, we will discuss how the network pharmacology

approaches have been applied in the TCM investigations.

C-cT and C-T networks: novel compound-target networks

for CDF. After deleting the 8 compounds with no targets, the

resultant 93 ‘‘Candidate Compounds’’ and all their ‘‘Candidate

Targets’’ were applied to generate a bipartite graph of Com-

pound-candidate Targets interactions, in which a compound and a

target are connected to each other if the protein is a Candidate

Target of the Candidate Compound, giving rise to a ‘‘C-cT

Network’’. Figure 2a shows a global view of C-cT Network with

color-coded nodes: Candidate Compounds (blue), Candidate

Targets (pink).

The C-cT Network consists of 478 nodes and 9220 edges, with

93 Candidate Compounds and 385 Candidate Targets. The 93

compounds display a total of 9220 interactions with their targets.

Most Candidate Compounds target only a few Candidate Targets,

but some have many Candidate Targets. Compound 235

(ginsenoside Rb1) exhibits the highest number of Candidate

Target interactions (180), followed by compound 236 (ginsenoside

Rb2) with 179 Candidate Targets, and compound 247 (ginseno-

side Ro) with 178 Candidate Targets. Compounds 209 (1-methyl-

5-isopropenyl cyclohexene1), 221 (3-ethyl-2, 4-pentylene alcohol),

255 (butyl cyclobutane) and 344 (b-terpineol) all have the least

number of Candidate Targets (only 1). This indicates that the C-

cT Network that encodes a compound-target space is biased

toward certain drug compounds. Likewise, the Candidate Targets

also display rich landscape of interacting compounds (9220 in

total, mean value: 23.9). Among the 385 Candidate Targets,

Proteins 168 (glutathione S-transferase P) and 185 (heat shock

protein 90 kDa alpha) possess the largest number of interacting

Candidate Compounds (81). The following order is Proteins 67

(carbonic anhydrase 2) and 374 (tyrosine-protein phosphatase non-

receptor type 1) with 80 and 79 connected Candidate Com-

pounds, respectively. Higher-degree Candidate Compounds and

Candidate Targets in the C-cT Network are preferentially

connected to each other rather than being distributed homoge-

neously throughout the network, leading to a much smaller giant

component size than expected. Therefore, the C-cT Network

represents an intermediate structure between a completely random

network with a very large giant component and a functionally fully

segregated network broken into isolated clusters. Clearly, the C-cT

Network might be a useful compendium to reflect the Candidate

Compounds and Candidate Targets in the treatment of CVD.

The general network properties of the C-cT Network are listed in

Table 4.

Furthermore, extracted from the bipartite C-cT Network graph,

we generated a C-T Network (Compound-Potential Target

Network, Figure 2b) projection by connecting the 85 validated

CVD-related Candidate Compounds (after deleting those 4

compounds with binding free energy #25.0 kcal/mol with their

receptors) and their 41 Potential Targets (Table 2, Figure 2b).

Table 3. Binding free energy estimates for each model.

Contribution REN-94 REN-15 VDR-176

Mean Std Mean Std Mean Std

DEele 27.65 3.86 216.05 5.45 25.48 1.77

DEvdw 226.11 2.62 232.50 2.45 241.68 2.38

DGnp 24.17 0.24 25.17 0.27 25.53 0.09

DGpb 8.12 1.55 17.06 2.79 12.91 1.26

DGgas 233.76 3.79 248.54 5.71 247.15 3.40

DGsol 3.95 1.49 11.89 2.71 7.38 1.28

2TDS 15.88 7.35 13.91 7.06 18.53 5.91

DGbind
a 229.81 2.67 236.65 3.75 239.77 3.17

DGbind
b 227.14 2 222.74 - 221.24 -

Mean contributions are in kcal/mol.
aThe predictions of binding energy do not include the entropy effect.
bThe predictions of binding energy include the entropy effect.
doi:10.1371/journal.pone.0043918.t003

