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Data processing forms an integral part of biomarker dis-
covery and contributes significantly to the ultimate result.
To compare and evaluate various publicly available open
source label-free data processing workflows, we devel-
oped msCompare, a modular framework that allows the
arbitrary combination of different feature detection/quan-
tification and alignment/matching algorithms in conjunc-
tion with a novel scoring method to evaluate their overall
performance. We used msCompare to assess the per-
formance of workflows built from modules of publicly
available data processing packages such as SuperHirn,
OpenMS, and MZmine and our in-house developed mod-
ules on peptide-spiked urine and trypsin-digested cere-
brospinal fluid (CSF) samples. We found that the quality of
results varied greatly among workflows, and interestingly,
heterogeneous combinations of algorithms often per-
formed better than the homogenous workflows. Our scor-
ing method showed that the union of feature matrices of
different workflows outperformed the original homoge-
nous workflows in some cases. msCompare is open
source software (https://trac.nbic.nl/mscompare), and we
provide a web-based data processing service for our
framework by integration into the Galaxy server of the
Netherlands Bioinformatics Center (http://galaxy.nbic.nl/
galaxy) to allow scientists to determine which combina-
tion of modules provides the most accurate processing
for their particular LC-MS data sets. Molecular & Cellu-
lar Proteomics 11: 10.1074/mcp.M111.015974, 1–13, 2012.

LC-MS is a well established analysis technique in the field
of proteomics and metabolomics (1–5). It is frequently used
for comparative label-free profiling of preclassified sets of

samples with the aim to identify a set of discriminating com-
pounds, which are either further used to select biomarker
candidates or to identify pathways involved in the studied
biological processes (6–8). However, the highly complex and
large data sets necessitate the use of elaborated data pro-
cessing workflows to reliably identify discriminatory com-
pounds (9–11).

The main aim in the quantitative processing of label-free
LC-MS data is to obtain accurate quantitative information
about the measured compounds, as well as proper matching
of the same compounds across multiple samples. Quantifica-
tion of compounds from raw mass spectrometry data can be
performed in a number of ways. Spectral counting methods
(11–14) are mainly used for proteomics samples and exploit
the number of MS/MS spectra that are acquired per peptide
ion(s) for protein quantification. These methods are easy to
implement because they use the output of the peptide/protein
identification tools but are less accurate than methods based
on ion intensity for the determination of protein ratios (15, 16).
Other widely used methods rely on single-stage MS informa-
tion for compound quantification. In single-stage MS data,
compounds (peptides, proteins, and metabolites) are de-
tected and quantified in the raw mass spectrometry data, but
they are not identified. Instead, algorithms locate and quantify
features corresponding to compound peaks in the raw data
(see definition of “feature” and “peak” on page 4 of the
supplemental material), i.e. compound-related signals above
a given noise level, and assign a metric to each feature in the
form of an intensity, height, area, or three-dimensional vol-
ume, correlated to compound concentration.

Label-free LC-MS data are often used for the relative quan-
tification of compounds in several samples (17). However,
when appropriate, quantified stable isotope standards (pep-
tides or proteins) at known concentrations are added to each
sample (17, 18), or when protein identification can be ob-
tained from MS/MS data and by using a standard protein of
known quantity (19), it is possible to calculate the absolute
amount of proteins.

Matching the same features across multiple samples re-
quires several steps. First, shifts between chromatograms in
mass-to-charge ratio (m/z) and retention time dimensions
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must be corrected, the most challenging being the correction
for nonlinear retention time shifts (20–27). For data obtained
with high resolution mass spectrometers, recalibration of the
m/z axis, e.g. by using background ions from common con-
taminants (28) or continuously co-ionizing standards, gener-
ally improves mass accuracy and facilitates matching the
same feature across multiple chromatograms. After correct-
ing shifts in retention time and m/z ratio between chromato-
grams, features are clustered and reported in the form of a
quantitative matrix, where rows (or columns) correspond to
matched features and columns (or rows) to samples. Alterna-
tively, some programs perform alignment and clustering in
one step in the same programming module. In addition to the
two main modules of feature quantification and matching,
there are optional modules such as noise filtering to improve
feature detection/quantification or to remove redundancy of
related features in the final quantitative matched feature ma-
trix through decharging and deisotoping (29, 30). Feature
quantification needs to be linked to compound identification
(31–35) to understand the relevance of changes in their bio-
logical context.

A number of research groups have developed programs,
such as MZmine (36), OpenMS (37), SuperHirn (38), and oth-
ers (39–41), to process label-free LC-MS data. Each workflow
uses different algorithms for feature detection/quantification
and feature alignment/matching. The accuracy of data pro-
cessing has a large impact on the ultimate result of a proteo-
mics or metabolomics experiment and can lead to false dis-
coveries. Although validation of LC-MS procedures has made
considerable progress in recent years, there is a lack of un-
derstanding of how the performance of the individual modules
of data processing workflows affects the overall result. Zhang
et al. (42) showed that considerable differences in perform-
ance exist between algorithms using isotope pattern match-
ing for feature picking, such as msInspect, and approaches
using feature shape filtering, such as mzMine. To detect per-
formance differences, Zhang et al. used receiver operating
characteristics curves on a sample containing a protein mix-
ture of 48 proteins, which resulted in �800 identified peptides
after digestion with trypsin. Lange et al. (43) showed that time
alignment approaches differ in their accuracy to correct non-
linear retention time shifts between chromatograms, which
affects the accuracy of clustering the same features across
multiple chromatograms significantly. Both articles only eval-
uate a specific part of the data processing workflow; however,
they do not take possible combinatorial effects between fea-
ture detection/quantification and alignment/matching meth-
ods into account. It is important to consider such effects when
evaluating the performance of entire workflows.

