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The epimorphic regeneration of zebrafish caudal fin is rapid
and complete. We have analyzed the biomechanism of ze-
brafish caudal fin regeneration at various time points based
on differential proteomics approaches. The spectrum of
proteome changes caused by regeneration were analyzed
among controls (0 h) and 1, 12, 24, 48, and 72 h postampu-
tation involving quantitative differential proteomics analysis
based on two-dimensional gel electrophoresis matrix-as-
sisted laser desorption/ionization and differential in-gel
electrophoresis Orbitrap analysis. A total of 96 proteins
were found differentially regulated between the control
nonregenerating and regenerating tissues of different time
points for having at least 1.5-fold changes. 90 proteins were
identified as differentially regulated for regeneration based
on differential in-gel electrophoresis analysis between the
control and regenerating tissues. 35 proteins were charac-
terized for its expression in all of the five regenerating time
points against the control samples. The proteins identified
and associated with regeneration were found to be directly
allied with various molecular, biological, and cellular func-
tions. Based on network pathway analysis, the identified
proteome data set for regeneration was majorly associated
in maintaining cellular structure and architecture. Also the
proteins were found associated for the cytoskeleton re-
modeling pathway and cellular immune defense mecha-
nism. The major proteins that were found differentially reg-
ulated during zebrafish caudal fin regeneration includes
keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal a1
actin, and structural proteins. Annexin A1 was found to be
exclusively undergoing phosphorylation during regenera-
tion. The obtained differential proteome and the direct as-
sociation of the various proteins might lead to a new un-
derstanding of the regeneration mechanism. Molecular &
Cellular Proteomics 11: 10.1074/mcp.M111.014118, 1-19,
2012.

Regeneration is an important mechanism found among most
of the animals including humans in various tissues and organs
towards growth, regrowth, repair, reproduction, and survival.
The biomechanism of regeneration has been widely studied but

poorly understood because of its different extents in various
animals. Understanding the basic molecular mechanism of re-
generation in the wound environment is of high significance,
because it can lead to an applied possibility of making nonre-
generating to a regenerating system.

Tissue regeneration in vertebrates is found with extensive
capabilities. Regeneration of limbs in urodele and caudal fin in
zebrafish are the most projected regeneration studies among
vertebrates. Zebrafish regenerates a wide variety of tissue
structures including heart, fin, spinal cord, and optic nerve (1-3)
based on the characteristic regeneration mechanism involving
epithelialization, mesenchymal disorganization, blastema for-
mation, regenerative outgrowth, and termination.

A great number of gene families, counting wnt, hox, fgf, fgfr,
and msx genes, were shown to be differentially expressed for
controlling the regeneration mechanism (4), without under-
standing a defiant pathway and biomechanism for the regen-
eration. In this study, we have analyzed the regeneration of
zebrafish caudal fin tissue in normal conditions. The differen-
tial proteomic analyses were performed for the different time
points of regeneration towards understanding and analyzing
the differentially expressed genes or proteins.

EXPERIMENTAL PROCEDURES

Animals and Regeneration Experiments—Wild zebrafish obtained
from local farmers were housed and maintained under standard con-
ditions in sterile water (5, 6). Male and female adult zebrafish between
the age of 6 months and 1 year were selected for the regeneration
experiments. Caudal fin tissues of same size were amputated from
the distal part of the caudal fin using sterile blades after anesthetizing
the animals for 10 min in 0.1% Tricaine (Sigma). After recovering from
anesthesia, the animals were allowed to regenerate the amputated
caudal fin under normal conditions. Regenerating fin tissues were
further collected by amputating the fins in the same way for different
time points such as 1, 12, 24, 48, and 72 h postamputation.

