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The massive amounts of data that social media generates has facilitated the study of online human behavior
on a scale unimaginable a few years ago. At the same time, the much discussed apparent randomness with
which people interact online makes it appear as if these studies cannot reveal predictive social behaviors that
could be used for developing better platforms and services. We use two large social databases to measure the
mutual information entropy that both individual and group actions generate as they evolve over time. We
show that user’s interaction sequences have strong deterministic components, in contrast with existing
assumptions and models. In addition, we show that individual interactions are more predictable when users
act on their own rather than when attending group activities.

R
ecent developments in digital technology have made possible the collection and analysis of massive amount
of human social data and the ensuing discovery of a number of strong online behavioral patterns1–11. These
patterns are important for two reasons. First, they yield predictions about future behavior that can be

incorporated into the design of useful social media and services, and second, they provide an empirical test of the
many social theoretical models that have been proposed in the literature. As an example, the assumption that
events in web traffic data are described by a series of Poisson process12 was shown to be contradicted by
measurements of the the waiting time between two consecutive events, which display power law scaling.
These power laws are ubiquitous and appear in the analysis of email exchanges13–15 and web browsing16–18. On
the other hand, regular behavioral patterns in real life are a well known phenomenon, as exemplified by vehicular
traffic patterns, daily routines, work schedules and the seasonality of economic transactions. At the aggregate
level, these regularities are often induced by spatial and temporal constraints, such as the disposition of roads
and streets in urban settings or the timing of daily routines. Other examples are provided by the existence of
deterministic patterns in human daily communication13,19 and phone call location sequences20.

When it comes to human online activities many theoretical studies curiously assume uncorrelated random
events on the part of the users12,21–23 which makes their behavior rather unpredictable. Moreover, that literature
assumes that a user’s future partners in comments and reviews, or how web pages are visited are independent of
the history of the process or at best on the previous time step. While these assumptions work well for page ranking
in web searching21, online recommendation systems22, link prediction24, and advertising23, it is not clear that they
apply to more interactive processes such as contacting friends within online social networks, participating in
online discourse and exchanges of email and text messages. Even in cases where a Markovian assumption seems to
yield good results, the discovery of deterministic components to online browsing and searching can improve
existing algorithms25.

In this paper we study the predictability of online interactions both at the group and individual levels. To this
end, we measure the predictability of online user behavior by using information-theoretic methods applied to
real time data of online user activities. This is in the same spirit as a recent study of offline conversations within
an organization19. Using ideas first articulated in studies of gene expressions26, predictability is here defined as
the degree to which one can forecast a user’s interacions based on observations of his previous activity. The main
focus of this study is to be contrasted to existing studies of online social behavior, such as recommender
systems22 and link prediction24, which use statistical learning models to improve the prediction accuracy of
novel links and recommendations. By examining datasets from user commenting activities and place visiting
logs, we found that the observed activity sequences deviate from a random walk model with deterministic
components. Furthermore, we also compared the predictability of activities when individuals act alone as
opposed to as members of a group. In contrast to many model assumptions in studies of online communites
and group behavior27–29, we observed that individuals are less predictable when attending group or social
activities than when acting on their own.
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Results
We examined the predictability of online user behavior using data-
sets from two different websites: Epinions and Whrrl. Epinions is a
who-trust-who consumer review site, where users write their per-
sonal reviews of a wide variety of products, ranging from automobiles
to media (including music, books and movies). Each user can com-
ment on other users’ reviews or comments. The thread of comments
forms a conversation of two or more users. To trace the predictability
of commenting partners, we collected 88,859 unique users’ com-
ments from the website. For each user, we used the website’s API
to collect all of their comments with a time stamp for each comment.
In total, we gathered 286,317 threads of comments from different
categories containing 722,475 user comments. The other dataset that
we used is from Whrrl.com. Whrrl is a popular LBSN (Location
Based Social Network) that people use to explore, rate and share
points-of-interest. It also allows users to declare friendships with
each other and to interact through visits and check-ins at physical
places. Users can check in by using a mobile application on a GPS-
equipped smart phone. The types of places that are often visited
include restaurants, hotels and bookstores. A distinctive feature of
this dataset is that a user can check-in by herself or with a group of
other people, thus providing a forum for social activities. Users of the
site are identified by unique user-ids. In our study, we crawled a
friendship network consisting of 24,002 users and 145,228 social ties
and collected the check-in records of these users’ activities from
January 2009 to January 2011. The resulting undirected graph had
an average degree of 12.101 and an average shortest-path length of
4.718, which is typical of a small-world social network. In our obser-
vational period of 2 years, there were 357,393 check-in records over
120,726 different places associated with these users. For each check-
in record, we also collected information such as the exact location
(i.e., longitude and latitude), time of check-in and the users involved
(i.e., there may be more than one user-id for group check-ins). We
were thus able to obtain a series of places the users visited in chro-
nological order.