Recently Zhang et al. (44) compared the quantification per-
formance of two commercial workflows, Progenesis and Elu-
cidator. The authors propose seven metrics, such as the
mean and variance of feature intensities, the mean and vari-
ance of feature intensity correlation between all quality control

sample pairs, or the manual inspection to assess the validity
of features that were only found by one of the workflows, to
evaluate the overall quantification performance of the work-
flows. However, the large number of chosen metrics compli-
cates the accurate comparison and ranking of the different
workflows. Furthermore, metrics requiring manual evaluation
and the lack of a global score make evaluation of the per-
formance of a large number of different workflows or the
optimization of parameters to maximize the performance of a
given workflow extremely laborious and arbitrary. Nonethe-
less, all three comparison studies indicate that there are dif-
ferences in data processing performance at different levels:
between different feature detection, feature quantification,
and alignment methods, as well as between complete work-
flows. Because it is difficult and tedious for a scientist with
common informatics knowledge to install and familiarize him-
self with many different programs to apply various evaluation
methods on a particular LC-MS data set, attempts have been
made to integrate different programs into a single framework.

Currently, Corra (45) is the only existing framework provid-
ing a simple and uniform system to perform quantitative
LC-MS data processing for scientists with limited bioinformat-
ics knowledge. This framework allows quantitative data pro-
cessing of LC-MS data sets using either SpecArray (41),
SuperHirn (38), msBID (46), or OpenMS (37) and includes
modules for statistical analysis. The developers of Corra also
implemented a new data format called annotated putative
peptide markup language (APML),1 which has been proposed
as a standard format to store intermediate and final results of
different data processing tools. This complements the
mzQuantML standard, which is currently under development
at the European Bioinformatics Institute together with the
HUPO/PSI (47). APML facilitates the addition of new tools to
the Corra framework; however, at this time only a limited
number of tools support this format. Once the choice of data
analysis tools has been made in the Corra framework, it
applies to the entire processing pipeline; this prevents the
user from assessing whether more accurate quantification
can be obtained through the combination of data processing
modules from different workflows. Our work shows that, in
fact, it may be beneficial to combine modules from different
published workflows to improve the overall result.

To compare the performance of different combinations of
modules, we developed a framework, msCompare, intercon-
necting the feature detection/quantification and featuring
alignment/matching methods of three publicly available open
source workflows (SuperHirn, MZmine, and OpenMS). In ad-
dition, we included stand-alone modules for feature detec-
tion/quantification (N-M rule algorithm) (48), and an in-house-

1 The abbreviations used are: APML, annotated putative peptide
markup language; CSF, cerebrospinal fluid; CA, carbonic anhydrase;
FA, formic acid; EIC, extracted ion chromatogram; RF, radio
frequency.
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developed time alignment algorithm Warp2D (27) combined
with feature matching across multiple samples (Fig. 1). Within
msCompare it is also possible to add new modules that
perform a single step or multiple steps in the overall data
processing workflow, making this a very flexible framework to
optimize data processing with respect to a given data set. To
facilitate the use of msCompare and to allow interfacing with
other data processing frameworks, such as Corra, we devel-
oped an AMPL converter that allows export of either feature
lists or the quantitative matched feature matrix in APML
format.

The msCompare framework can assess the performance of
all combinations of the implemented modules based on a
unified scoring method applied to the matched feature matrix
of an arbitrary data processing workflow. The scoring function
requires a set of LC-MS chromatograms obtained from one
sample of interest as biological matrix, in which known mol-
ecules were spiked at minimally two concentration levels. In
this article, we compare the performance of homogenous and
heterogeneous combinations of modules for feature detec-
tion/quantification and feature alignment/matching for the
analysis of LC-MS data from human urine and trypsin-di-
gested porcine CSF. Furthermore, we provide easy-to-use
processing services by integrating msCompare into the Gal-
axy framework (49, 50), freely accessible at
http://galaxy.nbic.nl/galaxy.

MATERIALS AND METHODS

Modularization of Data Processing Tools

msCompare was designed to interconnect different modules of
independent open source LC-MS data analysis programs. We first
divided all programs into two main modules: feature detection/quan-
tification and feature alignment/matching. These two modules were
implemented by writing wrappers around the data processing tools of
OpenMS (version 1.2 and 1.5 for feature detection/quantification and
version 1.5 for alignment/matching) (37, 51–53) and SuperHirn (ver-
sion 0.05) (38), which execute the processing steps of the program for
either feature detection/quantification or feature alignment/matching.
MZmine (version 0.6) (36, 54, 55) can be only accessed via a graphical
user interface. For that reason we implemented MZmine in msCom-
pare by writing a program that encapsulates MZmine as a Java
library. Additionally, a wrapper was written around our in-house fea-
ture alignment/matching tool based on the Warp2D algorithm (27) and
around a feature detection/quantification module (N-M rules) that we
implemented based on the approach published by Radulovic et al.
(48). Two XML-based data formats were developed: one is the Fea-
tureLists format, which stores the feature detection/quantification
results, and the other is the FeatureMatrix format, which stores the
resulting quantitative matrix obtained after feature alignment/match-
ing. The formats are described in detail in the following section and
were developed to enable bidirectional conversion between the dif-
ferent internal data formats of the various tools.

