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The growth and development of plant tissues is associated
with an ordered succession of cellular processes that are
reflected in the appearance and disappearance of proteins.
The control of the kinetics of protein turnover is central to
how plants can rapidly and specifically alter protein abun-
dance and thus molecular function in response to environ-
mental or developmental cues. However, the processes of
turnover are largely hidden during periods of apparent
steady-state protein abundance, and even when proteins
accumulate it is unclear whether enhanced synthesis or
decreased degradation is responsible. We have used a 15N
labeling strategy with inorganic nitrogen sources coupled
to a two-dimensional fluorescence difference gel electro-
phoresis and mass spectrometry analysis of two-dimen-
sional IEF/SDS-PAGE gel spots to define the rate of protein
synthesis (KS) and degradation (KD) of Arabidopsis cell cul-
ture proteins. Through analysis of MALDI-TOF/TOF mass
spectra from 120 protein spots, we were able to quantify KS

and KD for 84 proteins across six functional groups and
observe over 65-fold variation in protein degradation rates.
KS and KD correlate with functional roles of the proteins in
the cell and the time in the cell culture cycle. This approach
is based on progressive 15N labeling that is innocuous for
the plant cells and, because it can be used to target analysis
of proteins through the use of specific gel spots, it has
broad applicability. Molecular & Cellular Proteomics 11:
10.1074/mcp.M111.010025, 1–16, 2012.

The growth and development of plant tissues is associated
with an ordered succession of cellular processes that are
dictated by the appearance and disappearance of proteins
and the transcripts that encode them (1–4). The ratio of the
synthesis and degradation rates of these molecules, whether
they are in quasi-steady state or are rapidly changing in
abundance, defines both the net turnover rate and the abun-

dance of each (5). The control of the kinetics of these pro-
cesses is central to how plants can rapidly alter specific
protein abundance and thus molecular function to respond to
environmental or developmental cues.

Genome wide analysis of Arabidopsis mRNA turnover rates
has confirmed that knowledge of transcript decay rates can
provide insights into diverse biological processes (6). For
example, the number of introns and sequence elements in the
3�-untranslated region and subcellular localization of the en-
coded protein affect the turnover rate of transcripts in Arabi-
dopsis (6). Analysis of plant proteome synthesis and degra-
dation has lagged considerably from our understanding of
these processes in the transcriptome.

Many methods have been developed to measure protein
turnover in other organisms. Some are direct measurements
of endogenous proteins using isotope labeling methods in-
cluding both radioactive and stable isotope labeling (5, 7–10),
whereas others use stable or transient transgenic techniques
and a range of tags and markers (11, 12). The clearest advan-
tage of isotope labeling approaches is that the tags are very
subtle with little or no impact on cellular processes and allow
the fully functional proteins being assessed to be produced
and distributed within cells in a normal context. The advent of
mass spectrometry as a key tool in proteomics has provided
a means to use enrichment of the natural abundance of stable
isotopes to provide mass rather than radio decay signals to
track the synthesis of new proteins. The ratio between light
and heavy isotopes and the degrees of enrichment provided
by mass spectrometry provides a powerful means to measure
synthesis and degradation rates of individual proteins (5, 13).

Stable isotope labeling using individual amino acids (SILAC)1

has proven highly successful in mammalian cell culture systems
(14). SILAC has also been used to measure protein turnover in
yeast but required the use of auxotrophic mutants (5). However,
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this approach is problematic in plants that actively synthesize all
of their amino acids de novo, which dilutes and mixes the label
between amino acids and leads to inefficient incorporation into
proteins (15, 16). Alternatively, 2H2O, 18O, 15N, or 13C can be
used to label whole plants and de novo synthesis tracked by the
increase in the mass of the resulting proteins (9, 17). Deuterium
oxide has been used to study labeling at the protein and amino
acid levels (8, 9). The advantage of deuterium labeling is that it
rapidly enters cellular compartments and equilibrates with the
water environment. However, 2H2O is not biologically benign,
and multicellular organisms are limited in the percentage of
deuterium oxide they tolerate (8, 9, 18).

An increasing range of studies are using saturation or partial
15N labeling in steady-state experiments in plants as a means
to perform quantitative proteomic studies (19–21). However,
its use to measure protein synthesis rates is still uncommon
for a variety of reasons. First, there are informatics and tech-
nical hurdles to combine identification and quantification of
proteins and their labeling state to calculate turnover rate.
Second, a variety of factors including differences in the label-
ing of amino acids, changes in incorporation rates over time
and the range of turnover rates provide a heterogeneous
response and complicate data interpretation. Here we have
sought to overcome these obstacles and provide a data pro-
cessing approach to measure kinetics of changes in 15N
incorporation of peptides from in-gel digestions of separated
protein spots.

EXPERIMENTAL PROCEDURES

Arabidopsis Suspension Cell Growth and Nitrogen Source Test

Arabidopsis cell suspension was cultured in growth medium (1�
Murashige and Skoog medium without vitamins, 3% (w/v) sucrose,
0.5 mg/liter naphthalene acetic acid, 0.05 mg/liter kinetin, pH 5.8) at
22 °C under continuous light conditions and light intensity of 90 �mol
m�2 s�1 with orbital shaking at 120 rpm. Cultures were maintained in
250-ml Erlenmeyer flasks by the inoculation of 20 ml of 7-day-old
cells into 100 ml of new medium. The same growth medium without
nitrogen (no ammonium nitrate or potassium nitrate) was used for the
nitrogen source experiments. Ammonium nitrate (1.65 g/liter), potas-
sium nitrate (1.9 g/liter), or both were added to the growth medium
without nitrogen for the different nitrogen source media tested. Fresh
weight, dry weight, and sucrose and nitrate concentrations were
measured by collecting 5 ml of cell culture from different media each
day for comparison. The cells were collected using vacuum filtration
onto filter paper.

Comparison of Proteome Pattern in 14N and 15N Media by Two-
dimensional Fluorescence Difference Gel Electrophoresis (DIGE)

Ammonium-15N nitrate-15N (1.69 g/liter) and potassium nitrate-15N
(1.92 g/liter) (98% 15N; Sigma) were added to growth medium without
nitrogen as the 15N growth medium. Seven-day-old cells were
washed with no nitrogen growth medium three times before transfer
to 14N or 15N medium. After 7 days of growth, these 14N and 15N cells
where subcultured again. Fresh cells (0.1 g) were collected for anal-
ysis from 7-day-old cells that had been subcultured in this manner in
three successive, weekly cycles in either 14N or 15N growth medium.
Total proteins were extracted using methanol and chloroform (2).
Protein was dissolved in lysis solution (8 M urea, 40 mM Tris base, 4%

(w/v) CHAPS), and concentration was measured by Amido Black (22).
A 75-�g protein aliquot of each sample was precipitated using 9
volumes of cold acetone and stored overnight at �20 °C. Precipitated
protein was pelleted by centrifugation of samples at 20,000 � g for 15
min, and pellets were dried at room temperature for 5 min. Protein (25
�g) from each sample was combined to make a DIGE reference
standard for labeling with the fluorescent dye Cy2, whereas 50 �g of
protein from each sample was labeled with either fluorescent dye Cy3
or Cy5. All of the samples were combined and added to rehydration
solution (8 M urea, 2% (w/v) CHAPS, 0.5% (v/v) IPG buffer, 18 mM

DTT, 0.001% (w/v) bromphenol blue) to make a final volume of 450 �l.
Triplicate biological samples were separated by IEF pH 3–10 nonlin-
ear (24 cm; GE Healthcare) according to the manufacturer’s instruc-
tions. After completing IEF, the strips were then transferred to an
equilibration solution (6 M urea, 50 mM Tris base, 2% (w/v) SDS, 26%
(v/v) glycerol, 0.001% (w/v) bromphenol blue, 65 mM DTT) and incu-
bated in the dark for 15 min at room temperature with shaking. The
strips were then transferred to the same solution omitting DTT but
including iodacetamide (135 mM) and incubated for a further 15 min at
room temperature in the dark with shaking. After a brief rinse in 1.5 M

Tris-HCl (pH 8.0), 1% SDS, the strips were transferred to 12% (w/v)
polyacrylamide gels and overlaid with 1.2% (w/v) agarose. The sec-
ond dimension SDS-PAGE was run in the dark at 50 mA/gel for 6 h in
a glycine buffer system. The proteins were visualized on a Typhoon
laser scanner (GE Healthcare), and image comparison was performed
using the DECYDER software package (version 6.5; GE Healthcare).