Figure 2. Compound-Target Networks. (a) C-cT Network. (b) C-T Network.
doi:10.1371/journal.pone.0043918.g002
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Table 4 lists the general network properties of the C-T Network,

which is composed of 126 nodes and 735 edges, with 85 Candidate

Compounds and 41 Potential Targets. Figure 2b shows the

topology of the C-T Network with colour-coded nodes: Candidate

Compounds (blue), Potential Targets (red). The average number of

Potential Targets per Candidate Compound is 8.6. Of all the 85

Candidate Compounds, 31 have a relatively strong interaction

with $10 Potential Targets, and 11 compounds bind to more than

15 Potential Targets. Compound 13 (neryl formate) exhibits the

highest number of interactions with 25 Potential Targets, following

on are compounds 331 (neryl acetate, 21 targets), 117 (manool, 21

targets), 128 (neocryptotanshinone, 20 targets) and 69 (tanshinol I,

20 targets). This also indicates that C-T Network is biased toward

specific drug compounds.

Similarly as the whole C-cT Network, many Potential Targets

are targeted by more than one Candidate Compound. HSP90-

alpha (heat shock protein 90 kDa alpha), PDE4D (cAMP-specific

3,5-cyclic phosphodiesterase 4D), VDR (vitamin D receptor) and

RXR-beta (retinoid6receptor, beta) are examples of highly

connected Potential Targets, whose numbers of Candidate

Compounds are 51, 44, 41 and 40, respectively. But the ACE2

(angiotensin-converting enzyme 2) has only one interactional

Candidate Compound. The average number of Candidate

Compounds per Potential Target is 17.9, indicating that many

proteins that are related to CVD might share similar binding

patterns with the ligands. Interestingly, the C-T Network exhibits

similar features of drug-target interactions as those of C-cT

Network, which might further demonstrates the reasonability of

the obtained network.

C-T network: pinpointing the key players of CDF for CVD

from the fundamental global and local properties. Network

data structures are amenable to many sophisticated forms of

computational analysis which can uncover important, nonobvious

properties of nodes and the relationships between them [98,99].

The topological analysis of the networks may offer insights into the

biologically relevant connectivity patterns, and pinpoint highly

influential compounds or targets.

A general overview of the global topological properties of the C-

T Network comes from the diameter and the average distance of

the network. A diameter of 5.0 with an average distance of 2.48

suggests a highly connected network, in which Candidate

Compounds and Potential Targets are strongly functionally

interconnected. To support this suggestion, we also analyzed the

centroid and eccentricity (Table S4). The centroids of 61 nodes are

larger than the network average centroid (266.7), and 100 nodes

have the eccentricity value larger than the average value of 4.12.

These results demonstrate that our C-T Network is a highly linked

network.

Furthermore, the node degree (the number of connections or

edges the node has to other nodes), as one of the most basic

quantitative properties of a network, is also investigated. The

highly connected nodes are referred to as hubs [100]. The node

degrees of C-T Network follow an interesting distribution, i.e.,

most nodes display a medial number of interactions; others are

highly or loosely connected. This indicates that C-T Network

interactions are not generated at random and they may encode

clinically relevant associations. Of all the 85 Candidate Com-

pounds, 31 compounds possess degree larger than 10 under an

average value of 8.6 in which 16 are known active compounds.

Whereas, in the top 43 (half of the 85 total) compounds, 24 are

known active ones in the C-T Network (as shown in Table 5).

These Candidate Compounds participating in more interactions

than other components are the hubs in this C-T Network.

Another fundamental property of network nodes is the

‘‘betweenness’’, the capacity to be located in the shortest

communication paths between different pairs of nodes in the

network [100]. This property is also defined as traffic. High traffic

nodes are referred to as network bottlenecks. Some previous work

including ours has demonstrated the potential biological relevance

of high traffic nodes with regard to their functional coordinating

roles and phenotypic effects [101,102]. In the C-T Network, of all

85 Candidate Compounds, 16 are known active compounds in the

top 30 compounds that have higher betweenness, and 25 in the

top 43 (half of all), as shown in Table 5.

Generally, nodes (Candidate Compounds in the present

network) which have both higher degree and betweenness would

be more important [103]. Interestingly, we observe that the

betweenness and degree values in the C-T Network are strongly

correlated (Figure 3), with a correlation coefficient of R2 = 0.77.

Those nodes (Candidate Compounds) which have higher degree

would have larger betweenness, and 40 of the top 43 Candidate

Compounds have both high degree ($8) and betweenness

($48.05); and the number is 18 of the top 20 compounds. This

means that C-T Network hubs tend to encode the bottlenecks, and

influence different network regions through both direct and

indirect interactions.