We have implemented additional modules to extend the function-
ality of msCompare to perform filtering of the feature list by setting
criteria for feature properties (e.g. deleting features with extreme
width in the retention time and/or mass to charge ratio dimensions), to
export feature lists or feature matrices into a tab-delimited or APML

FIG. 1. msCompare computational
framework combining modules from
different open source data process-
ing workflows. a, overview of different
open source data processing workflows
modularized in msCompare. b, over-
view of the computational framework,
which allows execution of any combina-
tion of feature detection/quantification
or feature alignment/matching modules
of the original pipelines.
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format, or to perform conversions between the different feature list
formats. The latter module has the additional benefit of allowing the
visualization of any feature list in the TOPPView program (53), which
is part of the OpenMS TOPP framework, independently of the used
feature detection/quantification module. msCompare uses mzXML
(56) as input format, but mzData (57) and mzML (58) data formats are
also supported through the use of the file converter of OpenMS.

Data Integration

Our data format for the feature list is generic and allows storage of
the complete information of the feature lists provided by all programs
integrated in msCompare (supplementary Section 1.1). The imple-
mentation does not provide a link between the corresponding feature
attributes with different names (e.g. attribute names used for feature
quantity may be feature intensity, feature area, or feature volume) or
between the same attributes having different units, such as retention
time attributes in minutes or seconds, nor does it provide a solution
for absent feature attributes. Such links are, however, necessary for
the conversion between different feature list formats. To solve the
conversion problem, we developed a set of rules described in XML
format called FeatureConversion XML, which are used at runtime to
perform the conversion between the different feature attributes. Be-
cause we had four feature detection/quantification and four feature
alignment/matching modules, we describe the conversion rules be-
tween all possible scenarios of format conversion (16 rules in total).
This approach facilitates the integration of new modules, because, by
defining a new set of conversion rules in XML, msCompare is able to
convert data between one of the already integrated modules and the
newly added module. We have implemented msCompare in a way
that conversion to the FeatureList XML format from the internal format
of the feature quantification module is performed as the last step. The
first step of all feature alignment/matching modules is therefore the
conversion from the FeatureList XML format to the feature list format
used by the integrated program.

APML is the only currently available format for storing processed
quantitative LC-MS proteomics data at the feature list and matched
feature matrix levels. We have decided to design a different format,
because it is not possible to store all information obtained with the
different integrated modules in the APML format. APML format has a
predefined set of feature properties, and it contains a number of
feature properties that are optional. Accordingly, we do not provide
an import module for feature list in APML format. However, to facili-
tate integration of msCompare with other programs supporting the
APML format (for example the statistical modules in Corra), we de-
signed two export functions: one to export feature lists and the other
to export feature matrices in APML format.

Implementation of msCompare in Galaxy

To provide an easy-to-use web-based interface for scientists with
limited bioinformatics expertise, we implemented msCompare in the
Galaxy processing framework (49, 50). Galaxy offers relatively simple
integration for command line tools. Command line tools require def-
inition of a “tool XML config file,” which describes the command line
usage, input and output formats, and input parameters. Implementa-
tion of various data processing modules of msCompare in Galaxy was
therefore relatively simple because all modules can be run from the
command line. One particularly useful property of Galaxy is that it
keeps track of user histories including the data, parameter settings,
and data processing tasks. The history stores the input, output, and
parameter settings of the executed data processing tasks, which can
be reused for future data processing. In addition, processing tasks
stored in the history can be used to build data processing workflows.
Workflows may also be built using an integrated visual workflow

editor. Histories (data and parameters) and workflows can be shared
with other users, facilitating collaboration between multiple users in
large scientific projects. Galaxy is able to execute processing tasks
either on a local computer or on a computer cluster, thus providing a
high throughput data processing and analysis environment. All hard-
ware-related implementation details are handled by the Galaxy frame-
work and thus hidden from the user.

Integrating New Modules in msCompare

The current version of msCompare supports four different feature
detection/quantification and four different feature alignment/matching
modules. To add new modules to the msCompare framework, it is
necessary to write parsers to make the output and/or input formats
compatible with either the FeatureList and/or FeatureMatrix XML
format of msCompare. The next step is to define the conversion rules
between the feature attributes that are used by the new module and
the feature attributes that are used by the already integrated modules.
This can be a challenging task when the number of modules in-
creases. To facilitate this task, we developed a stand-alone Feature-
Matcher Java tool. Using FeatureMatcher, a user can define conver-
sion rules for the new feature list with respect to an already existing
feature list format. FeatureMatcher automatically adds all other con-
versions rules as needed for all other integrated feature list formats.
The last step in module integration is adding the module to the galaxy
framework by writing the tool XML config file as mentioned in the
previous section.