Amino Acid 15N Incorporation Measurement by GC-MS

Seven-day-old cells in 14N medium were washed three times with
no nitrogen media and then transferred to 15N medium. The cells (5
ml) were collected by vacuum filtration at the 0.5-, 8-, 48-, 96-, and
168-h time points for the first experiment and at the 0.5-, 8-, 24-, 48-,
72-, 96-, 120-, 144-, and 168-h time points for the second experi-
ment. Fresh cells (0.1 g) were snap frozen in liquid nitrogen and stored
at �80 °C. A 500-�l volume of methanol metabolite extraction me-
dium (20 parts methanol:1 part 0.2 mg/ml ribitol stock solution:2 parts
H2O) was added to each sample, vortexed, and heated at 65 °C in a
thermomixer for 30 min at 1400 rpm. The tubes were then centrifuged
at 14,000 rpm for 10 min, the supernatant was collected, and 60 �l of
each sample was dried overnight by rotary evaporation in a SpeedVac
(Savant). Dried samples were derivatized with 20 �l of methoxylamine
hydrochloride (20 mg/ml) at 30 °C for 90 min. Then 20 �l of MBTSTFA
was added, and the samples were shaken (750 rpm) while being
incubated at 85 °C for 60 min. Finally, 10 �l of an Alkanes mix was
added as a retention time marker. The lists of the m/z values used for
each derivatized amino acid, the formula used for 14N and 15N qual-
ifier ions (Q ion), and the natural theoretical distribution of the unla-
beled and labeled components follow (Table I). The GC-MS settings
and 14N to 15N ratio calculation were based on protocols published
previously (23). For amino acids containing two nitrogen atoms, glu-
tamine and asparagine, the qualifier ions included both the M�1 and
M�2 peaks.

Whole Protein and Individual Protein Abundance Change
Measurement DIGE

A 10-ml volume of cell suspension was collected at 0, 24, 96, and
168 h (six replicates). Half of each sample was used for fresh and dry
weight measurements, whereas the other 5 ml was used for protein
measurement. The cells (500 mg of fresh weight) were collected at
time points 0, 24, 96, and 168 h. Half of the samples (three replicates)
were vortexed with Qiagen tissue lysis beads (5 mm) and boiled in 1�
sample buffer for 5 min and then centrifuged at 10,000 � g for 10 min.
The supernatant was collected and separated with one-dimensional
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SDS-PAGE on Bio-Rad Criterion precast gels (10–20% (w/v) acryl-
amide, 1 mM Tris-HCl, 18-well comb gels). Gel electrophoresis was
performed at 20 mA/gel for 5 h. The proteins were visualized by
colloidal Coomassie Brilliant Blue G250 staining. The entire lane was
selected and quantified using ImageJ. Proteins from the remaining
half of the samples were precipitated with the methanol/chloroform
method described above. The pellets were then dissolved in lysis
buffer, and the concentrations were measured by an Amido Black
method (22). Because the ImageJ and Amido Black methods gave
similar protein abundance levels, the values were averaged to repre-
sent total protein abundance change at time points 0, 24, 96, and
168 h.

Seven-day-old 14N medium growth cells were washed three times
with no nitrogen media and then transferred to 15N medium. A 5-ml
volume of cell culture was collected by vacuum filtration at 0, 24, 96,
and 168 h in triplicate. Total protein was extracted, and protein
measurements were determined as described previously. Standards
for Cy2 labeling were made by mixing equal amounts of protein from
each sample. A total of six DIGE gels were made: Gel 1 standard
(Cy2), 0A (Cy3) and 24A (Cy5); Gel 2 standard (Cy2), 24B (Cy3) and
96A (Cy5); Gel 3 standard (Cy2), 96B (Cy3) and 168A (Cy5); Gel 4
standard (Cy2), 168B (Cy3) and 0B (Cy5); Gel 5 standard (Cy2), 24C
(Cy3) and 168C (Cy5); and Gel 6 standard (Cy2), 0C (Cy3) and 96C
(Cy5). Image analysis was as previously mentioned. The abundance
of each spot at a particular time point was an averaged value and
normalized by dividing by the abundance of the protein at the 0 time
point.

Preparative Two-dimensional Gel Electrophoresis and In-gel
Trypsin Digestion

Whole protein samples (700 �g) at time points 0, 24, 96, and 168 h
were precipitated using nine times their volume of cold acetone at
�20 °C overnight. The proteins were pelleted by centrifuge 20,000 �
g for 15 min and dried at room temperature for 5 min. The samples
were added to rehydration solution (8 M urea, 2% (w/v) CHAPS, 0.5%
(v/v) IPG buffer, 18 mM DTT, 0.001% (w/v) bromphenol blue) to a final
volume of 450 �l. They were first separated by IEF pH 3–10 nonlinear
(24 cm; GE Healthcare) according to the manufacturer’s instructions.
After the first dimension, IEF strips were then transferred separately to
an equilibration solution (6 M urea, 50 mM Tris base, 2% (w/v) SDS,
26% (v/v) glycerol, 0.001% (w/v) bromphenol blue, 65 mM DTT) and
incubated for 15 min at room temperature with shaking. The strips

were then transferred to the same solution omitting DTT but including
iodoacetic acid (135 mM) and incubated for a further 15 min at room
temperature with shaking. After a brief rinse in 1.5 M Tris-HCl, 1%
SDS (pH 8.0), the strips were transferred horizontally onto 12% (w/v)
polyacrylamide gels and covered with 1.2% (w/v) agarose. Two-
dimensional gels were run at 50 mA/gel for 6 h. The proteins were
visualized by colloidal Coomassie Brilliant Blue G250 staining. The
same 120 protein spots from 0-, 24-, 96-, and 168-h gels were cut
and in-gel digestion by trypsin according to the method described by
Taylor et al. (24), with only a quarter of the trypsin amount used to
decrease the effect of trypsin peaks on data interpretation.

Mass Spectrometry Analysis of the Digested Spots

Peptides were analyzed with an UltraFlex III MALDI-TOF/TOF mass
spectrometer (Bruker Daltonics). In-gel digested peptides were re-
constituted with 5 �l of 5% ACN (v/v), 0.1% (v/v) TFA. Two �l of each
sample was spotted onto a MTP 384 MALDI target plate and mixed
with 2 �l of spotting matrix (90% ACN, 10% saturated �-cyano-4-
hydroxycinnamic acid in TA90 (90% ACN, 0.01% TFA)). Dried spots
were overlaid with 10 �l of cold washing buffer (10 mM NH4H2PO4,
0.1% TFA) and allowed to stand for 10 s before removal by pipette.
The spots were analyzed at 50–85% laser intensity with up to 1200
shots for MS analysis per spot. Ions between 700 and 4000 m/z were
selected for MS/MS experiments using 3% additional laser power.
Masses corresponding to trypsin autolysis were excluded from anal-
ysis. Tandem mass spectrometry data were analyzed using Biotools
(Bruker Daltonics) and an in-house Arabidopsis database comprising
ATH1.pep (release 9) from the Arabidopsis Information Resource and
the Arabidopsis mitochondrial and plastid protein sets (33,621 se-
quences; 13,487,170 residues), using the Mascot search engine ver-
sion 2.1.04 and utilizing error tolerances of �1.2 Da for MS and �0.6
Da for MS/MS; “Max Missed Cleavages” set to 1; variable modifica-
tions of oxidation (Met), carbamidomethyl (Cys), and deamidated (Asn
and Gln). Only protein matches with more than two peptides and with
ion scores greater than 37 were used for analysis (p � 0.05). For all
120 spots, the 0- and 24-h time points were used for both MS and
MS/MS analyses for protein IDs, whereas only the MS data were
analyzed for 96 and 168 h. Search results were exported to comma
saprated value format for each spot. Identifications are outlined in
supplemental Table 1. Spectral data (supplemental Data 2) are avail-
able for download from the ProteomeCommons Tranche network
(ProteomeCommons.org) using hash codes (2DZyjPUwvskRQQDr5�

TABLE I
Isotope contributions of amino acids

Amino acids Q ion formula 14N Q ion 15N Q ion 15N Q ion 2
Isotope

contribution (%)
Isotope

contribution 2 (%)

Aspartic acid C18H40NO4Si3 418 419 0.363
Alanine C14H32NO2Si2 302 303 0.266
Valine C13H30NO2Si2 288 289 0.255
Leucine C14H32NO2Si2 302 303 0.266
Isoleucine C14H32NO2Si2 302 303 0.266
Glycine C10H24NO2Si2 246 247 0.221
Methionine C13H30NO2SSi2 320 321 0.255
Serine C20H46NO3Si3 432 433 0.386
Proline C19H24NO4 330 331 0.22
Threonine C18H42NO3Si3 404 405 0.363
Cysteine C17H40NO2SSi3 406 407 0.359
Phenylalanine C17H30NO2Si2 336 337 0.299
Glutamic acid C22H48NO4Si3 432 433 0.409
Glutamine C19H43N2O3Si3 431 432 433 0.378 0.173
Asparagine C18H41N2O3Si3 417 418 419 0.367 0.149
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RNbT�e2xS7Mm4JleiiaNXXrWMGT��RrpLjBYqOVhCJCqXpS619
dJT9K7T4H6vsrGKBf2YxJEYAAAAAAAACWQ��).

The false discovery rate cutoff ion score was calculated by con-
catenation of all the MS/MS spectra from gel spot analysis at the 0-
and 24-h time points and analyzed against a combined forward/
reverse ATH1.pep (release 9) database. Of the peptide ions selected
for quantification by Isodist, 428 (95%) had an ion score greater than
22 (false discovery rate � 10%), and a small set of 25 peptides used
for the subsequent MS analysis had an ion score of �22. These 25
peptides with ion score of �22 were assessed in two ways. First, all
22 peptides matched to proteins in gel spots with more than five
peptides and protein scores with false discovery rates of �95%.
Second, upon manual inspection, all of the empirical data aligned well
with predictions based on Isodist calculations for partial labeling of
the matched peptide sequence. Retrospective analysis of the degra-
dation and synthesis rates of the proteins that incorporated the use of
these ions showed no noticeable difference between means and S.D.
with or without inclusion of the intensity of these lower scoring MS
ions.

Isodist Measurement of Relative Isotope Abundance

To calculate heavy label incorporation and the relative abundance
of natural abundance (NA) and heavy labeled (H) peptide populations,
MALDI-TOF/TOF MS data were exported to mzXML files (Compass-
Xport 3.0 (Bruker)) and were subsequently converted to text files
using the ProteomeCommons.org IO Framework 6.21 (http://pro-
teomecommons.org/current/531/). Text files were then parsed using
a script written in Mathematica 7.0 (Wolfram Research) for further
analysis. Isotopic envelopes were fitted using a two population model
consisting of natural abundance and 15N-labeled fractions with the
open source program Isodist (http://williamson.scripps.edu/isodist/)
as previously described (25). Briefly, five iterations were allowed per
round of fitting to calculate the abundance (amplitude) of the natural
abundance (14N) form of the peptide, abundance of 15N-labeled pop-
ulation, 15N incorporation level, Gaussian peak width, mass error, and
base line. The results from Isodist were then parsed with another
Mathematica script, and spectra were generated by overlaying ex-
perimental and calculated data with these images then exported as
PDF files for manual inspection. Only peptides with good signal-to-
noise were considered further. All of the data on a peptide by peptide
basis are provided in supplemental Table 2. Spectra from Isodist
(supplemental Data 3) are available for download from the Proteome-
Commons Tranche network (ProteomeCommons.org) using hash
codes (ufWHF3kYYqD7xqMt1YraUK6B3loQ0O�ZR1Ly4CBM
rtHLA2Lp1l77CfdlrQH90T2rkdzMXZXhGw7C4hVcJrXETm9GnfYAA
AAAAAACmA��).

Calculations

Amino Acid Half-lives—The half-lives of amino acids were calcu-
lated by first dividing the amino acids into sets based on time points
around H/(H � L) � 0.5. These were the 0.5–8-, 8–24-, 24–48-, and
48–72-h ranges. The final value shown for each amino acid is an
average of data from these time points.

Protein Degradation Rate—We first calculated protein-specific
degradation rates (KD) in a manner similar to that previously described
(26, 27). Briefly, for a given time point t, abundance levels of NA (A14)
and isotopically labeled (A15) samples were determined using Isodist
and then used to calculate relative isotope abundance (RIA) of NA
samples at each time point. For time point 0, the RIA is equal to 1.

RIA �
A14

�A14 � A15	
(Eq. 1)

The first order (i.e. protein degradation as a function of protein
concentration) rate constant (KD) was first calculated in a manner
similar to that previously described (26, 27). The fraction of natural
abundance isotope remaining at time point t, was natural log-trans-
formed, and a linear regression used to calculate Kloss. KD was then
calculated by subtracting Kdilution, which is the growth rate of the cell
culture system and was also acquired by linear regression. In our
system, Kdilution was 0.232.

Kloss � �
ln�RIA	

t
(Eq. 2)

As an alternative, we can represent the ratio of heavy isotope to
light isotope (R) as calculated by Isodist from experimental data, in
terms of a series of factors to determine degradation rate: 1) the fold
change in protein abundance (FCP), which can be measured; 2) the
amount of protein degradation (D) that we wanted to derive; and 3) the
amount of the NA protein before transfer to 15N-enriched medium (i.e.
time 0) represented by abundance (A). Thus, we derived Equation 3,
which is an approach similar to that of Jayapal et al. (28).

R �
A � D

FCP � A � �A � D	
(Eq. 3)

For time point t, relative to time point 0, FCP was calculated by
multiplying the total cellular protein abundance fold change of the cell
culture with the individual protein abundance fold change from the
DIGE analysis. Hence, if a protein abundance does not change,
FCP � 1, whereas if it doubles, then FCP � 2. Pdeg (the fraction of
natural abundance protein present at time point 0 that is remaining at
time point t) could thus be calculated using only two parameters, FCP
and R.

Pdeg � 1 �
FCP

1 �
1
R

(Eq. 4)

In a manner analogous to Jayapal et al. (28), KD can then be
calculated by the natural log of NA protein remaining (1 � Pdeg).

KD � �
ln�1 � Pdeg	

t
(Eq. 5)

We then used Equation 5 to calculate KD in two different ways.
First, we used linear regression to define KD as a rate constant,
assuming first order kinetics. Second, we calculated KD for each
protein at each time point and then averaged these values, which
allows us to consider proteins for which simple kinetics do not apply.

Protein Synthesis Rate—Because of the availability of quantitative
protein abundance data at each time point from the DIGE analysis, we
could also calculate protein-specific synthesis rates (KS). Presuming
equal degradation rates between 14N and 15N samples, as others
have previously reported (29–31), we deduced that the change in
abundance of a 15N-labeled protein (dA15/dt) is the difference be-
tween KS and KD multiplied by the protein abundance.

dA15

dt
� Ks � KD � A15 (Eq. 6)

Upon integration

KS � KD � A15 � Constant � e�KD�t (Eq. 7)

When t � 0, because there were no 15N proteins, A15 � 0 and so
Constant � KS. Thus,
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KS � KD � A15 � KS � e�KD�t (Eq. 8)

and then the relationship between KS and KD is as follows.

KS �
KD � A15

1 � e�KD�t (Eq. 9)

By substitution of Equation 5 into Equation 9,

KS

KD � A15
�

1
Pdeg

(Eq. 10)

The change in the abundance of a protein was thus a combination
of the 15N (A15) and 14N (A�Pdeg) protein abundance changes. To
represent this, we derived the following equations.