Sample Preparation and Differential Proteomics Analysis—Fin tis-
sues collected from each of the stages (0 (control), 1, 12, 24, 48, and
72 h postamputation (hpa))' were pooled separately, and the total
proteins were extracted after washing twice with Locke Ringer’s

From the Council of Scientific and Industrial Research, Centre for
Cellular and Molecular Biology, Hyderabad 500007, India

Received September 15, 2011, and in revised form, December 25, 2011

Published, MCP Papers in Press, January 25, 2012, DOI 10.1074/
mcp.M111.014118

" The abbreviations used are: hpa, hour(s) postamputation; 2DE,
two-dimensional gel electrophoresis; FTMS, Fourier transform mass
spectrometer; ITMSMS, ion trap tandem mass spectrometer; ANXA1,
annexin A1; KRT, keratin; CFL2, cofilin 2; ODC, ornithine decarbox-
ylase; VDAC, voltage-dependent anion channel.
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solution (0.9% NaCl, 0.042% KCI, 0.024% CaCl,, 0.02% MgCl,,
0.05% NaHCO;, and 0.05% dextrose w/v in Milli-Q) and 1X phos-
phate-buffered saline. The total protein of the fin tissues were ex-
tracted upon homogenization and sonication in dissolving buffer (7 M
urea, 2 M thiourea, 4% CHAPS, 18 mm Tris-HCI, 14 mm Trizmabase,
two tablets of EDTA-free protease inhibitor cocktail, 0.2% Triton-X, 50
mm DTT). The proteins were further precipitated using trichloroacetic
acid and quantified against bovine serum albumin standard using
Amido Black assay (7). Differential proteomic analyses were per-
formed between the regenerating samples and the nonregenerating
control based on 2DE and DIGE analysis.

In 2DE analysis, the first dimensional separation based on pH was
performed in a broad range 3-10 NL IPG strips using 400 ug of total
protein under standard focusing conditions in duplicate. The second
dimensional separation was performed in 12% SDS-PAGE for all of
the six sample sets (8). The 2DE gels were colloidal stained, scanned,
and quantified using IMP (GE Healthcare) software for the differential
display of the spot pattern between the nonregenerating zero hour
pattern against the five various regenerating patterns. The quantifica-
tion of the protein spots for regeneration was analyzed by comparing
the expression level of protein spots during regeneration against the
nonregenerating control fixed as one fold.

DIGE were performed between the control (O hpa) and the regen-
erating (1, 12, 24, 48, and 72 hpa) protein samples. DIGE were
performed using the Ettan DIGE system (GE Healthcare) as per man-
ufacturer’s protocol using 50 ng of the control protein sample labeled
with Cy3, 50 ug of regenerating protein sample labeled with Cy5, and
25 pg of each control and regenerating protein sample with Cy2, as
internal control. First dimensional isoelectric focusing and second
dimensional gel electrophoresis were performed as described for
2DE. The gels were then scanned in Typhoon TRIO scanner (Amer-
sham Biosciences) at 100 dpi for all three fluorescent labels and
analyzed in DeCyder software program (GE Healthcare) for estimating
the spot quantitation. The expression levels of the protein spots were
quantified by comparing the expression levels between the control
nonregenerating zero hour and the regenerating time points.

MS AND MSMS Analysis— Protein spots having more than 1.5-fold
change between the nonregenerating (zero hour sample) and regen-
erating tissues (all five time points) based on 2DE and DIGE gel
analysis were selected for the MS and MSMS analyses. The protein
spots were manually excised, destained, washed, dehydrated, and
trypsin-digested (10) for the MS and MSMS analyses based on either
MALDI MS/MS or Fourier transform mass spectrometer (FTMS) and
ion trap tandem mass spectrometer (ITMSMS) analyses. MALDI
MS/MS analyses were performed as described earlier (9). Tryptic
digested peptides were estranged for FTMS and ITMSMS analysis
using nanoflow LCMS analysis in the Orbitrap Nano analyzer
(Thermo). The obtained MS/MS peak list were analyzed using
SEQUEST (Thermo proteome Discover 1.1 version 1.1.0.263; Thermo
Fisher Scientific) and MASCOT search engines against the Danio rerio
database (IPl and Swissprot) with a mass tolerance of 10 ppm for the
precursor ions and 0.2 dalton for fragment ions (10). The obtained
protein details were tabulated and confirmed for its mass and pl
against the experimental data.