Surely, Candidate Compounds with higher degree and

betweenness would be key players in the CDF. 10 among the 18

key Candidate Compounds with high degree and betweenness

(Table 5) have been well demonstrated active in the CDF formula;

and the top 40 key Candidate Compounds with high degree and

betweenness include 23 reported active compounds. For instance,

compound 148 (salvianic acid A) can dilate the isolated coronary

artery, increase the coronary flow rate and expand the blood vessel

[18]; compounds 177 (tanshinone IIB) [19] and 230 (dencichine)

[20] are effective to inhibit the platelet aggregation. This also

indicates that the network-based analysis is capable of extracting

the key components in this herbal medicine. In addition, it is worth

noting that some compounds, whose activities are still unknown,

should be a key area of consideration in the future study of CDF.

Especially, four Candidate Compounds, i.e., compounds 117

(manool), 128 (neocryptotanshinone), 157 (salvianolic acid J), and

99 (epidanshen spiroketal lactone), might be novel leads for

treatment of CVD and worth further research. Interestingly, it is

found that 28 of the 40 key ingredients are contained in Radix

Salvia Miltiorrhiza, which further demonstrates that this emperor

drug plays a key role in the CDF formula.

Table 4. The general network properties of the C-cT and C-T Network.

Network
Number
of nodes

Number
of edges

Avg.
degree

Network
density

Network
centraliazation

Characteristic
path length

Shortest
paths

Network
heterogeneity

C-cT 478 9220 38.577 0.081 0.298 2.429 228006 1.110

C-T 126 735 11.667 0.093 0.320 2.485 15750 0.831

doi:10.1371/journal.pone.0043918.t004
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Besides, evidence suggests that some chemicals can exert

pharmacological activities by acting on gastrointestine [104], thus,

the intestinal metabolites of ginsenosides are also incorporated to

understand the mechanism of Panax Notoginseng. Ginsenosides Rd,

C-K, F2 and PPD are metabolites of ginsenoside Rb1, while Rh2

and PPD are those of Rg3; for Re, its metabolites are Rh1, Rg2,

F1 and PPT [64]. Network analysis shows that the metabolites

ginsenoside C-K and PPD play more important roles than the

original Rb1. Also, PPD is more important than Rg3, and F1, Rg2

and PPT are more important than Re. All these may suggest that

the metabolites, not the original ginsenosides, exert main

pharmacological activities in the treatment of CVD.

The network analysis also shows that, as two major intestinal

metabolites of PPDs [64], C-K and PPD play more important

roles than all the original PPDs. And F1 (the major intestinal

metabolite of PPTs) [64] is more important than PPTs. All these

indicate that the intestinal ginsenoside metabolites might be the

main active ingredients of Panax Notoginseng in the treatment of

CVD.

Among the ten most abundant compounds in CDF (tanshinone

IIA, Sal B, cryptotanshinone, protocaterchuic aldehyde, salvianic

acid A, tanshinone I, notoginsenoside R1, ginsenoside Rg1,

ginsenoside Rb1 and d-borneol) [3], three compounds, i.e., Sal B,

protocaterchuic aldehyde and salvianic acid A, are included in the

top 20 key players (Candidate Compounds), which implies that

these 3 compounds may play more important roles than other

ones in treating the disease. In the top 20 players, CK and PPD

reflect greater contribution of Rb1, and tanshinone IIA and

cryptotanshinone also show greater contribution than others. This

implies that the six compounds of Sal B, protocaterchuic aldehyde,

salvianic acid A, ginsenoside Rb1, tanshinone IIA and cryptotan-

shinone are probably the most important components for the

treatment of CVD in a real patient.

In addition, we also analyzed the Potential Targets of these

Candidate Compounds (with detailed information shown in Table

S3). Of the top 20 Potential Targets (41 in total) with high degree

or betweenness, 18 have both high degree and betweenness. Thus,

they could be key targets for CDF, and play key roles in CVD

therapy. Amazingly, Radix Salvia Miltiorrhiza and Panax notoginseng

both target all these 18 proteins, which also explains the principal

or adjuvant functions of these two herbs in CDF. All these data

indicate that the CDF treats the cardiovascular disease based on

the synergistic interactions of different components.