FCP � A � A � A15 � A � Pdeg (Eq. 11)

A15 � �FCP � 1 � Pdeg	 � A (Eq. 12)

KS, the average rate of synthesis of a protein to a time point was
solved by combining Equations 5, 10, and 12

KS �

�FCP � 1 � Pdeg	 � ln
1

1 � Pdeg

Pdeg � t
� A (Eq. 13)

To account for increasing cell amounts through time, the relative
cell numbers (i.e. the increase in total protein in the cell culture) were
averaged between t � 0 and a time point t. The synthesis rate
constant (KS/A) was then normalized across all data by dividing by
the relative cell number.

RESULTS

Arabidopsis Cell Culture Growth in 15N Labeling and Label-
ing of Proteins—Arabidopsis cell cultures have been used for
steady-state 15N labeling experiments to determine abun-
dance changes in a variety of experiments (15, 16, 32). One of
these reports noted that nearly complete labeling with 15N
was possible in 2 weeks of culturing of cells when 19 mM 98%
K15NO3 was used to replace all nitrogen sources in the cell
medium (15). In our laboratory, a rapidly growing Arabidopsis
cell culture is used for a wide range of experiments, but the
medium contains two nitrogen sources for optimal growth:
18.8 mM KNO3 and 20.6 mM NH4NO3. To assess the impact of
nitrogen source on growth, we measured changes in fresh
weight of culture over 216 h (9 days). When cells were trans-
ferred to medium without a nitrogen source (�N MS salt
medium), there was a doubling of fresh mass of cells over 9
days, whereas in premixed media containing both sources of
nitrogen, cell mass increased 7-fold over the 9 days. When
�N MS salt medium was supplemented with either KNO3

alone or NH4NO3 alone, substantially lower growth was re-
corded than with both nitrogen sources in the premixed me-
dia. Co-supplementation of both nitrogen sources into �N
MS salt media provided growth equivalent to the premixed
media (Fig. 1A). We therefore decided to retain the use of two
nitrogen sources in our experiments, through the use of 98%
K15NO3 and 98% 15NH4

15NO3 supplementation of �N MS
salts.

There was no apparent difference in total cell yield from cell
flasks whether these nitrogen sources were at natural abun-
dance (99.6% 14N, 0.4% 15N) or 15N enriched (2% 14N, 98%
15N). To assess whether growth in 98% 15N influenced the
steady-state proteome of the cell culture, total protein was
extracted from cells cultured in two successive 7-day cycles in
14N or 15N medium. Fluorescence difference gel electrophoresis
using Cy dyes was used to look for significant differences in the
protein profiles (supplemental Fig. 1). No significant differences
were observed in statistical analysis of three biological repli-
cates. Tandem mass spectrometry of the two samples revealed
only matches to 14N-containing peptides from the 14N-labeled
cells and only matches to 15N-containing peptides from the
15N-labeled cells (supplemental Data 1).

Dynamics of 15N Labeling of Amino Acids—To determine
how rapidly 15N labeled the amino acid pools in the cells, we
performed GC-MS analysis of hot methanol (23) extracts de-
rivatized with MBTSTFA and quantified the half-life of 14N-
containing amino acids following the movement of washed
cells from 14N medium to 15N medium (Fig. 1B). Although we
could not detect all of the amino acids using this method, we
could reproducibly observe 15 amino acids and show that
the half-lives of these pools are between 3 and 70 h (Fig. 1B
and supplemental Fig. 2). As expected, glutamine and gluta-
mate were the most rapidly labeled with 15N, with nearly 70%

FIG. 1. Growth rate and amino acid pool labeling over time of
Arabidopsis cell culture. A, cell culture growth rate in media with
different sources of N. B, 15N incorporation rate into different amino
acids. The colors show amino acids in different synthesis pathway
families. C, kinetics of incorporation as proportion of 15N (H) com-
pared with both 15N and natural abundance (H � NA) into the amino
acids with the fastest (Gln) and slowest (Cys) 15N incorporation
rates.
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incorporation within the first 24 h. Most of the other amino
acids followed with half-lives within 24 h, but the most difficult
pools to label rapidly were the amino acids derived from
3-phosphoglycerate, namely serine, glycine, and cysteine
(Fig. 1C). This plant cell culture is not photosynthetically ac-
tive, so photorespiratory glycine and serine were not a com-
plicating factor in assessing 15N incorporation. Although 15N
labeling of amino acids showed a steady increase over time,
none appeared to obey a simple standard curve (sup-
plemental Fig. 2). This complicated pattern may arise from the
multiple sources of amino acids for protein synthesis, includ-
ing de novo amino acid synthesis from the 15N-enriched in-
organic nitrogen sources, scavenged from the degradation of
proteins, and/or different subcellular amino acids pools (33,
34). At 8 h the calculated average 15N incorporation of the
amino acid pool was 43.6% (this number was calculated
based on the measured 15N incorporation of 15 free amino
acids and the known proportion of each of these amino acid
in Arabidopsis proteins). A lag followed between 8 and 24 h,
perhaps because of the degradation of proteins at natural
abundance levels of nitrogen producing amino acids. At 24,
96, and 168 h, the 15N incorporation in the total pool was 52.7,
86.7 and 90.5%, respectively.

Dynamics of 15N Labeling of Proteins—Based on these
amino acid data, we chose three time points for analysis of
incorporation of labeled amino acids into proteins, namely
24 h (1 day), 96 h (4 days), and 168 h (7 days). Three inde-
pendent sets of flasks were transferred to 15N medium, sam-
pled at the times indicated, and snap frozen; proteins were
extracted from each sample and quantified. Substantial
growth occurred over these time periods, with the total pro-
tein in each flask rising from 1 at 0 h, to 1.05 � 0.10 at 24 h,
1.97 � 0.11 at 96 h, and 6.02 � 0.23 at 168 h based on Amido
Black protein assays and quantification of Coomassie staining
on one-dimensional gels (data not shown). Visual inspection
of Coomassie-stained gels loaded on a protein basis showed
that most protein spots were present at similar abundance
across all time points (supplemental Fig. 3). To determine
quantitatively whether protein profiles were changing relative
to the total extracted protein amount, we performed an inte-
grated DIGE experiment with the 12 samples on IEF/SDS-
PAGE gels (supplemental Fig. 4). Approximately 20% of the
protein spots were statistically observed to change in abun-
dance, and the changes observed were all �2-fold between
time points, indicating a relatively steady-state system for
each protein relative to the size of the proteome as a whole
(supplemental Table 1).

A set of 120 protein spots, matched across a typical gel
from each time point, was excised from each time point and
digested with trypsin (supplemental Fig. 5). The 480 samples
were analyzed by MALDI-TOF/TOF. For the 0- and 24-h time
points, a set of 10–20 MS/MS spectra were obtained from
each sample to identify the proteins and define the parent
mass of ions matching to peptides from each protein that

could be used as proteotypic peptides across the time
series. In total, 108 proteins were identified with 648 pep-
tides (supplemental Table 1). For the 96- and 168-h time
points, whereas both MS and MS/MS data were obtained,
only MS spectra were pursued. We had previously found
that identification of MS/MS spectra from the partially in-
corporated spectral envelopes observed at later time points
was extremely poor, so we concentrated on analysis of high
quality MS spectra for quantification purposes at 96 and
168 h.