One- and Two-dimensional Western Blot Analysis— Proteins ob-
tained from the control and regenerating tissues were analyzed for its
expression level based on both one-dimensional gel electrophoresis
and 2DE Western blot analysis. For one-dimensional gel electropho-
resis Western blot analysis, 40 ng of total proteins of each time point
were electrophoresed on a 10% SDS-PAGE and transferred using
wet transfer method. Immunoblot analyses were performed for keratin
5 (KRT5), keratin 17 (KRT17), cofilin 2 (CFL2), annexin A1 (ANXA1),
and ornithine decarboxylase (ODC) targets using anti-keratin 5 poly-
clonal antibody (Pierce, Thermo Scientific), anti-keratin 17 monoclo-

nal antibody (Pierce, Thermo Scientific), anti-cofilin polyclonal anti-
body (Pierce, Thermo Scientific), anti-ANXA1 polyclonal antibody
(Abbiotec, LLC), and anti-ODC monoclonal antibody (Sigma) as pri-
mary antibodies and respective anti-rabbit or anti-mouse horseradish
peroxidase-conjugated secondary antibodies (Pierce, Thermo Scien-
tific). The immunoblots were scanned using ECL detection method for
estimating the expression level of KRT5, KRT17, CFL2, and ANXA1
against the ODC housekeeping protein. The expression level of
ANXAT1 and its phosphorylation was confirmed based on Western blot
analysis on 2DE gel. The 2DE gels were transferred using wet
transfer method followed by immunodetection of ANXA1 and phos-
phorylation using the anti-ANXA1 polyclonal antibody (Abbiotec,
LLC) and anti-pan phosphotyrosine monoclonal antibody (Cell Sig-
naling Technology) as primary antibodies respectively, and horse-
radish peroxidase-conjugated secondary antibody as secondary
antibody. The immunoblots were scanned for positive expressing
spots using the ECL detection method.

Real Time PCR Analysis—Total RNA was extracted from the con-
trol and regenerating caudal fin tissues using TRI reagent (Sigma)
according to the manufacturer’s protocol. 1.0 ng of the total RNA was
reverse transcribed using 200 units of reverse transcriptase (Super-
script lll; Invitrogen) and 75 ng of random hexamer at 50 °C for 90
min. Quantitative real time PCR was performed using MESA green
Q-PCR master mix plus for SYBR assay (Eurogentec) in ABl 7900HT
(Applied Biosystems). Real time PCR was performed for 10 different
genes, which were found differentially regulated during regeneration
using gene specific primers (see Table lll). Zebrafish ODC was used
as the reference housekeeping gene for normalization. PCR was
performed in triplicate using the following conditions: one cycle of
50 °C for 5 min; one cycle of 95 °C for 5 min; and 40 cycles of 95 °C
for 15's, 60 °C for 30 s, and 72 °C for 30 s. Amplification of the single
RT-PCR product was confirmed by monitoring the dissociation curve
and loading the amplified product in 2% agarose gel against DNA
ladder. The quantification of the PCR product was performed both using
the C, values and band quantification against the housekeeping gene.

Data Analysis—The proteins that were identified and found differ-
entially displayed during the process of regeneration were mapped to
their respective Uniprot accession ID, gene ID, and protein symbol
based on Uniprot and DAVID (Database for Annotation Visualization
and Integrated Discovery) analysis. All of the identified proteins were
further analyzed for their cellular localization, biological processes,
and molecular functions based on STRAP software program analysis
(11). Also, the differentially displayed proteins were analyzed for dif-
ferent processes, networks and pathway maps using the GeneGo
software (www.genego.com) analysis.