C-T network: illustrating the mechanisms of the CDF on

CVD based on the compound-target

interactions. Advances in pathophysiological research suggest

that the CVD continuum begins with risk factors that initiate the

process that leads to tissue damage. The pathophysiological

continuum includes the oxidative stress, endothelial dysfunction,

inflammatory processes, vascular remodeling in the initiation and

continuation of CVD, thrombosis process, dyslipidemia and

dysarteriotony, etc [105]. Collectively, these risk factors might

alter the expression of proteins in multiple cellular pathways,

leading to changes at the individual cell level, the tissue level and,

ultimately, the disease state. The strategy behind the modern

pharmaceuticals is to restore the healthy state by inhibiting a

molecular target that is central to the disease mechanism.

However, a greater understanding of the CVD network reveals

that inhibition of an individual target is insufficient to restore the

system to the healthy state. In these cases, modulating the activity

of multiple targets would be unquestionably required to achieve

optimal therapeutic benefit [106]. The action mechanism for a

TCM is most probably due to that the active compounds target at

multiple proteins in the biological network and then the biological

Table 5. The betweeness and node degree of Candidate
Compounds.

Compounds BetweennessDegree

Compounds BetweennessDegree

M2 1.9130 3 M206 0.7509 2

M13 724.1483 25 M217 0.0000 1

M15* 180.7998 13 M227 4.6731 4

M17 21.6577 5 M230* 455.5151 9

M18 112.4945 11 M233* 116.7896 13

M21 359.3636 14 M234* 61.1274 10

M36 111.0346 12 M235* 93.3910 9

M53 16.4952 4 M236 24.0610 5

M61 16.2719 5 M237 26.0983 6

M66 68.6507 10 M238 9.0711 5

M67 19.2309 5 M239 15.1011 5

M68* 291.2255 19 M240 24.9245 6

M69* 350.7039 20 M241* 92.3841 8

M80* 60.3365 9 M242* 104.5600 10

M87 69.4337 10 M243 67.0867 7

M88 43.5437 7 M244 52.0521 7

M91 123.2400 13 M245 16.8538 6

M94 14.2769 4 M246 45.1483 5

M95 0.0000 1 M247 2.3093 3

M98 7.4776 4 M248 0.0000 1

M99 147.0782 14 M249 26.8981 6

M106* 230.6302 15 M250 37.1891 7

M107 0.6961 2 M252 17.6270 3

M109* 244.4809 18 M258 100.4710 5

M110* 61.3330 10 M259 90.7898 11

M117 518.7937 21 M286 62.3123 9

M122 13.3008 4 M293 45.8579 9

M123* 51.7626 8 M294* 138.5526 13

M128 448.0906 20 M295* 67.9490 9

M139 342.8197 18 M300 47.3511 9

M141* 242.6144 13 M301 10.6174 4

M148* 169.9105 12 M302 5.9018 4

M151* 390.0531 16 M305 23.6586 7

M156 116.6271 11 M314 44.8343 8

M157 198.5621 13 M316 86.7339 9

M167 10.6765 5 M320 7.3409 3

M172 31.7887 7 M322 12.8785 4

M176* 48.0524 8 M326 2.1035 2

M177* 293.8129 16 M327 1.7637 2

M180* 80.7252 10 M329 28.0748 6

M189 18.8204 5 M331 437.6101 22

M193 35.0662 6 MCK* 144.5436 13

M205 1.0506 2

Bold and italic figure: compounds with both high degree and betweenness
value in the top 30 compounds.
Bold figure: compounds with both high degree and betweenness value in the
top 43 (half of the 85 total) compounds.
*: compounds which have been demonstrated actively in the CDF formula.
doi:10.1371/journal.pone.0043918.t005
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system would attain new equilibrium in order to reduce the

harmful impact. It is most likely that these targets make up a great

and interlinked network so that these building blocks could

function as a whole.