Raw data were analyzed with Isodist (25), a program that
uses Fourier transform convolution and least squares to fit
calculated distributions to our experimental data set. Using
the combined peptide identifications at 0- and 24-h time
points, the relative abundance of the NA and the 15N-labeled
H peptide ion envelopes were calculated. Only good fit, high
intensity spectra were chosen for further analysis and incor-
poration into the measurements made. Full data sets used are
provided online as supplemental Data 3. Fig. 2A shows typical
examples of two peptides and the MS spectra showing the
lighter, natural abundance ion envelope (NA), and the heavier
(H) ion envelope of peptides derived from the 15N enriched
pool of amino acids. The MAB1 (At5g50850) peptide (LALPQ-
IEDVR) has a relatively slow synthesis rate. There is little
evidence of peptides from the 15N pool after 24 h, but by 96 h
a significant H peptide envelope is found. The TRIP-1
(At2g46280) peptide (DHTPTLWFADNGER) has a relatively
fast synthesis rate, with an abundant H peptide envelope
already at 24 h and few NA peptides remaining by 96 h,
suggesting that a significant turnover of the original 14N pro-
tein was likely to have occurred. It is evident from both ex-
amples that although the NA peptides have a defined and
constant mass, the mass envelope of the H peptides changes
during the course of the experiment (Fig. 2A). This is due to
the increased labeling of the amino acid pools over time.
Combining all of the peptide spectra used in our analysis, we
have made frequency histograms of the % 15N in the heavy
spectral envelope. At 24 h, this averaged at 68% and then
rose to 
90% by 96–168 h (Fig. 2B). Interestingly, at the 24-h
time point, this is slightly higher than the value predicted from
the level of incorporation seen in the amino acid pools by
GC-MS (Fig. 1, B and C, and supplemental Fig. 2). This would
suggest either a small systematic error in our measurements,
Isodist fitting, or GC-MS calculations or the presence of a
pool of nonincorporating amino acids at the early stage in the
cells that do not participate in protein synthesis. When all of
the peptides for these two sample proteins were considered,
it was clear there was a high degree of correlation between
the NA/(H � NA) ratios for peptides derived from the same
protein at a given time point giving confidence in these ratios
at the protein level (Fig. 2C).

Calculation and Comparison of KD Rates for Proteins—A
first consideration to the strategy of stable isotopic tracers in
protein turnover studies is the speed with which the amino
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acid pools are replaced with labeled versions (35). We spe-
cifically considered whether a significant amount of newly
synthesized protein might have contributed to the NA enve-
lope in the early time points before the amino acid pools had
incorporated sufficient 15N. Such an accumulation would
have adversely affected our calculations (see “Experimental
Procedures”). Our analysis, based on GC-MS data, deter-
mined that this effect would be small to negligible on the H/NA
ratio: �6% in sample calculations of peptides at 24 h for

peptides �8 amino acids in length (92% of the peptides
examined) and negligible for all peptides examined at the 96-
and 168-h time points. Our analysis further indicated that
even this 6% effect on H/NA had a less than 0.5% effect on
the final KD calculations.

Using the H to NA peptide ratio information, the increase in
total protein abundance in the cell culture through time, and
the DIGE data for individual proteins (supplemental Table 1),
the KD for each protein could be determined (supplemental

FIG. 2. Analysis of 15N incorporation into peptides of specific Arabidopsis cell culture proteins. A, examples of theoretical prediction
and actual MS fit at 0, 24, 96, and 168 h (theoretical prediction, red; actual, blue) for single peptides derived from MAB1 (At5g50850) and TRIP-1
(At2g46280). B, histogram of calculated 15N partial labeling averages for peptides at 24, 96, and 168 h following 15N addition. In total, 336, 381,
and 344 peptides are used for the distributions at each time point. C, average ratio of 14N only (NA) to 15N containing (H) � 14N only peptides
(NA/(H � NA)) for all the MAB1 and TRIP-1 peptides at 24, 96, and 168 h. The error bars show the standard deviation.
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Table 2). As outlined under “Experimental Procedures,” three
different methods were used to compare our approach with
others recently published. First, we have calculated values
using steady-state assumptions and linear regression (27).
Second, we have used regression with our modified KD cal-
culation, which allows us to correct for changes in protein
abundance during the course of the experiment. With this
alternative method of calculating KD, we can avoid the steady-
state assumption, which is likely not appropriate for many
proteins in our cell culture system. In this respect, our analysis
is similar to a recent study using a dual labeling strategy of
SILAC and iTRAQ to correct for changes in protein abun-
dance in log growing bacteria (28). For the two regression
methods, R values for the first order kinetics fit of the data
varied, 76 of the 84 proteins met the thresholds defined by
Yee et al. (27), and 42 of the 84 proteins met the thresholds
defined by Jayapal et al. (28). However, given that a significant
number of proteins do not have simple first order kinetics of
degradation (26, 35), we used a third method: while still cor-
recting for protein abundance changes, we averaged the KD

values calculated at each time point (5, 26). Sample calcula-
tions using these latter equations for the two peptides shown
as examples in Fig. 2A are provided in supplemental Data 4.
For a protein to have a KD calculated, we required quantitation
data from at least three peptide(s) over two time points for
inclusion in the data set.

To compare data from each time point, we ranked KD

across the 84 proteins for which we had sufficient numbers of
peptide identifications to make a KD calculation. These ranks
are shown in Fig. 3 as a heat map to compare the ranks for the
24-, 96-, and 168-h data sets. It was clear from these data
that there was general agreement on protein rank in KD cal-
culations at different time points, with the majority of the
green, low numbered ranks at the top of the heat map, and
the majority of the red, high numbered ranks, at the bottom.
We were conscious that small numbers of peptides with more
extreme H/NA ratios could potentially bias the analysis be-
cause they were likely to be the most error prone measure-
ments. We thus combined all the data for peptides with H/NA
within the more restricted 2 orders of magnitude range of
0.1–10, which was 
65% of the peptide data set, and com-
pared a combined rank of KD against the ranks for each time
point and the average of all three time points. Again there was
general agreement in this restricted data set of the slow and
fast degrading proteins. Using this averaging approach, we
obtained similar KD rankings to when we used either of the
regression methods (27, 28). Notably, our KD average was
most similar to the second regression method, in which
iTRAQ labels were used to account for changes in protein
abundance (28). In an analogous manner, we used FCP,
thereby negating the necessity of a steady-state assumption.
Although the heat map shows the rank of KD across methods,
the actual values of the KD average analysis are graphed on
the left of the heat map (KD by all methods are provided in

supplemental Table 2C). The data show a preponderance of
RNA/DNA binding, metabolism proteins, and protein synthe-
sis and degradation machinery proteins with rapid KD and the
majority of the mitochondrial energy metabolism and central
metabolism category members with slow KD. At the extremes
of this distribution, elongation factor 1B� had a KD average of
nearly 1.2 d�1 (per day), whereas the KD average of glutathi-
one peroxidase 6 was less than 0.02 d�1. There are examples
of protein isoforms like fructose-bisphosphate aldolases
(At3g52930 and At2g36460), which have very similar degra-
dation rates, whereas others like mitochondrial malate dehy-
drogenases (At3g15020 and At1g53240) differed significantly
in KD.

Calculation and Comparison of KS Rates for Proteins—
Although many reports that consider degradation in steady-
state assume synthesis rate equals degradation rate, in our
case we have information on changes in protein abundance
and the degradation rates at different time points. Therefore
we calculated KS and assessed its relationship to KD. Using a
similar approach to that of KD, we explored the impact of time
points, the removal of data with high and low H/NA ratios
(0.1–10), and an average of KS over all time points. Although
there was variation for a number of proteins, overall there
were clear sets of rapidly synthesized proteins and slowly
synthesized proteins (Fig. 4). There was a clear group of
mitochondrial proteins with a slow and consistent synthesis
rate (Fig. 4, green bars). Notably KS for mitochondrial energy
components was more consistent than the KD observed for
this category in Fig. 3. Proteins in the RNA/DNA binding and
metabolism, protein synthesis and degradation, and the
stress and signaling categories dominated the list of proteins
with high KS values.