RESULTS

2DE and DIGE Analysis—From the six different broad range
2DE (supplemental Figs. 1-6) a total of 745, 685, 678, 691,
677, and 968 spots were detected by the software for the
comparative differential analysis between nonregenerating
and regenerating tissues. Based on the comparative analysis
of spot volume and intensity, a total of 35 protein spots were
selected from each of the time points for MALDI MS/MS and
FTMS/ITMSMS analysis (Table I). The various protein spots
selected for differential analysis were found to be either up
or down-regulated by a minimum of 1.5-fold changes be-
tween the nonregenerating and any of the regenerating
stages. From the DIGE analysis, a total of 58, 88, 39, 78, and
73 protein spots were selected for having at least 1.5-fold
changes between the nonregenerating and regenerating 1,
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Cy 3 - Control Cy 5 - Regenerating

0Vs 12 hpa

0 Vs 48 hpa

Cy 2 - DIGE control

Merge gel image

Fic. 1. 2DE DIGE map of zebrafish caudal fin. a, control (0 hpa) versus 1 hpa; b, control versus 12 hpa; ¢, control versus 24 hpa; d, control
versus 48 hpa; e, control versus 72 hpa. Control (0 h) samples are labeled with Cy3 dye (green 2DE images), regenerating samples are labeled
with Cy5 dye (red 2DE images), and internal standard combining the protein from control and regenerating tissues are labeled with Cy2 dye
(blue 2DE images). The overlays of all three dyes are represented as multicolored 2DE images. The down-regulated proteins are represented
in the green 2DE images with pink labeling, and up-regulated proteins are represented in the red 2DE images with yellow labeling.

12, 24, 48, and 72 hpa samples (Fig. 1). A total of 90
proteins were identified from the DIGE analysis based on
either MALDIMS/MSMS or Orbitrap-based FTMS/ITMSMS
analysis (Table Il), which includes 41 and 49 down- and
up-regulated proteins.

From both the 2DE and DIGE differential analysis, a total of
96 proteins were identified consensually as differentially ex-
pressed during the process of regeneration. Seprinb5 (—5.5)
and act1ba (+11.6) are the most extremely down- and up-

regulated proteins identified from this study, respectively, dur-
ing regeneration. The proteins recognized from this study
embodied a wide range of pl (4.5-9.7) and mass (11.7-183
kDa). Based on STRAP gene ontological analysis, the proteins
identified for zebrafish caudal fin regeneration were found
mainly associated with binding and catalytic activity as the
major molecular functions (Fig. 2a) and cellular process as the
major biological process (Fig. 2b). The differentially displayed
proteins were majorly found localized in the cytoplasm and
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FiG. 2. Pie chart distribution of proteins identified as differentially regulating during zebrafish caudal fin regeneration based on gene
ontological molecular functions (a), biological process (b), and localization (c).

cytoskeleton followed by other organelles such as nucleus
and mitochondria (Fig. 2c).

Significant Proteins Involved in Regeneration—Based on
2DE differential proteome analysis between the control and
the five various regenerating time points, a total of 35 different
proteins were analyzed for having at least 1.5-fold changes
between them as either up- or down-regulated (Table I). Of the
35 proteins, ywhab1, capsnia, psmb1, krtn17, krt12, cfl1,
psma2, sodl, eefla, actc1b, gnb2l1, cotl1, agr3, nudti4,
anxala, and pppila were found to be down-regulated during
regeneration. gstp1, nutf2, prdx5, vdac2, vdac3, cirbp, gnb1l,
hspa8, ppp2rib, gsn, arp3, ctsb, ndpkz3, ndpkz3, sept2,
ppp1cab, msna, and gabp1b are the proteins that were found
to be up-regulated during regeneration.