Scoring Module

The accurate comparison and assessment of workflow perform-
ance requires knowledge of the “ground truth,” i.e. the exact molec-
ular composition of the samples and the amount of each compound.
In complex biological samples it is, however, not possible to know the
exact quantitative and qualitative molecular composition. It is thus
necessary to add (“spike”) known compounds at defined levels to
biological samples to define the “ground truth” for the added com-
pounds. To evaluate the capacity of a given workflow to detect and
quantify correctly, spiking must be done at two different concentra-
tion levels or more and the concentration difference must be larger
than the measurement error of the analytical system. It is also impor-
tant that the biological matrix has the same molecular composition
and concentration for the different spiking levels.

Because the number of detected and quantified features is not
constant across workflows, classical binary statistical tests do not
apply, leading us to develop a novel figure of merit to measure
performance based on a score of the ranked spiked features rather
than a match of measured feature strengths to “ground truth” values
(Equation 1). This score is based on the number of detected features
that correspond to spiked peptides and their relative rank among the
most discriminating features. The scoring module requires a data set
in which a sample with an unknown composition is spiked at different
concentration levels with peptides (or other compounds) that can be
assigned based on their known mass to charge ratios and retention
times. The detected features are sorted according to decreasing
t values in the matched feature matrix, and the score is calculated
using Equation 1,

Quality score (p, x) � �
for all datasets

�
i�1

n p

p � ��
j�1

i NSFj�x

(Eq. 1)
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where n is the number of all features in a data set, NSF (number of
non-spike-related features) is the number of features occurring be-
tween rank 1 and index i in the matched feature matrix that are not
related to the spiked standard compounds, and p and x are constants
determining the degree of score attenuation for non-spike-related
features among the most discriminating features. A decoy approach
is applied to calculate a score corresponding to random distribution
of the detected spiked peptide-related features in the complete fea-
ture list, and the decoy score is subtracted from the score obtained
for a particular pipeline. The random distribution of features related to
spiked peptides in the feature lists is obtained by randomly reshuffling
the order of all features in the quantitative matched feature matrix.
This decoy score provides the background value for a given data
processing result and corrects for differences in the number of all
detected features (n) and in the number of identified spiked peptide-
related features.

Fig. 2 gives two examples to demonstrate the scoring mechanism
using several values for p and x. By decreasing the values for p, one
increases the penalty after each non-spike-related feature that occurs
in the rank list. In that case, our scoring method distinguishes clearly
between feature lists containing few or many non-spike-related fea-
tures among the most discriminating features. The value of x defines
the degree to which non-spike-related features affect the further
increase in score for the less discriminatory spike-related features.
When x is large (x is close to 1), the score attenuation for each
additional spike-related feature following an NSF is large, and for
small x values (x is close to 0), this effect is small. Supplemental
Fig. S1 summarizes the main steps of the scoring mechanism starting
with sorting features according to their t value, followed by assigning
features to spiked standard compounds and the final application of
Equation 1.

LC-MS Data Acquisition and Analysis

Collection of Urine Samples—50 midstream morning urine samples
from 15 healthy females and 35 healthy males aged 26.9–72.9 years
were obtained from the Department of Pathology and Laboratory
Medicine at the University Medical Centre Groningen (Groningen, The

Netherlands). A pooled urine sample was prepared by combining
200 �l from each sample, which served as biological matrix for all
LC-MS analyses. Sample preparation was performed as previously
described. The amount of urine injected into the LC-MS system was
normalized to 50 nmol of creatinine. All of the subjects that partici-
pated in this study gave their oral and/or written informed consent.
The study protocol was in agreement with local ethical standards and
the Helsinki declaration of 1964, as revised in 2004.

Preparation of Spiked Urine Samples—Urine samples were spiked
with different volumes of a stock solution containing a tryptic digest of
carbonic anhydrase (Sigma; C3934) plus seven synthetic peptides.
600 �l of carbonic anhydrase (CA) solution at 22 mg/ml in 50 mmol/
liter NH4HCO3 buffer at pH 7.8 were divided into six equal aliquots.
Ten �l of 100 mM DTT were added to each aliquot, and the solution
was incubated at 50 °C for 30 min followed by the addition of 40 �l of
137.5 mM iodoacetamide and incubation at room temperature for
another 60 min. Reduced and alkylated CA was digested by adding
40 �l of 0.5 �g/�l sequencing grade modified porcine trypsin (Pro-
mega, Madison, WI; V5111) and subsequent incubation at 37 °C
overnight. The reaction was stopped by the addition of 10 �l of pure
formic acid (FA). The excess of DTT and iodoacetamide was removed
by solid phase extraction using a 100 mg Strata C-18 SPE column
with the following protocol: the column was conditioned with 2 ml of
methanol followed by one washing step with 2 ml of water. Each
aliquot of digested CA was loaded on the SPE column, and the
column was subsequently washed with 2 ml of 5% aq. methanol.
Peptides were eluted with 1 ml of 80% aq. methanol. The eluate was
dried in a vacuum centrifuge and redissolved in 200 �l of 30% ACN
and 1% FA. Finally 500 �l of digested CA were mixed with 200 �l of
a stock solution of the synthetic peptides resulting in a standard
mixture stock solution with a calculated digested CA concentration of
240 �M and the following concentrations for the seven synthetic
peptides: VYV, 83 �M; YGGFL, 57 �M; DRVYIHPF, 29 �M; YPFPGPI,
46 �M; YPFPG, 60 �M; GYYPT, 54 �M; and YGGWL, 57 �M.