Comparison of KD and KS Rates for Proteins with Each
Other and with Functional Classification and mRNA Data—To
explore whether the apparent variation in KD and KS for a
given protein at different time points was biologically mean-
ingful rather than simply noise in a steady-state system, we
performed hierarchical clustering of the heat map of ranked
data for 24, 96, and 168 h using a Pearson correlation coef-
ficient method (supplemental Figs. 6 and 7). For both KD and
KS, this showed a series of defined clusters of proteins. To
determine whether KD or KS were simply reflections of de-
creasing/increasing protein abundances, we compared these
clusters with total protein abundance at the different time
points. We arranged the normalized abundance data from the
DIGE analysis as a heat map in the same order as the clusters
of ranked KD and KS. These comparisons show that the
clusters apparent in KD and KS rank are unlikely to simply
reflect changes that could be observed in total protein abun-
dance, but rather they indicate independent variations of pro-
tein turnover that underlie the abundance of proteins in the
cell culture. The KD of mitochondrial energy proteins was
typically considered low based on the data in Fig. 3, but the
ranks for these proteins clearly clustered with faster ranked
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KD in the 24-h data and decreased rank over time. In con-
trast, many of the stress-induced proteins and RNA/DNA-
binding proteins had KD ranks that increased over time

(supplemental Fig. 6). A related trend was also apparent in KS

(supplemental Fig. 7). Mitochondrial components had fast KS

ranks at 24 h but lowered their rank at 96 h and 168 h,

FIG. 3. Degradation rate of proteins in Arabidopsis cell culture. The bar graph shows the average degradation rate (KD). The colors of the
bars represent functional categories of protein sets. Heat map shows the ranked degradation rate within the 24-, 96-, and 168-h time series
in the first through third columns, ranked degradation rate for spectra with a H/NA ratio between 0.1 and 10 (fourth column), and average
degradation rate for all data for each protein (fifth column). The last two columns show KD acquired by the first and second regression methods
used (27, 28). # and * represent proteins that meet the regression thresholds set in Ref. 27 and Ref. 28, respectively.
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FIG. 4. Synthesis rate of proteins from Arabidopsis cell culture. The bar graph shows the average relative synthesis rate (KS). The colors
of bars present functional categories of proteins. The heat map shows the ranked synthesis rate within the 24-, 96-, and 168-h time series the
first through third columns, ranked synthesis rate for spectra with a H/NA ratio between 0.1 and 10 (fourth column), and average synthesis rate
for all data for each protein (fifth column).
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whereas components in RNA/DNA binding and antioxidant
defense had ranks that increased over time to have faster
relative KS in the later time points.

As the cell culture is growing over time, the relationship
between KD and KS for proteins is critical to maintain the total
abundance of a protein in the proteome. We explored the
veracity of this relationship in several ways. First, scatter plots
of average KD and KS values were generated using the data
from Figs. 3 and 4. This showed a positive relationship be-
tween the two parameters with a fair to moderate correlation
over a range of parametric and nonparametric methods (r �

0.39–0.76, n � 84, supplemental Fig. 8). When proteins were
divided into the six functional categories of Figs. 3 and 4, it
was apparent that there was a better positive correlation for
protein synthesis and degradation (r � 0.52–0.9, n � 15,
supplemental Fig. 8) and antioxidant and defense (r � 0.62–
0.79, n � 11 supplemental Fig. 8), although there was no
correlation for mitochondrial energy, primary metabolism, or
stress and signaling (supplemental Fig. 8). Second, in an effort
to determine whether KD and KS were linked through time, we
combined and clustered the KD and KS ranked data sets
together over the three time points (supplemental Fig. 9). This
shows that there were only a relatively small number of pro-
teins with strong correlation between KD and KS across the
time points. The best cases of correlation were for the cyto-
solic proteins: ATHIP1 (At4g22670), ROC1 (At4g38740), and
GSTF9 (At2g30870), and somewhat more weakly the mito-
chondrial proteins: CPN10 (At1g14980), succinyl-CoA ligase
(At2g20420), ATP synthase � (At5g47030), and ATP synthase
� (At5g08670).

Because KS is dependent on mRNA abundance and half-
lives and this information was available for the same Arabi-
dopsis cell culture (6), we considered the correlations be-
tween these data sets based on the whole set of 84 proteins
and the six functional categories of proteins analyzed here
(supplemental Fig. 10). The correlation between protein rela-
tive abundance and mRNA half-life was most apparent in the
antioxidant and defense (r � 0.58–0.87, n � 8) and stress and
signaling (r � 0.47–0.60, n � 10) categories. There was less
consistency in the correlation between KD and KS with RNA
half-life. Using microarray data from untreated cell culture, we
also considered correlations between protein abundance,
synthesis/degradation rates, and raw mRNA hybridization
abundance. We found higher correlation of RNA hybridization
with KS rates than with protein abundance alone, but only for
the RNA/DNA and protein synthesis and degradation compo-
nent groups. However, we also found that KD was often better
correlated with RNA hybridization than protein abundance for
these same functional groups, indicating the potential impor-
tance of protein degradation rate in understanding the size
and dynamics of the RNA pool involved in transcription and
translational processes.

DISCUSSION

Developing methodology to measure protein synthesis and
degradation rates requires a complex series of choices and
compromises to evaluate the ease and transferability of the
method alongside its veracity, accuracy, and its underlying
assumptions of protein dynamics. As reviewed recently by
Hinkson and Elias (35), a good method needs first to allow a
protein of unaltered sequence to reach maturity and attain
normal subcellular localization and protein-protein associa-
tion. As a secondary consideration, we believe that a method
that allows targeted analysis of proteins of interest would be
of benefit. The combination of 15N labeling and analysis of
gel-separated protein spots provides the framework for these
two considerations. The use of gel-separated samples also
provides simplification of mass spectra to maximize its inter-
pretability. Choice of method must also consider if simple first
order kinetics are followed (i.e. if protein degradation as a
function of protein concentration is constant). Additionally, it
must be determined whether a steady-state system (one in
which KD and KS are equal, where cellular protein concentra-
tion is constant, and where it is cell growth that is responsible
for any net changes to protein abundance (35)) applies. Using
the key features of this workflow (Fig. 5) and the methods and
assumptions in calculating KD and KS, we consider the ben-
efits and limitations of our chosen approach.

The Value of Partial 15N Labeling over Other Choices for
Stable Isotope Assessment of Plant Protein Turnover—Sev-
eral strategies have been employed for measuring protein
turnover in cells. The SILAC strategy with 13C-labeled amino
acids has been widely used to measure protein turnover rates
(5, 7, 10). However, this strategy is not well suited to fully
labeling plant cells for multiple reasons. First, because plants
are autotrophic and can synthesize all the amino acids, dilut-
ing and mixing SILAC label complicates analysis (16). Second,
it is likely that the labeled carbon skeletons from amino acids
such as lysine and arginine (which are routinely used in SILAC
labeling experiments) are likely to only partially label certain
amino acids, and this could not readily be anticipated or
accounted for in a quantitative model. Third, because all
amino acids are not transported equally between tissues,
such an approach will be further complicated for use in whole
plants (36). Another strategy was demonstrated in a recent
paper where a heavy water method was used to measure
tag-linked expressed proteins in Arabidopsis seedlings (9).
However, heavy water is toxic to organisms including plants
and altered the transcriptome pattern in plants (9), so this
approach may alter cell physiology and in vivo proteome-wide
turnover rates. 15N labeling had already been successfully
used in labeling Arabidopsis cell culture and plants (15, 19,
21). Our DIGE results demonstrate that quantitative 15N label-
ing does not change the proteome profile, which is consistent
with other reports in plants (19, 21, 32). Hence, this strategy is
probably the most nonintrusive way to investigate the pro-
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teome dynamics without changing physiological conditions in
plant cells. The nitrogen assimilation process in plants is well
studied, and the machinery has relatively little discrimination
against 15N incorporation (37). We can monitor the incorpo-
ration of 15N from amino acids into proteins, and based on
peptides with 10–20 nitrogen atoms, we can clearly distin-

guish natural abundance and enriched ion envelopes within
the mass spectrum in our data, even with only 50% 15N
incorporation. This approach reduces the chance of interfer-
ence and noise from other peptides or background in the
calculation and also allows the relatively rapid assessment of
turnover rate after the switch to 15N (�24 h). This contrasts

FIG. 5. Workflow and data assembly to determine KD and KS for Arabidopsis proteins.
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with the longer periods of time that would be needed to make
a calculation from peptides with a much higher incorporation
level. Therefore we consider that this method has potential for
measuring changes in degradation rate induced by environ-
mental or developmental factors. Interestingly, levels as low
as 6% 15N label have been successfully used to measure
differences in protein levels (19), so the prospects for even
lower partial labeling strategies to measure protein degrada-
tion could be explored in the future to further reduce the time
needed to make degradation calculations.