Differential Analysis—Based on DIGE analysis between the
control, nonregenerating caudal fin and five various time
points of regeneration, a total of 23, 37, 7, 12, and 11 proteins
were identified (Fig. 1 and Table Il) as differentially regu-
lated. 14 of the 23 proteins identified between the 0 and 1
hpa were found to be down-regulated, which includes pah
and ba1 globin as the major down-regulating proteins, and
nine proteins were found up-regulated, which includes type
1 cytokeratin and Keratin 5. Between 0- and 12-hpa tissue
samples, 15 and 22 proteins were found down- and up-
regulated, which includes hemoglobin subunit « and cytok-
eratin type 1 as the most down- and up-regulated proteins,
respectively. Differential proteome pattern between the
control and the 24-hpa samples identified seven up-regu-
lating proteins with fatty acid-binding protein 1b as the most
up-regulated protein. Of the 12 proteins identified between
the 0- and 48-hpa samples, five and seven proteins were
found up- and down-regulated, which includes serpin pep-
tidase and apo14 as the most down- and up-regulated
proteins, respectively. ARHGDIG and hspa4 are the majorly
down- and up-regulated proteins between the 0- and 72-
hpa samples having seven and four down- and up-regulated
proteins, respectively.

Regeneration and Down-regulation—During the caudal fin
regeneration, almost 50% of identified proteins were found
down-regulated, which majorly includes structural proteins
such as Capsn1ia, calcium-dependent cysteine proteinases,
and muscle cofilin 2. The other major key structural proteins
involved in regeneration through down-regulation are keratin
17, keratin 12, cfl2, actc1b, and cotl1. Keratin 17, the cytok-
eratin subfamily of intermediate filament protein, was found
down-regulated right from the first hour after amputation till 3
days, whereas keratin 12 was found down-regulated from the
12'" hour after postamputation and settling back to the basal
level on the third day. The widely distributed intracellular
actin-modulating protein cofilin 2, a muscle cofilin, was found
down-regulated immediately after amputation and then main-
tained its state until 3 days postamputation. The ubiquitously
distributed skeletal a1 actin, a major component of the cyto-
skeleton, undergoes an instant down-regulation for regener-
ation and reaches the normal level at the end of the 3™ day of
regeneration.

Regeneration and Up-regulation—As with the down-regu-
lation, an almost equivalent amount of protein undergoes
up-regulation during the regeneration. The major proteins
identified from this study that undergo up-regulation include
PRDX5, voltage-dependent anion channel (VDAC) 2, VDACS,
and fatty acid-binding protein. PRDX5, an antioxidant protec-
tor during inflammation and nonpathological conditions, was
found increased to almost 2-fold during regeneration at 12
hpa followed by decline in the level. The VDAC2 and VDAC3
proteins were found up-regulated during regeneration. In
VDACS3, the mitochondrial membrane channel involved in
translocation of adenine nucleotides was found undergoing
more than 2-fold changes at the first hour of postamputation
and maintaining the 2-fold changes during the other regener-
ation time points, whereas VDAC2 undergoes 1.5-fold change
at the end of the 2" day of regeneration. The heat shock
cognate 71-kDa protein and orthologous of 70-kDa heat
shock protein underwent up-regulation to nearly 2-fold be-
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Fic. 3. Cytoskeleton remodeling pathway map identified from the differentially expressed proteins of the zebrafish caudal fin.
Proteins marked with red thermometer bars were identified as up-regulated, and those marked with blue color bars are down-regulated.

tween the first and second days postamputation. The 14-
kDa fatty acid-binding protein 1b is the other major up-
regulated protein during regeneration. ARP3 actin-related
protein 3-like protein involved in control of actin polymeri-
zation in cells undergoes a short up-regulation during re-
generation, reaching a maximum of 1.7-fold at the first hour
of postamputation followed by down-regulation to reach the
basal level.

Data Set Analysis—From the list of 90 and 35 proteins
identified based on DIGE and 2DE analysis, respectively, 29
proteins were found commonly identified between the DIGE
and 2DE analyses. The total list of 96 proteins consensually
identified from both the differential display analyses were
further analyzed for the distribution, process, and network
pathway analysis. 62 proteins of the list were selected by the
GeneGo software for analyses, which includes 42 in the path-
way maps, 62 on the network pathways, 47 for various dis-

eases, and 62 for gene ontological processes. The most
significantly associated GeneGo pathway maps are the cyto-
skeleton remodeling pathway, the immune response-alterna-
tive complement pathway, and the oxidative stress role of
ASK1 under oxidative stress pathway.