In our study, there are 41 validated Potential Targets which

have been annotated to have significant relationship with the

pathological process of CVD. All these proteins might mediate at

every stage along the CVD continuum. For example, F2

(thrombin), F7 (coagulation factor VII), F10 (coagulation Factor

Xa) and PPAR-delta (peroxisome proliferator activated receptor

delta) play important roles in the thrombosis process; while LXRs

(liver6receptor alpha and beta), HMG-CoA reductase (3-hydroxy-

3-methylglutaryl-coenzyme A reductase), PPAR alpha, delta,

gamma, ERs (estrogen receptor alpha and beta), RBP4 (retinol-

binding protein 4), TGF-b1R (TGF-beta receptor type-1) and Mn-

SOD (superoxide dismutase [Mn], mitochondrial) are closely

concerned with the lipid metabolism and peroxidation, and may

cause dyslipidemia. Interestingly, 39 of all these validated targets

(except eNOS and ACE2) are for Radix Salvia Miltiorrhiza, the

emperor of CDF. Clearly, the compounds interacting with these

receptors associated with thrombosis and hyperlipidemia could

lead to inhibition of the blood coagulation, activation of the

fibrinolysis, inhibition of the platelet aggregation and tackiness,

decrease of the plasma viscosity, and ultimately cure of the

thrombosis.

Proteins eNOS (nitric oxide synthase, endothelial), CYP2C9

(cytochrome P450, family 2, subfamily C, polypeptide 9), HSP90s

(heat shock 90 kDa protein 1, alpha and beta), PPAR alpha,

gamma and MIF (macrophage migration inhibitory factor) are all

well related to the vasodilatation, reactive oxygen species (ROS)

and inflammation, the control of which will lead to the

improvement of endothelial and vasomotor dysfunction, inhibition

of inflammatory process and prevention damage of the inflam-

matory factor to the blood vessel and cardiac muscle. And PPAR

alpha, gamma, E-selectin, GR (glucocorticoid receptor), LXR-

beta, alpha, RXR-alpha (retinoid6receptor alpha) and AR

(androgen receptor) are all concerned with hypertension. So

through the modulation to these proteins, the CDF may achieve

the antihypertensive curative effect.

The proteins concerned with vasoconstriction are rennin, ACE

and chymase, VDR (vitamin D receptor) and VEGFR-2 (vascular

endothelial growth factor receptor 2), and the regulation of them

may cause hemangiectasis, and then lower blood pressure.

Caspase-3, MMP-9 (matrix metalloproteinase 9), MR (mineralo-

corticoid receptor), TGF-b1R, Ang (angiogenin), AR (aldose

reductase), PDE4D (cAMP-specific 3, 5-cyclic phosphodiesterase

4D) and sPLA2-IIA (phospholipase A2 membrane associated) are

somewhat related to proliferation and apoptosis of vascular

smooth muscle cells. Proliferation of intimal vascular smooth

muscle cells is an important component in the development of

atherosclerosis; therefore the regulation of these proteins may

inhibit the proliferation of vascular smooth muscle cells and

further control the process of CVD. AR (aldose reductase), MMP-

9, Cathepsin K and S are involved in vascular remodeling, thus by

regulating of these targets may achieve the goal of reducing

vascular remodeling and cure atherosclerosis and hypertension.

For Panax Notoginseng, there are 36 Potential Targets, 34 of which

are overlapped with those of Radix Salvia Miltiorrhiza. Interestingly,

the 21 compounds from Panax Notoginseng participate in all the six

pharmacological processes as previously mentioned. This indicates

that Panax Notoginseng also has anticoagulant, antihyperlipidemia,

antihypertensive, anti-inflammatory effects and inhibits the

vascular remodeling and proliferation of vascular smooth muscle

cells. Notably, there are three unique potential targets of its own,

i.e., ACE2 and eNOS. The ACE2 can catalyse the conversion of

angiotensin I to the nonapeptide angiotensins (1–9), or the

conversion of angiotensin II to angiotensin, so the regulation of

ACE2 may have an effect on hypertension or ischemic cardiovas-

cular disease. While the eNOS has a central role in the regulation

of vascular smooth muscle tone. Its modulation may also lead to

the proliferation of vascular smooth muscle. Therefore, it can be

deduced that the action mechanism of this medical composition is

that the CDF systematically controls the CVD via potentially

synergistic interactions of the active compounds [107], where

Radix Salvia Miltiorrhiza is the key while Panax Notoginseng adjuvant.