Analysis of Spiked Urine Samples by Reversed Phase LC-MS—All
of the LC-MS analyses were performed on an 1100 series capillary
high performance liquid chromatography system equipped with a
cooled autosampler (4 °C) and an SL ion trap mass spectrometer

FIG. 2. Examples showing the operational mechanism of the scoring function on four different quantitative matched feature matrices
per parameter choice. Black dots (F) represent spike-related features, whereas white dots (E) represent other features (NSF in Equation 1).
Equation 1 contains two constants, p and x, which influence the final scores. When p and x have stringent settings (left panel), the presence
of NSFs in high rank positions of the matched feature matrix leads to a rapid decrease of the score for subsequent spike-related features. The
value of x defines the degree to which non-spike-related features affect the score increase for less discriminatory spike-related features and
has weaker influence on the score than p (see scores values for various x and p in supplemental Fig. S6 in the supplementary material). Setting
these parameters more leniently (right panel) allows for more NSFs with lower discriminatory ranks without penalizing subsequent standard
features severely. For evaluation of different workflows, we used p � 5 and x � 1. To remove the dependence of the total number of
detected features n from the score, we corrected the score using a decoy approach. The decoy approach includes subtraction of the score
obtained for randomly reshuffled matched feature matrix/matrices from the score obtained with the real matched feature matrix/matrices
sorted according to the t value.
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(Agilent Technologies, Santa Clara, CA). The samples were desalted
on an Atlantis dC18 precolumn (Waters Corporation, Milford, MA;
2.1 � 20 mm, 3-�m particles, 10-nm pores) using 0.1% FA in 5%
ACN at a flow rate of 50 �l/min for 16 min. Compounds were back-
flushed from the precolumn onto a temperature-controlled (25 °C)
Atlantis dC18 analytical column (1.0 � 150 mm, 3-�m particles,
30-nm pores) and separated over 90 min at a flow rate of 50 �l/min,
during which the percentage of solvent B (0.1% FA in ACN) in solvent
A (0.1% FA in ultrapure H2O) was increased from 5.0 to 43.6% (eluent
gradient of 0.43%/min). Settings of the electrospray ionization inter-
face and the mass spectrometer were as follows: nebulization gas,
40.0 psi N2; drying gas, 6.0 liters/min N2; capillary temperature,
325 °C; capillary voltage, 3250 V; skimmer voltage, 25 V; capillary exit
voltage, 90 V; octapole 1 voltage, 8.5 V; octapole 2 voltage, 4.0 V;
octapole RF voltage, 175 V; lens 1 voltage, �5 V; lens 2 voltage,
�64.6 V; trap drive, 67; scan speed, 5500 m/z s�1; accumulation
time, 50 ms (or 30,000 ions); and scan range, 100–1500 m/z. A
Gaussian smoothing filter (width 0.15 m/z) was applied for each mass
spectrum; rolling average was disabled, resulting in a rate of �70 mass
spectra/min. The spectra were saved in profile mode.

Following the gradient, both columns were washed with 85% B for
5 min and equilibrated with 5% B for 10 min prior to the next injection.
Different volumes of the standard mixture (CA digest plus peptides)
were injected on the precolumn prior to injection of the pooled urine
sample to obtain the desired final concentrations. Supplemental
Table S1 provides the list of dilution factors with the corresponding
concentrations expressed in terms of the practical lower limit of
quantification (pLLOQ; supplemental Section 1.2) for the respective
peptides. The injection system was cleaned with 70% ACN after each
injection and filled with 0.1% FA in 5% ACN. Mass spectrometry
settings were optimized for detection of singly and doubly charged
ions of DRVYIHPF without provoking upfront fragmentation. Raw data
converted to mzXML format are available at
http://tinyurl.com/msCompareData.

Data Analysis of Spiked Urine Samples—After the LC-MS analysis,
the raw LC-MS profile data were exported in mzXML format using
CompassXport v1.3.6. These data were then analyzed by all different
workflow combinations (see supplemental Section 1.3 for parameters
and execution details), which lead to the construction of multiple
matched feature matrices, each containing 10 LC-MS analyses at two
spiking concentration levels (five LC-MS analyses for each level). We
used the score module with the list of spike-related features (supple-
mental Section 1.4) to calculate the scores for one feature matrix. The
final scores for the high, medium, and low categories were obtained
by summing the individual scores of several quantitative matched
feature matrices (see supplemental Table S2 for an overview of the
feature matrices used to construct the three categories).