Cytoskeleton remodeling pathway (Fig. 3) was found as the
most significantly associated pathway from the identified dif-
ferentially expressed proteome data set for caudal fin regen-
eration. A total of 10 various proteins, mostly keratin isoforms,
were directly associated in this pathway. Except keratin 17, all
of the other keratin proteins such as keratin 8/18, 5, 1, 5/14, 8,
4/13, 4, a-tubulin and tubulin heterodimers involved in this
pathway were found up-regulated during regeneration (Fig. 3).
Immune response based on alternative complement pathway
is the other major pathway found associated with the regen-
eration (Fig. 4). The proteins involved in this pathway include
only up-regulating proteins such as c3, c3a, ic3b, c3c, c3dg,
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c3b, and c3bBb (Fig. 4). Down-regulated SOD1 and up-reg-
ulated HSP90 and HSP70 were found participating in the
oxidative stress under the role of ASK1.

The various networks associated with the identified pro-
teome data set include immune response to phagosome in
antigen presentation (Fig. 5), cytoskeleton-mediated interme-
diate filament process (Fig. 6), protein folding response to
unfolded proteins, inflammation associated by complement
system, and cytoskeleton regulation-based cytoskeleton re-
arrangement. The immune response to phagosome in anti-
gen presentation was found associated with up-regulating
c3, c3dg, ic3b, gelsolin, hsp90, hsp70, and endoplasmin
proteins and down-regulating cofilin 2 protein (Fig. 5). The
cytoskeleton-mediated intermediate filament network path-
way involved in specifying the cytoarchitecture and cytody-
namics was found associated with up-regulating keratin 5,
8, 1, 4, a-tubulin proteins and down-regulating keratin 17
protein (Fig. 6). HSP70, HSP90, HSPA4, HSC70, and endo-
plasmin were found associated in the protein folding
network.

tified as up-regulated during the zebrafish caudal fin regeneration.

Validation Based on RT-PCR—A total of 10 different genes
(Table Ill), which were found differentially regulated during the
caudal fin regeneration, were analyzed for its mRNA transcript
level based on quantitative real time PCR. The expression
patterns of these genes were analyzed between nonregener-
ating control (0 hpa) and the regenerating 1-, 12-, 24-, 48-,
and 72-hpa tissues. It was found that the mRNA expression of
the genes such as KRT5, HSPA8, VDACS3, VDAC2, PRDX5,
and CTSB were found up-regulated, and genes such as
KRT17, CFL2, and SOD1 were down-regulated during the
course of regeneration (Fig. 7, a and b). Also, it was found that
ANXA1 transcript remained unchanged majorly during regen-
eration against the control nonregenerating tissue. Thus,
mRNA expression levels of the selected genes were found
correlating to their protein expression levels as obtained from
the 2DE and DIGE analysis (Fig. 7b).

Annexin A1 (ANXA1) and Regeneration—It was found from
the 2DE analysis that the basal level of ANXA1 undergoes
differential expressions because of phosphorylation. ANXA1,
the Ca?*-dependent phospholipid-binding protein, was found
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expressed in two different forms (spots) of 38 kDa in the pl
range of 6.5-6.7, with a 12-mm-long ANXA1 protein band
streak running in between the two ANXA1 spots (Fig. 8a). The
two different forms of annexin were confirmed as ANXA1
based on MS/MSMS and 2DE immunoblot analysis against
ANXA1 antibody (Fig. 8b, panel /). The second form of ANXA1
after the streak was found immunolabeled to the anti-phos-
phorylation pan antibody specifically to be called the phos-
phorylated form of ANXA1 (Fig. 8b, panel i) in comparison
with the first acidic form. The two different forms of ANXA1,
the nonphosphorylated and phosphorylated forms, were
found to be undergoing differential expression during regen-
eration after amputation. The nonphosphorylated form of
ANXA1 undergoes increase in its expression at 12 hpa,
whereas the phosphorylated form of ANXA1 undergoes dif-
ferential expression at the first hour onwards. Analysis of the
ANXA1 streak showed that the ANXA1 decreases immediately
after amputation, and it starts reappearing from the second