The activity sequence is obtained by neglecting the absolute timing
of events in the raw dataset. To generate the activity sequence of a
certain user, we first sifted out all the events that are associated with
the user and we then listed the chronologically ordered sequence of
states identified by a unique number. For the Whrrl dataset, we
labeled each activity as a group one if the user was checking in with
others. To determine the extent to which user behavior is predictable
we used standard information-theoretic methods similar to those
used in the analysis of gene expression26,30. For instance, we consider
a user A as having MA possible states, where each state in the
sequence can correspond to either an online conversation partner
or a check-in location. An example of a user’s activity sequence is
shown in Figure 1, where two states, 1 and 2, form the sequence. We
then used the observed sequences to examine the degree of second

order dependences, which signal the extend to which activities depart
from random interactions.

We used entropy to measure the randomness of a user A’s activ-
ities. The estimated probabilities for all states pA(i) have the property

that
PMA

i~1
pA ið Þ~1. If we assume that these probabilities do not change

with time, the randomness of user A’s possible states can be mea-
sured by the uncorrelated entropy, defined as

H1
A~{

XMA

i~1

pA ið Þ log pA ið Þ: ð1Þ

Notice that if each state is equally probable, this uncorrelated entropy
is maximal and equal to

HA
0~logMA: ð2Þ

To measure the randomness of the sequence from knowledge of the
previous states we introduce the conditional entropy, defined as

H2
A ijjð Þ~{

XMA

j~1

pA jð Þ
XMA

j~1

pA ijjð Þ log pA ijjð Þ: ð3Þ

And we quantify the predictability of the user’s activity sequence by
using the mutual information

IA~H1
A ið Þ{H2

A ijjð Þ: ð4Þ

For each user, the inequalities 0ƒH2
AƒH1

AƒH0
A are satisfied. IA is

equal to the amount of information one can gain about the next state
by knowing the current state. If there is no second order correlation
between state sequences, H1

A is equal to H2
A, and IA takes the min-

imum value of 0. If the next state is completely determined by the
previous state, or in other words the user activity is completely pre-
dictable, IA takes the maximum value of H1

A.
The calculations of these quantities require an accurate estimation

of the probabilities PA(j) and P(jji). However, in the absence of
unlimited data, estimating these probabilities with finite sampling
renders a biased estimation of the entropy, since the finite sampling
makes the user activity less variable than it is, resulting in a down-
ward bias of the entropy, and a upward bias of the the mutual
information30. The problems associated with estimating entropies
for sparse data have been extensively explored in the literature and
a variety of remedies proposed31. The most common solution is to
restrict the measurements to situations where one has an adequate
amount of user activity data32. In what follows we filter out users who
are below a certain activity level, 1000 in our observational period.
Since both H1 and H2 generally decrease by different amounts when
taking into account finite size effects, we also performed a through
bootstrap test to confirm that the empirical values of mutual
information are significantly different from zero. Another widely
accepted method is to estimate the magnitude of the systematic bias
that originates from finite size effects and then subtract this bias from
the estimated entropy. To do so, we used the Panzeri-Treves bias
correction method31 in our calculations. The lead terms in the bias
are, respectively

BIAS HA ið Þ½ �~{
1

2N ln 2ð Þ M{1
� �

, ð5Þ

and

BIAS HA ijjð Þ½ �~{
1

2N ln 2ð Þ
X

j

Mj{1
� �

, ð6Þ

where M denotes the estimated number of outcome states, Mj

denotes the number of different states i with nonzero probability
of being observed given that the previous state is j, and N is the total
number of observations. Thus, the leading term of the mutual
information bias equals

1 1 12

1, 2, 1, 2, 2, 1….