Collection of CSF Samples—Porcine CSF was obtained from the
Animal Sciences Group of Wageningen University (Division of Infec-
tious Diseases, Lelystad, The Netherlands). CSF was collected from
the cerebromedullary cistern of the subarachnoid space in the cervi-
cal region directly after killing the animal (by intravenous injection of
T61� pentobarbital followed by exsanguination). The sample was
collected under mild suction using a syringe with a 22-gauge needle.
The CSF sample was centrifuged immediately after sampling (10 min
at 1500 � g). The total protein concentration was measured using
the Micro BCATM Assay (Pierce), and the final concentration was
860 ng/�l.

Preparation of Spiked CSF Samples—Digestion with trypsin was
performed according to the following procedure: 200 �l of CSF and
200 �l of 0.1% RapiGestTM (in 50 mM ammonium bicarbonate) (Wa-
ters, Milford, MA) were added to a sample tube (Greiner Bio-One,
Alphen aan den Rijn, The Netherlands; part 623201). The sample was
reduced by adding 4 �l of 0.5 M DTT followed by incubation at 60 °C

for 30 min. After cooling to room temperature, the sample was alky-
lated with 20 �l of iodoacetamide (0.3 M) in the dark for 30 min at room
temperature. Eight �l of sequencing grade modified porcine trypsin
(1 �g/�l) was added to give a trypsin to protein ratio of �1:20 (w/w).
The sample was incubated for �16 h at 37 °C under vortexing
(450 rpm) in a thermomixer comfort (Eppendorf). Thereafter 40 �l of
hydrochloric acid (0.5 M) were added to stop the digestion followed by
incubation for 30 min at 37 °C. The sample was centrifuged at
13,250 � g for 10 min at 4 °C to remove the insoluble part of the
hydrolyzed RapiGestTM. The spiking procedure was carried out ac-
cording to the following protocol: 20 �l of CSF digest were mixed with
20 �l of a tryptic digest of horse hearth cytochrome c (Fluka; part
30396) at different concentrations (25, 5, 2.5, 0.5, 0.05, 0.025, and
0.005 fmol/�l). The samples at each spiking level were aliquoted in
five tubes containing 8 �l each. Spiked, trypsin-digested CSF was
injected five times at each spiking level (4 �l from individual vials) in a
random order (amount of injected cytochrome c, 50, 10, 5, 1, 0.1,
0.05, and 0.01 fmol). Supplemental Table S3 provides the list of
dilution factors with the corresponding concentrations expressed in
terms of the practical lower limit of quantification (pLLOQ; see sup-
plemental Section 1.5) for the respective peptides.

Analysis of Spiked CSF Samples by Reversed Phase Chip-LC-
MS—Peptides were separated on a reverse phase chip-LC (Protein ID
chip 3; G4240–63001 SPQ110: Agilent Technologies; separating col-
umn, 150 mm � 75 �m Zorbax 300SB-C18, 5 �m; trap column,
160 nl of Zorbax 300SB-C18, 5 �m) coupled to a nano LC system
(Agilent 1200) with a 40-�l injection loop. Ions were generated by ESI
and transmitted to a quadrupole time-of-flight mass spectrometer
(Agilent 6510). Instrumentation was operated using the MassHunter
data acquisition software (version B.01.03; Build 1.3.157.0; Agilent
Technologies, Santa Clara, CA).

For LC separation the following eluents were used: eluent A, ultra-
pure water with 0.1% FA, and eluent B, acetonitrile with 0.1% FA. The
samples were injected on the trap column at a flow rate of 3 �l/min
(3% B). After 10 min, the sample was back flushed from the trap
column and transferred to the analytical column at a flow rate of 250
nl/min, and the peptides were eluted using the following gradient:
95-min linear gradient from 3 to 70% B; 2-min linear gradient from 70
to 3% B, which was maintained for 10 min before injecting the next
sample. The samples were analyzed in a random order with blanks
and quality control samples (200 fmol of trypsin-digested cytochrome
c) injected after every fifth sample.

The MS analysis was done in the 2-GHz extended dynamic range
mode under the following conditions: mass range, 100–2000 m/z;
acquisition rate, 1 spectrum/s; data storage, profile and centroid
mode; fragmentor, 175 V; skimmer, 65 V; OCT 1 RF Vpp, 750 V; spray
voltage, �1800 V; drying gas temp, 325 °C; drying gas flow (N2), 6
liter/min. Mass correction was performed during analysis using inter-
nal standards with m/z of 371.31559 (originating from a ubiquitous
background ion of dioctyl adipate (plasticizer)) and m/z of
1221.990637 (HP-1221 calibration standard) continuously evaporat-
ing from a wetted wick inside the spray chamber.

Data Analysis of Spiked CSF Samples—Raw LC-MS data were
exported in mzData format using quantitative analysis (B.03.01) in the
MassHunter software package in centroid mode to limit file size and
analysis time. These data were processed by all different workflow
combinations (see supplemental Section 1.3 for parameters and ex-
ecution details), which lead to the construction of multiple matched
feature matrices, each containing 10 LC-MS analyses at two spiking
concentration levels (five LC-MS analysis for each level). We used the
list of spike-related features (supplemental Section 1.6) to calculate
the score for each feature matrix based on the score module with
Equation 1. The final scores for the high, medium, and low categories
were obtained by summing the individual scores of several feature
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matrices (see supplemental Table S4 for an overview of the feature
matrices used to construct the three categories).