day of amputation (Fig. 8c). Also it is interesting to note that
the total amount of ANXAT1 (the nonphosphorylated, phosphor-
ylated, and the streak) always remained at the same level of
expression, but the two different forms of ANXA1 caused by
phosphorylation were undergoing differential expression (Fig.
8c) because of the regeneration mechanism. The total ANXA1
expression based on both real time PCR analysis (Fig. 7) and
one-dimensional gel electrophoresis western blot analysis
(Fig. 9) confirms that the total expression of ANXA1 remains
the same all through the regenerating time points.

Keratin and Regeneration—In this study we have identified
an idiosyncratic association of keratin and its isoforms for
regeneration. A total of 10 dissimilar keratin proteins identified
during regeneration were found to be associated to the cyto-
skeleton remodeling pathway map (Fig. 3) and cytoskeleton
intermediate filament network process (Fig. 5). Other than
keratin 17, all of the other keratin proteins such as keratin 5,
8/18, 1, 5/14, 8, 4/13, 4, a-tubulin and tubulin heterodimers
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Primers for quantitative real time PCR amplification

TaBLE Il

S No. r?aen:ee Froward primer sequence (5’ to 3') Reverse primer sequence (5’ to 3')
1 Keratin 5 TGGAGGACTTCAAGAACAAATAT CTTTGATCTGTGACTGGAGTTC
2 Keratin 17 GGAGTGCGTGCTGGTAGTGTCT GGTAGGAGGCCAGACGATCATT
3 Cofilin 2 ATCCCTACCTTAAGTTTGTGAA TGCTTAATACCTGTGAACTTCT
4 VDAC2 CGGTATGGTGAAGCTCGATGTC TGCGATCTGGTCTTCAATGTTG
5 VDAC3 ATGAACGTGGGCTGTGATCTAG CCGAACTCTGTGCCATCATTAAC
6 CTSB GGATCTGCTAACCTGCTGTGAC TCTCCACCCTCTCCTGAACATG
7 HSPA8 AAGGAAACAGGACCACACCAAGT GGACCTTGGGACGGGAATTG
8 SOD1 TCGGAGACCTGGGTAATGTGAC CGATCACTCCACAGGCCAGAC
9 ANXA1 CCACAGTACAAGACATCACAGA CTTGCTAGTGGCTTGCTGGTA
10 PRDX5 GCAGGAGGAAGACCCGGGAAAC CCAGGCGGACATAACAAACACATC
11 OoDC CAACATCATCGCCAAAAAGGTCATC GCTCATCGGGCTTGGGTTTCTTGT

were found up-regulated during the caudal fin regeneration
(Fig. 3). Real time and Western blot analysis of keratin 5
showed the up-regulation from the 12" hour of the regener-
ation when its expression level was compared against the
housekeeping ODC expression (Figs. 7 and 9). In the same
way, the expression of keratin 17 showed a down-regulation
right from the first hour of regeneration based on both real
time PCR and Western blot analysis (Figs. 7 and 9).