In addition, the result shows that the targets of Radix Salvia

Miltiorrhiza focus on the whole cardiovascular system, while to the

Panax Notoginseng, except the enhancement, it places emphasis on

the modulation of vascular smooth muscle cells. These data also

Figure 3. Relationship between node betweenness and degree distribution.
doi:10.1371/journal.pone.0043918.g003
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explain why in the CDF, Radix Salvia Miltiorrhiza is used as the

emperor, while Panax notoginseng is used as the minister drug to

enhance the pharmacological actions of Radix Salviae Miltiorrhizae,

which also approves the reasonability of the CTM theory in

construction of a formula.

C-P (compound-pathway) network: compounds in the C-T

network impact diverse clinically-relevant signal

pathways. Different network regions may underlie different

biological pathways, processes or cellular localizations. Drug

action is not only related to its targets, but also affects various

metabolic enzymes, transporter proteins, as well as the down-

stream effects of drug action and pathways related to the specific

disease. Multiple compounds can jointly perturb the same disease-

related signal pathways [108]. A more detailed characterization of

these relationships may offer a viable strategy to explain the side

effects, to improve the treatment effectiveness and to explore the

potential drug repositioning. For this reason, to understand the

therapeutic mechanisms of a drug, it is also critical to identify the

signal pathways its targets participate in.

To understand the therapeutic mechanisms of CDF, we have

extracted the most highly related pathways associated with CVD

in KEGG (www.genome.jp/kegg), resulting in six pathways, i.e.,

Renin-Angiotensin-Aldosterone System, Glucocorticoid and In-

flammatory Pathway, PPAR Signaling Pathway, Platelet Aggre-

gation Pathway, L-arginine/NO Signaling Pathway and TGF-b
Signaling Pathway. The Renin-Angiotensin-Aldosterone System

plays an important role in regulating the blood volume and

systemic vascular resistance, which together influence cardiac

output and arterial pressure [109]. The Glucocorticoid and

Inflammatory Pathway participates in the regulation of inflam-

mation [110], while the PPAR Signaling Pathway plays an

important role in the clearance of circulating or cellular lipids via

the regulation of the gene expression involved in lipid metabolism

[111]. The Platelet Aggregation Pathway is related to the platelet

activation and coagulation [112], and the L-arginine/NO

Signaling Pathway is concerned with the nitric oxide biosynthesis

and modulates the vascular endothelial function [113]. As to the

TGF-b Signaling Pathway, it exerts pleiotropic effects on

cardiovascular cells, regulating cell growth, fibrosis and inflam-

mation, and participating in the pathogenesis of hypertension,

atherosclerosis, cardiac hypertrophy and heart failure [114].

Subsequently, we mapped the Candidate Compounds onto these

six KEGG pathways and generated a bipartite graph of C-P

Network (Compound-Pathway Network, Figure 4), in which a

Candidate Compound and a signal pathway were linked if the

compound targets the proteins appeared in the signal pathways.

After discarding the 7 compounds not participating in any signal

pathway, the C-P Network consists of 84 nodes and 254 edges,

with 78 Candidate Compounds and 6 KEGG pathways. Figure 4

shows the global view of the C-P Network with color-coded nodes:

Candidate Compounds (pink), signal pathways (red). As can be

seen clearly, all the Candidate Compounds are found being

involved in the related pathways.

It is interesting to find that 60 Candidate Compounds included

in the C-P Network are linked to the PPAR Signaling Pathway.

And Glucocorticoid and Inflammatory Pathway is shown as the

second most targeted pathway interacting with 58 Candidate

Compounds, with L-arginine/NO Signaling Pathway as the third

one interacting with 57 Candidate Compounds. And 35 Candi-

date Compounds are found to perturb the Renin-Angiotensin-

Aldosterone System. As to the Platelet Aggregation Pathway and

TGF-b Signaling Pathway, their numbers of interacted Candidate

Compounds are 31 and 13, respectively. Figure 4 displays a

detailed view of relationships between multiple drugs and specific

pathways. Actually, CDF has been reported to influence these

pathway-related physiological processes [5,6,115]. For example,

Zhou et al. have reported that the inhibition of tanshinone IIA to

platelets and coagulation activity might lead to the regulation of

the Platelet Aggregation Pathway and then improve the inflam-

mation damage of vesselsin immune vasculitis [115].