Value of Gel-based Separation and MALDI Analysis for 15N-
based Turnover Analysis—A potential limitation in the use of
progressive versus steady-state 15N labeling is the increased
complexity of the mass spectra. For a peptide containing 20
nitrogen atoms, this progressive labeling strategy will create
an increasingly complex isotopic envelope (M to M�20) that
needs to be interpreted and quantified as NA and 15N-en-
riched populations. Undertaking this analysis in complex mix-
tures of peptides is extremely difficult because it greatly in-
creases the chances of overlapping peaks and interference
between the isotopic envelopes of different peptides. The
two-dimensional gel separation we employed greatly reduces
the complexity of the peptide pattern because usually pep-
tides from only one protein are present in each spectrum.
Additionally, by using MALDI-TOF/TOF MS, we generated
singly charged spectra, which were easier to assign to an NA
and heavy-labeled envelope of ions. This is inherently less
complex than spectra generated using ESI because of the
multiple charge states that exist in ESI for peptides. Moreover,
the two-dimensional gel spot approach facilitated an inde-
pendent measurement of abundance changes using quanti-
tation of fluorescent dye binding across the time points in the
experiment. These data were essential to account for the
effect of relative differences in protein abundance during
the 7 days of cell culture growth. The added advantage of
using two-dimensional gels is that this technique can be used
in the future by researchers to focus on gel-separated spots
of interest. For example, proteins identified by antibodies
raised to specific proteins or post-translational modifications
of proteins (e.g. phosphorylation, oxidation, or glycosylation)
or in native complexes (e.g. two-dimensional blue native
PAGE/SDS-PAGE) or hydrophobic proteins in diagonal gels
(e.g. benzyldimethyl-n hexadecylammonium/SDS-PAGE or
Tricine/Tris SDS-PAGE) can be targeted for analysis using the
combination of gels and progressive 15N labeling.

Important Considerations in the Isodist Analysis and Calcu-
lations of KD and KS—A critical decision we faced was how to
define the abundance of existing and newly synthesized pep-
tides in a population. When cells are transferred from NA to
15N-enriched media, assimilation of the 15N into amino acids
begins, but the incorporation rate in amino acid pools for
protein synthesis is very small in the first few hours (Fig. 1 and
supplemental Fig. 2). Thus, even peptides containing a small
number of 15N amino acids should be considered as newly

synthesized, even though the masses of these peptides over-
lap with the NA ion envelope. Tools to quantify enrichment in
peptide populations like Mascot Distiller (Matrix Sciences)
presume that a system is at steady state and rely on the user
to define the incorporation ratio. However, in our case this
was not viable because we wanted to calculate the incorpo-
ration ratio from the spectra and aimed to assess many hun-
dreds of spectra. We used a program called Isodist that
incorporates a least squares fitting algorithm to determine
both the extent of labeling for the defined labeling pattern of
a given species and the relative amounts of different species
in a mixture (25). Hence it will fit theoretical spectral envelopes
based on a defined peptide sequence and provide both the
abundance of the two populations and the degree of
incorporation.

RIA has been used as the only factor to measure protein
turnover in steady-state systems (5, 27). However, the abun-
dance of individual proteins over time has to be considered in
growing and non-steady-state systems like our Arabidopsis
cell culture. The ratio between the NA and the 15N-enriched
populations is determined by the change in total protein abun-
dance, the rate of degradation of the NA population, and the
rate of increase in the 15N enriched population. An important
aspect of defining these variables (which has often been
neglected) is that the newly synthesized proteins also expe-
rience a degradation process that needs to be accounted for
when solving for KD and KS.

In our calculations, we discovered that the variation in 15N
incorporation across all peptides and proteins at the same
time point was very low (Fig. 2 and supplemental Table 2). So
this meant that the effects of different amino acid turnover
rates on our calculations were not significant. However, to
directly assess this issue, we considered the GC-MS data on
amino acids incorporation rates and the isotope ratios of
peptides that contained a large percentage of amino acids
with either a slower (Gly, Cys, Thr, Ser, and Pro) or faster (Gln,
Glu, Asn, Leu, and Asp) 15N incorporation rate. We compared
seven peptides enriched for lower turnover amino acids with
13 peptides enriched for higher turnover amino acids. We
examined peptides where amino acids were enriched with
either high or low incorporation rates. Of this smaller subset of
peptides, the effect on KD or KS was found to be very small:
5–9% different from the average for all peptides that matched
to these proteins. This implies that the effect of amino acid
composition on our calculations for a single peptide is quite
small and will be further reduced when KD and KS are calcu-
lated at the protein level.

Although the peptide to peptide variation at a given time
point was small to insignificant, we found the variation in KD

and KS for several proteins across time points was significant.
In other reports a significant variation in KD has led to proteins
being discarded from analysis, because they fail to reach
regression thresholds on the assumption of simple first order
kinetics of degradation. For example, Jayapal et al. (28) re-

Degradation and Synthesis Rates of Arabidopsis Proteins

Molecular & Cellular Proteomics 11.6 10.1074/mcp.M111.010025–13

http://www.mcponline.org/cgi/content/full/M111.010025/DC1
http://www.mcponline.org/cgi/content/full/M111.010025/DC1


ported that 
50% of observed proteins did not follow simple
first order kinetics in log-grown bacteria. The data on proteins
that have a poor correlation and therefore do not appear to
strictly adhere to simple first order kinetics could be argued to
be due to experimental error and/or inadequate sampling;
alternatively the variation in KD could be the result of biolog-
ical events. If the latter is the case, then clearly reporting the
KD and investigating the biological meaning is of interest.
Also, even if a good regression fit is lacking, average KD or KS

values and standard deviations can place proteins in a relative
list of degradation and synthesis rates as shown in Figs. 3 and
4. In a similar manner, other researchers have reported KD

values through the use of average values across time points in
yeast and mammals (5, 26). In fact, a range of studies over
decades in growing systems have observed a range of exam-
ples of proteins that do not follow simple first order degrada-
tion kinetics. From early studies in tobacco cells, it was ap-
parent that protein degradation rate can change with time in
plants (38). Although simple first order kinetics models are
often used in mammalian systems, even in chicken muscle, a
simple single exponential decay has not been observed (39).
Those authors suggested this variability was at least in part
due to changes in protein metabolism resulting from circadian
rhythms. In a recent review of protein degradation analysis,
Hinkson and Elias (35) note that biphasic kinetics with rapid
early turnover rates have been reported for many decades.
They purport that variability in protein stabilities should be
expected for cells to tune degradation as a means of regulat-
ing the proteome; moreover, high initial degradation rates can
partially result from proteolysis of mistranslated and/or mis-
folded proteins (40). Perhaps an even more exciting direction
will be the assessment of which protein complexes or even
entire organelles are turned over as units. Hence, there is a
significant body of evidence suggesting that limiting the anal-
ysis to proteins abiding by simple first order degradation
kinetics in complex systems will limit the ability to draw mean-
ingful biological conclusions.

Biological Insights from KD and KS Calculations—We found
in our data set that by including calculations for proteins that
did not follow simple first order degradation kinetics, we could
uncover functional groupings of proteins that could be linked
to KD and its variability. In general, mitochondrial proteins
have low KD, whereas cytosolic and nuclear proteins were
more unstable and have higher KD values. These differences
in observed degradation rates may be due to inherent differ-
ences in rates of the degradation pathways in the cytosol and
organelles (41, 42) or the combination of location and the
functional roles of the proteins. Such differences may benefit
the plant cell, allowing stable mitochondrial proteins to ensure
a steady supply of energy, whereas the dynamics of the
nuclear and cytosolic proteomes can guarantee a quick re-
sponse to the environment. Also, the timing of changes in KD

and KS across the cell culture cycle differed for cytosolic and
mitochondrial proteins. Note the relatively faster KD and KS of

mitochondrial proteins in the first 24 h during the lag phase
and a clear lowering of the rank of KD and KS for mitochondrial
proteins during rapid growth compared with cytosolic pro-
teins (supplemental Figs. 7 and 8). This could indicate that
mitochondrial turnover is highest soon after cell division but is
slower during the expansion and aging of cells. It would also
correlate with the known early induction of mRNA for mito-
chondrial components during plant cell development and the
apparent cessation of mitochondrial biogenesis in older cells
(6).