DISCUSSION
Regeneration of zebrafish caudal fin has been widely stud-
ied at the transcriptome level, such as differential transcrip-

tome mapping (12, 13) and regulation of microRNAs (14).
Proteomics-based analysis of regeneration has been exten-
sively studied among amphibians for its blastema formation in
regenerating axolotl limbs (15) and proteomic changes during
onset of regeneration (16). For the first time in this study, the
global proteome changes caused by the regeneration in ze-
brafish caudal fin were analyzed. The study was characterized
by mapping of differential proteome changes caused by re-
generation on gel-based sensitive DIGE and 2DE analyses.
Based on this study, a total of 96 proteins were identified and
found differentially expressed because of regeneration. The
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Fic. 8. a, the 2DE spot pattern of ANXA1 for six various time points of regeneration. b, panel i, the 2DE Western blot pattern for ANXA1
antibody. The spots circled in blue represent the spots specifically labeling the ANXA1 protein. Panel ii, the 2DE Western blot for pan
phosphorylation antibody. The spot circled in green represents the spot labeling the alkali form of ANXA1 exclusively. ¢, the distribution of the
ANXAT1 (the nonphosphorylated, phosphorylated and total ANXA1) as seen in the 2DE gel based on densitometry quantification. The blue bars
represent the total ANXA1 protein, the red bars represent the nonphosphorylated form of ANXA1, and the green bars represent the

phosphorylated form of ANXA1.

proteins were characterized for their identities based on the
MALDI MS/MSMS analysis and Orbitrap based FTMS and
ITMSMS analyses. The majorly identified and differentially
expressed proteins were found to be directly and indirectly

involved in various networks, pathways, and biological pro-
cesses. 50% of the proteins identified from this study have
also been reported from our previous work of understanding
the zebrafish caudal fin proteome map (9). Because this study
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has identified the proteins involved in regeneration using the
most sensitive DIGE method, proteins other than those men-
tioned in the caudal fin proteome map were identified as
contributory target for regeneration. This study also validates
the importance of DIGE-based quantification rather than the
standard 2DE-based quantification for its significant identi-
fication of more proteins having 1.5-fold changes at differ-
ent time points of regeneration. Comparison of this study
against the differential transcriptome mapping (12, 13)
showed many commonly identified targets as regeneration-
specific, including prdx5, psmb1, SOD1, SEPT2, VDAC2,
ywhab1, SERPINb1, HSP90, and CFL2. Differential analysis
of the proteins involved in amphibian limb regeneration (16)
also showed many common target proteins responsible for
zebrafish caudal fin regeneration, such as ANXA1, KRT17,
VDACS, and CTSB.

Annexin A1 was found to directly regulate the regeneration
of zebrafish caudal fin by differentially regulating the expres-

sion caused by phosphorylation. This study confirms the di-
rect association of differential expression and phosphoryla-
tion of the ANXA1 during the regeneration (17). The ANXA1
expression and phosphorylation was shown as the factor to
be involved directly for the liver regeneration and transforma-
tion through modulation of cPLA2 activity or EGF-R function
(7).

In this differential proteomics analysis, several structural
proteins were found to be directly associated and undergo
differential expression for regeneration. The majorly identified
structural proteins for caudal fin regeneration include keratin
5,8/18,1,5/14, 8, 4/13, 4, a-tubulin tubulin heterodimers and
cofilin 2. The identified proteins were also found to be directly
associated as network partners for various pathways, such as
upholding of the structure and architecture of the cells. Our
study also validates the association of keratin 8 and 18 ex-
pressions for cell proliferation and differentiation in the mes-
enchymal progenitor cells of regenerating limb (18). It has
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been shown that the treatment of cultured blastemal cells with
K8 and K18 antisense oligonucleotides significantly de-
creases DNA synthesis and induces differences in cell mor-
phology (18). The inverse association of keratin 17 imparts a
decisive role in regeneration because it is shown that the
intermediate filament protein, keratin 17, has been involved in
inducing the wounded stratified epithelia for regulation of cell
growth (19), promoting epithelial proliferation and tumor
growth by polarizing the immune response (20), and inducing
tumor angiogenesis (21).

This study of understanding the zebrafish caudal fin regen-
eration based on proteomics approaches established the
strong association of several structural components of the
cells as direct biomarkers. The identified proteins were found
playing a lead role in regeneration based on its differential
expression. Association of the ANXA1 and keratin proteins
might lead to a new role and insight in understanding the
complexity of regeneration and its varied extent in different
animals.
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