2 2 111 111 111222 222 222

Figure 1 | Online activity sequence of a sample user. Every short vertical

line in the figure represents the time of a user activity. There are two

observed states for the sampled user’s activity sequence, state 1 and state 2.

The second order correlation, or predictability, of this sequence is

measured through the conditional entropy.
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BIAS I i; jð Þ½ �~ 1
2N ln 2ð Þ

X
j

Mj{1
� �

{ M{1
� �( )

: ð7Þ

In what follows, we include the above adjustments to eliminate the
impact of the finite size amount of data.

We start by looking at the predictability of individual activities as
measured by both the entropy and the mutual information extracted
from sequences in the Whrrl and Epinion datasets, respectively. The
histograms of H0, H1 and H2 calculated from user activity sequences

are shown in Figure 2. The gray solid line in the plot shows a normal
fit to the frequency count. The gap between H1 and H0 suggests a
preference for certain activities, while the difference between the
values of H1 and H2 in the figure indicates the existence of second
order correlations between states. Values of H1 and H2 for each
individual in the online conversation network and the location
check-in one are shown in Figure 3. The straight line corresponds
to H1 equal to H2. One interesting fact is that all the dots are below the
straight line, which confirms that there is a positive difference
between H1 and H2 for all individuals. This difference, which is the
mutual information conditioned on previous states of user activity, is
plotted in increasing order as the red line in Figure 4 for (a) con-
versations and (b) location check-ins. The positive values of the
mutual information indicate information gain, or predictability, con-
ditioned on historical states.

We now examine the validity of the positive mutual information
values in greater detail. There are usually two limitations when per-
forming mutual information measurements. The first one is the
potential bias resulting from the finite data size. The second one is
the possibility of missing data points in the observation process. To
make sure that our results are significant and are not impacted by
these two limitations, we performed the following analysis. To estab-
lish that the observed positive value of the mutual information is not
due to the finite size of our data sets, we performed a bootstrap test
similar to that used in human conversation studies19. The null hypo-
thesis of this test is that the mutual information has a positive value
because of the finite size of the dataset. For this test we set the
significance level to 5%. We first shuffled the true activity sequence
and constructed a new sequence by drawing elements randomly one
by one from the original sequence without replacement. If there is a
second order correlation in the original sequence the shuffled
sequence breaks the order and will thus have a higher HA

2 value,
while the value of HA

1 would be the same before and after the boot-
strap. This would result in a mutual information IA value smaller
than that of the true sequence. The test checks if the value of IA

obtained from the original activity sequence is significantly different
from the shuffled one. To obtain an estimate of the distribution for
the shuffled sequence we performed the shuffling procedure a 1000
times for each user and calculated each individual’s shuffled mutual
information. The value of the simulated sequence ranging from 2.5%
to 97.5% is shown by the blue column in Figure 4. As can be seen, the
red line (mutual information for true activity sequence) lies well
above the upper end of the 97.5% error bar, which suggests that
the value of the original sequence is significantly different from that
generated by the simulated sequences. We can then reject the null
hypothesis at the 5% significance level and conclude that the positive
mutual information we obtained is not due to the limited size of the

Figure 2 | Frequency count of estimated H0, H1 and H2 from users in (a)
online conversation partner sequence and (b) online location check-in
place sequence.

Figure 3 | Relationship between the measured H1 and H2 in (a) online conversations and (b) location check-ins. The solid line in the plot represents the

line where H1 and H2 are equal. Black dots in the plot correspond to individual activity sequences.
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data. Furthermore, the fact that the mutual information is signifi-
cantly different from zero suggests that a user’s current online activ-
ity predicts his next interactions. Next, we assessed the impact of
potential loss of data points in the observation period by marking off
a percentage of data points from the observed location check-in
sequence from Whrrl dataset. In real applications of predicting user
behavior, a key question to apply maximum likelihood estimation
depends on the size of observations and the ratio of missing points.
To examine the impact of ratio, we perform a mark-off on the boot-
strap test of mutual information. We hide data points randomly from
the true sequence while keeping the chronological order in the
remaining sequence. For example if we have a mark-off rate of 0.5,
then 50% of the states from the true sequence is marked off. The
result of the bootstrap test after mark-off is shown in Figure 5. In the
plot, the red dot shows the mutual information of the true sequence
after performing mark-off procedure. The thick blue bar in the plot
demonstrates the mutual information of the exact same sequence
with shuffling. The mutual information is significantly different from
that of the random shuffled sequence until the mark-off rate reaches
60%. For values of the mark-off rate larger than 60%, the difference
between the two is broken when we fail to reject the null hypothesis
that the sequence is significantly different from randomly shuffled. It
is thus a confirmation that the deterministic pattern we observed is a
robust one. This test also suggests the existence of a higher order
correlations, larger than two, in human social online behavior.
Thus, the deterministic pattern discussed in this study is a robust