RESULTS

Comparison of Homogenous Workflows—For most LC-MS
data analyses, one homogenous data processing workflow is
used. We therefore first investigated the performance of the
homogenous workflows of MZmine, OpenMS, and SuperHirn
(Fig. 1a). The obtained results for spiked human urine samples
presented in Fig. 3 (a–c) show that the OpenMS workflow
results in scores exceeding those of MZmine and SuperHirn
when the differences in spiking level are high (8- or 16-fold
pLLOQ versus lower spiking levels; see supplemental Table S2
for details). The performances of the homogenous workflows
are similar to each other for low spiking levels (0.5- or 1-fold
pLLOQ versus lower levels). To get an insight into the basis for
the difference between the workflows, we investigated the 10
most discriminatory features according to their t values, which
are not related to the spiked in peptides, for the feature matrix
with the largest concentration difference (blank versus samples
spiked at 16-fold the pLLOQ level).

The difference in performance of OpenMS and the other
two homogenous workflows appears to be related to the
higher ranks of discriminating features that are unrelated to
the spiked in peptides (Fig. 4). Most of these features were
only quantified in samples at one spike level, although they
are visible in the raw data at other spike levels using extracted
ion chromatograms (EICs). Majority of these errors were due
to the splitting up of one peak at feature detection/quantifi-
cation step, which is incorrectly matched at the feature align-
ment/matching step of the samples of the other spiking level
(see supplemental Table S5). We also investigated the num-
ber of detected and quantified features that are related to the
spiked peptides among the 100 most discriminating features
and determined the number of overlapping features between
homogenous workflows. MZmine and SuperHirn detected ap-
proximately 50 features, whereas OpenMS found 64 spike-
related features among the 100 most discriminatory features.
78 unique features related to spiked peptides were found by
the three workflows, with 28 features being found by all of
them, and 23 features were found by OpenMS and one of the

FIG. 3. Comparison of the performance of the published, open source data processing workflows SuperHirn, OpenMS, and MZmine
with LC-MS data derived from the analysis of human urine (a–c) and porcine CSF (d and e) samples spiked with a range of peptides.
The scores were calculated with Equation 1. All of the workflows were compared with respect to high (a and d), medium (b), and low (c and
e) concentration differences of the spiked peptides (see supplemental Tables S2 and S4). The OpenMS workflow outperforms the other two
workflows at large (a) and medium (b) spiked concentration differences, whereas performances are approaching each other at the lowest (c)
spiked concentration difference in human urine data sets. In porcine CSF, OpenMS performed best at both high and low spiked concentration
differences.
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two other workflows. It is surprising that MZmine and Super-
Hirn detect two quite distinct sets of features, whereas
OpenMS is capable of detecting most of those features. In
total, 27 unique features related to spiked peptides were
found exclusively by one of the workflows, of which approx-
imately half (13) were found by OpenMS only (Fig. 5). The
number of features only detected by one workflow is relatively
high (35%), indicating that one part of spike-related features is
difficult to detect and quantify.

We have prepared one other set of spiked samples with a
completely different composition than the spiked pooled hu-
man urine samples. This sample set consisted of one porcine
CSF sample as biological matrix that was spiked with tryptic
digest of horse hearth cytochrome c. The data were acquired
with a quadrupole time-of-flight instrument at 12,000 resolu-
tion compared with the pooled human urine sample set, which
was acquired with a three-dimensional quadrupole ion trap at
2000 resolution. Trypsin digest of horse heart cytochrome c
containing 14 peptides was used at spiking levels ranging
from 2.5� to 0.005� pLLOQ. Because of the lower spiking
levels in the porcine CSF samples only high and low spiking
level differences were analyzed. The results for the spiked

porcine CSF samples show a similar pattern to the results
obtained for the urine data set (Fig. 3, d and e), indicating that
workflow performance is rather insensitive to the biological
matrix, spiking level, or mass spectrometer used. The score of
the homogenous workflow of OpenMS exceeds those of
SuperHirn and MZmine for both spiking level differences.

FIG. 4. Overview of the score evaluation function for the most discriminating features for three homogenous workflows (see Fig. 3)
when comparing the 16-fold pLLOQ spiked samples with the blank (0.1-fold pLLOQ) obtained with the human urine data set. The bars
at the bottom of the graph provide visual indication of the ranks at which features related to the spiked peptides were found for the respective
workflow (blue, OpenMS; orange, SuperHirn; red, MZmine). Non-spike-related features are represented in this subplot as white squares. The
OpenMS workflow found only one non-spiked-related feature up to rank 48, whereas the other two workflows showed a less consistent
performance, leading to lower scores.

FIG. 5. Venn diagram of spike-related features found among the
100 most discriminatory features by the three homogenous work-
flows (see Fig. 3) obtained with the spiked human urine data set.
The data were obtained by comparing the 16-fold pLLOQ spike level
with the blank (0.1-fold pLLOQ). OpenMS found 64 (82% of the total
number of unique features found by all workflows) of all unique
features related to the spiked peptides. It also identified the highest
number (13) of unique features related to the spiked compounds not
identified by any of the other workflows.