From this, we speculate that CDF probably modulates the

PPAR Signaling Pathway, Glucocorticoid and Inflammatory

Pathway and L-arginine/NO Signaling Pathway, and in this

way exhibits its pharmacological effects, and the cardiovascular

effective roles primarily include anti-hyperlipidemia, antiinflam-

mation and the improvement of endothelial and vasomotor

functions. The regulation of the Renin-Angiotensin-Aldosterone

System may reduce the arterial pressure, ventricular afterload and

blood volume, as well as inhibit and reverse the cardiac and

vascular hypertrophy. The modulation of the Platelet Aggregation

Pathway may inhibit the activation of platelet and prevent the

formation of thrombus. The reconciliation to the TGF-b Signaling

Pathway may contribute to fibrosis in hypertension and cardiac

damage.

The six pathways were interdependent with each other through

the Candidate Compounds, which further indicates that CDF can

exert synergistic influences on different pathways. In addition, a

Candidate Compound may target different proteins involved in

the same pathway or different pathways, which also illustrates the

mechanism of multiple targets for a TCM. Since the six pathways

are closely associated with inflammation, blood coagulation,

vasodilatation, blood pressure, fibrillation, and blood lipid, we

speculate that the CDF formula probably perturbs the pathways,

and thereby displays the anti-inflammatory, anticoagulant, vaso-

dilator, antihypertensive, anti-fibrillation and anti-hyperlipidemia

activities [6,7].

T-D (target-disease) network: various therapeutic effects

and new indications of CDF. The tremendous medical value

in finding new indications for existing drugs has been well

recognized by the industry for many years. Exploring the potential

therapeutic effect of certain drugs may be a very efficient strategy

in drug development. Thus, we also need to know which targets of

a drug are relevant to the new therapeutic effects and its likelihood

of becoming effective drug in the new positions. It is known that

most complex diseases are not caused by changes in a single causal

gene but by an unbalanced regulating network resulting from the

dysfunctions of multiple genes or their products. Different complex

diseases associated with the same disease gene or gene products

more often tend to share a protein-protein interaction (PPI) and

biological process. So when a drug acts on the proteins associated

with different diseases, it may show different therapeutic effects.

Therefore, we have constructed the T-D Network (Figure 5) to

find novel therapeutical effects of CDF, based on the assumption

that the certain drug acting on same protein associated with

different diseases in a network may cause different diseases. In the

Target-Disease Network, the disease is linked to the Potential

Target if the target has relationships with the disease, with color-

coded nodes: disease (blue), Potential Target (pink).

Metabolomic data may provide useful information to explore

the underlying mechanisms of the diseases, especially for the

metabolic diseases caused by disorders of metabolism [116]. In this

work, among all the 41 Potential Targets, some proteins have been

confirmed to be closely related to the metabolism. For example,

the aldose reductase, LXRs, PPARs, HMG-CoA reductase and

RBP-4 can regulate glucose and lipid metabolisms. Indeed, the

genesis and development of diabetes mellitus, hypertension,

hyperlipidemia, fatty liver and tumor are all involved in the

disorders of glucose, lipid and energy metabolisms. Therefore, the
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CDF may have potential pharmacological effects on the metabolic

diseases since they can act on the metabolism-related targets.

Moreover, these 41 Potential Targets also participate in the

occurrence and progress of some other diseases. Here, collecting

all diseases related to the 41 Potential Targets from TTD [27], we

summarized as follows: ACE, ACE2, aldose reductase, CYP2C9,

eNOS, E-selectin, HMG-CoA reductase, LXRs, MIF, PPARs,

RBP-4 and rennin are involved in diabetes mellitus and the

complications, while the ACE, E-selectin, GR, MMP-9, RBP-4,

rennin and VEGFR-2 are for the kidney disease; The ACE,

CYP2C9, eNOS, E-selectin, and F7 play roles in stroke, while the

ACE, ER and AR (androgen receptor) are associated with

Alzheimer’s disease. Meanwhile, the occurrence of tumor is

concerned with CA2, eNOS, ER, HSP90, iNOS, LXRs, PPARs,

MIF, sPLA2-IIA and VEGFR-2, and the function of GR, iNOS,

MIF and PDE4D are involved in asthma; And also, the HMG-

CoA reductase, PPARs and RBP-4 affect the development of

hyperlipidemia fatty liver. All these findings suggest that CDF

might regulate the whole body system by a complex protein-

protein interaction network, thus affecting different diseases.