phenomenon which can be applied to the general situations with
missing or incomplete observations.

As mentioned earlier, we also explored whether individuals acting
alone are less predictable than when becoming members of a group.
Specifically, we investigated how predictable each user’s is when
engaged in group activities as compared with the predictability of
individual ones. In the Whrrl dataset users can expose their position
with a group of other users thus providing a sequence of group
attendances by users and filtering out the places that were checked
in by the user alone. We then calculated the information entropies
and performed the same bootstrap test as before. The calculated
mutual information of the activity sequences and shuffled sequences
are shown in Figure 6. Interestingly, the gap between the red line of
true observation and the upper end of the error bar is is smaller than
the one we obtained for the individual activities. In contrast with
Figure 4(b), the differences between the randomly shuffled sequences
and the true observations are smaller. To quantify the observed dif-
ference, we calculated the gap between the mutual information
from the true activity sequence and the 97.5% percentile value of
the shuffled sequences, defined by GIndividual 5 IIndividual 2

IIndividual
0.975 and GGroup 5 IGroup 2 IGroup

0.975. This allows for a com-
parison of sequences with different lengths. The relative frequency
plot of this GIndividual and GGroup is plotted in Figure 7. The upper plot
in Figure 7 shows the density plot of the gap for individual activity
sequences while the lower plot shows the gap for group activities. As
can be seen, the gap for individual activities has a larger of the mode
compared with that of the group activities. Under the assumption
that both populations from GIndividual and GGroup are random,

Figure 4 | Estimated mutual information and statistics of bootstrap samples. The red line is the mutual information estimated from observed online

activity sequences. The upper and lower end of the blue columns represent the 2.5% and 97.5% percentile of 1000 shuffled sequences for (a) online

conversation partner sequences and (b) online location check-in place sequences.

Figure 5 | Mutual information and statistics of bootstrap as a function of
mark-off rate. Red dots in the plot shows mutual information of sequence

after mark-off. Blue bar in the plot shows the mutual information of that

marked-off sequence with random shuffling. Up to 60% of hidden data

from the true sequence, there is deterministic pattern in the sequence after

mark-off.

Figure 6 | Estimated mutual information and statistics of bootstrap
samples for group activities from Whrrl dataset. The red line is the

mutual information estimated from observed online activity sequences.

The upper and lower end of the blue column represent the 2.5% and 97.5%

percentile of the shuffled sequences.
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independent, and arising from a normally distributed population
with equal variances, the two sample t-test rejects the null hypothesis
of an equal mean with a p-value of 4.88 3 10212 under 5% signifi-
cance level. This implies that it is harder to predict the a user’s group
activities than his individual ones. The values of GIndividual versus
GGroup for each individual are plotted in Figure 7. The mean of
GIndividual is larger than GGroup. One possible explanation for this
observation is that when individuals attend group activities, the
decision as to what to do next is not usually made by the individual
himself. Thus, the tendency to follow others in their decisions tends
to break one’s regular patterns. This extra randomness would result
in a larger value of HA

2 and thus become less predictable.

Discussion
In summary, we have shown that sequences of user online activities
have deterministic components that can be used for predicting future
activities. Using methods from information theory, we experiment-
ally measured how much additional information can be gained from
knowledge of previous states within a users’ activity sequences. While
the degree of predictability varies from person to person, we also
established that it is different when individuals join a group.
Besides the intrinsic interest of these findings, the fact that one can
predict online social interactions should be helpful in improving the
design of algorithms and applications for online social sites.
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Figure 7 | The upper plot shows the density of GIndividual. The lower plot

shows density of GGroup. The gap for individual activities has a larger mean

compared with that of attending group activities.
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