Across the six functional categories, the RNA/DNA binding
and metabolism, protein synthesis and degradation, and
stress and signaling categories had higher degradation and
synthesis rates than the other three categories (Figs. 3 and 4).
The stress and signaling category had higher average degra-
dation and synthesis rates than any of the others (Figs. 3 and
4). This is consistent with the reports on functional categories
of protein in yeast and mammalian cell lines (11, 12). Surpris-
ingly, even though relative protein abundances were fairly
static over the 7 days of culture, many proteins did not appear
to have tight links between their KD and KS rates at a given
time point (supplemental Fig. 10). One set of exceptions were
the subunits of the mitochondrial ATP synthase that were
linked in synthesis and degradation, which likely reflects the
fact that as a multi-subunit complex, the mitochondrial ATP
synthase is restricted by stoichiometry (43) to maintain a tight
link of KD and KS at all time points.

A range of specific proteins and their turnover rates were
also of special interest. One of the five fastest KD values
recorded was for the ethylene biosynthesis enzyme, ACC
(1-aminocyclopropane carboxylic acid) oxidase. The rapid
turnover of proteins in this pathway has been known for some
time (44, 45). This rapid degradation is needed to quickly slow
the rate of ethylene synthesis after its peak (44), and the
degradation process is actively regulated as a means of ma-
nipulating ethylene signaling in plants (46). We identified sev-
eral translational initiation factors known to be responsible for
initiation of programmed cell death triggered as a response to
Pseudomonas syringae infection (At1g26630 FBR12) and in
brassinosteroid signaling in plants (At2g46280 TRIP-1) as
among the most rapidly degrading proteins. Rapid degrada-
tion of these proteins may aid their signaling roles by ensuring
they are tightly transcriptionally controlled in plant cells. A
temperature-induced lipocalin TIL1 (At5g58070) is known to
be associated with the plasma membrane and be involved in
prevention of lipid peroxidation during temperature changes
(47). Its rapid degradation rate identified here might indicate
that it is damaged during this role and needs to be rapidly
replaced to maintain its function. GRP (glycine-rich RNA-
binding) family proteins including GRP2, GRP7, and GRP8
had relatively fast degradation and synthesis rates (Figs. 3
and 4). GRP7 is the most well studied GRP family protein; its
mRNA is known to oscillate in response to circadian rhythm
(48), plant innate immunity (49), and flowering time (1). A high
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degradation rate of GRPs could be a mechanism for plants to
more quickly and efficiently respond to environmental
changes.

At more than 39-fold slower than ACC (1-aminocyclopro-
pane carboxylic acid) oxidase, glutathione peroxidase 6 was
the slowest KD recorded at less than 0.02 d�1. This protein is
commonly observed to be induced transcriptionally by oxida-
tive and environmental stress (50, 51). Its relative stability
makes sense to ensure antioxidant defense during stress. A
similar explanation can be made for the slow turnover of
HSP60 (At3g23990) involved in protein stabilization (
0.08
d�1) and for glutathione S-transferases (At2g30860) involved
in detoxification of cells (
0.20 d�1). The underlying basis of
relative protein stability in plants is largely unexplored but is
vital for engineering of plants with enhanced traits to meet the
demands of the future.

Conclusions—Using a combination of two-dimensional
electrophoresis, MALDI-TOF/TOF, and 15N isotopic labeling,
we have developed a method to follow the progressive 15N
labeling of plant cells under non-steady-state conditions to
calculate KD and KS. The ability of this technique to be tar-
geted, by use of gels and prior knowledge of the spots of
interest, and the use of methods to assess data that does not
meet simple first order kinetic assumptions opens many op-
tions for expanding its use for the study of protein dynamics
in plants.
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36. Fischer, W. F., André, B., Rentsch, D., Krolkiewicz, S., Tegeder, M., Breit-
kreuz, K., and Frommer, W. B. (1998) Amino acid transport in plants.
Trends Plant Sci. 3, 188–195

37. Evans, R. D. (2001) Physiological mechanisms influencing plant nitrogen
isotope composition. Trends Plant Sci. 6, 121–126

38. Kemp, J. D., and Sutton, D. W. (1972) Protein metabolism in cultured plant

tissues: III. Changes in the rate of protein synthesis, accumulation, and
degradation in cultured pith tissue. Plant Physiol. 49, 596–601

39. Doherty, M. K., Whitehead, C., McCormack, H., Gaskell, S. J., and Beynon,
R. J. (2005) Proteome dynamics in complex organisms: Using stable
isotopes to monitor individual protein turnover rates. Proteomics 5,
522–533

40. Yewdell, J. W., Reits, E., and Neefjes, J. (2003) Making sense of mass
destruction: Quantitating MHC class I antigen presentation. Nat. Rev.
Immunol. 3, 952–961

41. Hellmann, H., and Estelle, M. (2002) Plant development: Regulation by
protein degradation. Science 297, 793–797

42. Sinvany-Villalobo, G., Davydov, O., Ben-Ari, G., Zaltsman, A., Raskind, A.,
and Adam, Z. (2004) Expression in multigene families: Analysis of chlo-
roplast and mitochondrial proteases. Plant Physiol. 135, 1336–1345

43. Bisetto, E., Picotti, P., Giorgio, V., Alverdi, V., Mavelli, I., and Lippe, G.
(2008) Functional and stoichiometric analysis of subunit e in bovine heart
mitochondrial F0F1ATP synthase. J. Bioenerg. Biomembr. 40, 257–267

44. Kim, W. T., and Yang, S. F. (1992) Turnover of 1-aminocyclopropane-1-
carboxylic acid synthase protein in wounded tomato fruit tissue. Plant
Physiol. 100, 1126–1131

45. Nakatsuka, A., Shiomi, S., Kubo, Y., and Inaba, A. (1997) Expression and
internal feedback regulation of ACC synthase and ACC oxidase genes in
ripening tomato fruit. Plant Cell Physiol. 38, 1103–1110

46. Qiao, H., Chang, K. N., Yazaki, J., and Ecker, J. R. (2009) Interplay between
ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers
ethylene responses in Arabidopsis. Genes Dev. 23, 512–521

47. Chi, W. T., Fung, R. W., Liu, H. C., Hsu, C. C., and Charng, Y. Y. (2009)
Temperature-induced lipocalin is required for basal and acquired ther-
motolerance in Arabidopsis. Plant Cell Environ. 32, 917–927

48. Staiger, D., Zecca, L., Wieczorek Kirk, D. A., Apel, K., and Eckstein, L.
(2003) The circadian clock regulated RNA-binding protein AtGRP7 au-
toregulates its expression by influencing alternative splicing of its own
pre-mRNA. Plant J. 33, 361–371

49. Fu, Z. Q., Guo, M., Jeong, B. R., Tian, F., Elthon, T. E., Cerny, R. L., Staiger,
D., and Alfano, J. R. (2007) A type III effector ADP-ribosylates RNA-
binding proteins and quells plant immunity. Nature 447, 284–288

50. Jiang, Y., Yang, B., Harris, N. S., and Deyholos, M. K. (2007) Comparative
proteomic analysis of NaCl stress-responsive proteins in Arabidopsis
roots. J. Exp. Bot. 58, 3591–3607

51. Sarry, J. E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V.,
Jourdain, A., Bastien, O., Fievet, J. B., Vailhen, D., Amekraz, B., Moulin,
C., Ezan, E., Garin, J., and Bourguignon, J. (2006) The early responses of
Arabidopsis thaliana cells to cadmium exposure explored by protein and
metabolite profiling analyses. Proteomics 6, 2180–2198

Degradation and Synthesis Rates of Arabidopsis Proteins

10.1074/mcp.M111.010025–16 Molecular & Cellular Proteomics 11.6