In fact, this hypothesis has been demonstrated in some recent

work. For example, Radix Salvia Miltiorrhiza has been used as a

standard treatment in stroke in China [117]. The CDF can also

improve the vascular state in diabetic patients by reducing the

activity of platelet membrane glycoproteins in a study of 82

patients [118]. Radix Salvia Miltiorrhiza is helpful for recovery of

renal function in the early stage of renal transplantation [119] and

plays an important role in the treatment of primary nephrotic

syndrome in children [120]. In the treatment of bronchial asthma,

the CDF is comparable to ketotifen (an allergy drug) without

significant side effects [121]. In addition, in the way of delaying

brain aging, improving cognitive and memory functions and

preventing the Alzheimer’s Disease, CDF also has significant

curative effect [122]. Our work, from a molecular systems level,

Figure 4. C-P Network.
doi:10.1371/journal.pone.0043918.g004
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explains why the CDF is also effective in treatment of various

diseases except for CVD. Clearly, these interesting associations

provide a new clue for the Chinese traditional herbs study, and

complement the corresponding experimental studies.

Conclusion

Traditional Chinese Medicine is a unique (independent) system

of theory, diagnosis and treatment tools in terms of composition or

from the pharmacodynamics. In TCM, as a chief means of

treating diseases clinically, TCM prescriptions usually consist of

several medicinal herbs called ‘‘Fufang’’ in Chinese, based on the

principle of ‘‘Jun-Chen-Zuo-Shi’’-: ‘‘Jun’’ (emperor) treats the

main cause or primary symptoms of the disease; ‘‘Chen’’ (minister)

enhances the actions of ‘‘Jun’’ or treats the accompanying

symptoms; ‘‘Zuo’’ (adjuvant) not only reduces or eliminates the

possible toxic effects of the Jun or Chen, but also treats the

accompanying symptoms; ‘‘Shi’’ (courier) helps to deliver or guide

the other herbs to the target organs [47].

Compared with western medicine, the TCM approach treats

the function and dysfunction of living organisms in a more holistic

way. However, the complexity of the chemical components and

the actions in vivo would lead to great difficulties to elucidate the

molecular mechanisms of TCM. How to understand the TCM

system as a whole (that is, the external signs) and the internal

changes in the relevance has, thus, become the ‘‘bottleneck’’ of

modern TCM study.

In this work, we proposed for the first time a new modeling

system, combining oral bioavailability screening, multiple drug

targets prediction and validation, network pharmacology to probe

the efficiency of a representative TCM recipe Compound

Danshen Formula for the treatment of CVD. Our results suggest

that Radix Salviae Miltiorrhizae is the emperor in this formula,

whereas Panax Notoginseng and Borneolum could serve as minister and

courier drugs, which not only makes a better understanding of the

mechanisms of CDF, but also provides modern insight for

interpreting the theory of ‘‘jun-chen-zuo-shi’’ of TCM. Our main

findings are:

1) A novel strategy is constructed to investigate into the

mechanisms of action of the CDF from chemical, genomic

and pharmacological data in an integrated framework.

2) The system can pinpoint out the key players of this formula,

its active components and the corresponding targets, based

on the synergistic interactions of the compounds, targets and

pathways, which will be helpful for therapeutic applications of

Chinese traditional herbs.

3) The developed system can be effectively applied to interpret

the essence of Chinese medicine ‘‘synergy’’ and the most

influential theory of ‘‘jun-chen-zuo-shi’’ of TCM. It provides

a new way to hold the key to the inter-relationship between

complex diseases and drug interventions through the network

target paradigm for TCM.

Despite these potentially interesting associations, cautious

interpretation is warranted as these findings relied on statistical

analysis. Moreover, experimental testing of these hypotheses will

be required to support further assessments of potential clinical

application.

Figure 5. T-D Network.
doi:10.1371/journal.pone.0043918.g005
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