Comparison of Quantitative LC-MS Data Processing Workflows

10.1074/mcp.M111.015974–8 Molecular & Cellular Proteomics 11.6



Scores measured for SuperHirn and MZmine are close to
each other for both spiking difference levels, with the Super-
Hirn workflow having a slightly higher score for low spiking
level differences (0.5 pLLOQ versus lower spiking levels [0.05,
0.025, and 0.005]).

Comparison of Heterogeneous Workflows—Because the
msCompare analysis framework allows combination of mod-
ules from different workflows, we next investigated whether
combining feature detection/quantification and feature align-
ment/matching modules from different workflows could im-
prove the overall performance beyond that of the homoge-
nous workflows. To this end we interconnected modules in
msCompare in a total of 16 combinations (Fig. 1b). A number
of the newly created heterogeneous workflows outperformed
the original homogenous ones when tested with the spiked
human urine data set, notably at high spiking level differences
(8- or 16-fold pLLOQ versus lower levels for pooled human
urine set and 0.5 versus lower levels for porcine CSF sample
set; Fig. 6) for both human urine and porcine CSF data sets.
Overall, the two best performing workflows at large spike level
differences were the combination of the feature detection/
quantification module of OpenMS with the in-house devel-
oped feature alignment/matching algorithm, the homogenous

OpenMS workflow in the case of the human urine data set,
and combination of OpenMS and SuperHirn in the case of the
porcine CSF data set. Combination of the feature detection/
quantification modules of SuperHirn and MZmine with the
in-house or OpenMS feature alignment/matching modules
resulted in clearly improved performance when compared
with the original, homogenous workflows (Figs. 3 and 6). As
the difference in spiking level decreases, the advantages of
these workflow combinations are reduced, and a new com-
bination based on the feature detection/quantification module
“N-M rules” with the in-house developed feature alignment/
matching module for the human urine data set.

The OpenMS homogeneous pipeline provides the best per-
formance for low concentration differences of spiked peptides
in the porcine CSF data set. M-N rules feature detection was
not applied to analyze the porcine CSF data set due to its
incompatibility with high resolution (quadrupole time-of-flight)
data because of high memory requirements. The results of the
remaining 12 workflow combinations (Fig. 6b) on the porcine
CSF data set show a remarkably similar pattern to the results
obtained for the human urine data set (Fig. 6a) for both high
and low levels of spiked concentration differences. The com-
bination of the OpenMS feature detection/quantification mod-

FIG. 6. Comparison of the performance of 16 and 12 different combinations of feature detection/quantification and feature
alignment/matching modules at high, medium, and low concentration differences of spiked peptides (see supplemental Tables
S6 and S7) using the spiked human urine data set (a) and the spiked porcine CSF data set (b), respectively. Labels of the hybrid
workflows (x axis) start with the name of the feature detection/quantification module followed by the name of the feature alignment/matching
module. The best performing workflows at each concentration level difference are highlighted in red. The homogeneous OpenMS workflow and
combinations of the OpenMS feature detection/quantification module with the in-house developed feature alignment/matching module result
in the highest scores when concentration differences are large or medium for the spiked human urine data set (a), whereas the respective
combination of the OpenMS-SuperHirn heterogeneous workflow provides the best performance for the porcine CSF data set spiked with large
concentration differences (b). The scores level out at medium concentration differences, although some combinations do not perform well at
any level (e.g. SuperHirn to MZmine). The combination N-M rules feature detection/matching module with the in-house developed feature
alignment/matching module (Inhouse D.) performs best for low spiked concentration differences for spiked human urine data set (M-N rule peak
picking was not performed for porcine CSF data set because of the incompatibility of this approach with high resolution data), whereas the
best performing combination of feature detection/quantification and feature alignment/matching modules for the low spiked concentration
difference of the porcine spiked CSF data set is the respective OpenMS homogenous workflow.
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ule with any feature alignment/matching module outperforms
all combinations including MZmine or SuperHirn for feature
detection/quantification. These results show that for both low
and high resolution data, OpenMS homogenous pipeline and
OpenMS peak detection/quantification combined with other
peak alignment/matching modules give reasonably good
quantification results for all spiked concentration level
differences.

DISCUSSION

Quality assessment of LC-MS data processing workflows is
difficult because different errors may occur at various stages
during feature detection, feature quantification, the correction
for retention time and mass shifts between chromatograms,
and clustering of the same feature across multiple chromato-
grams. For example, the detection/quantification module may
split large peaks because of peak tailing into multiple features,
whereas small peaks may not be detected. Features may also
not be detected because of an unexpected peak shape.

Binary statistics cannot be applied because the exact mo-
lecular composition of the biological matrix is unknown, and
the different workflows detect different numbers of noise-,
compound-, and spiked peptide-related features. In sets of
spiked complex biological samples, where one sample is
used to prepare the spiked sample set, the ground truth is
known for the spiked peptides, whereas the biological matrix
serves as constant background signal. Based on the informa-
tion provided by the spiked peptides, we have developed a
generic method to score the quantitative processing results
taking the rank of spike-related features among the most
discriminating features into account. We have successfully
applied this method to capture the differences of various data
processing workflows in a single value. There are significant
differences in performance of workflows with respect to data
processing accuracy when different modules are used for
feature detection/quantification and feature alignment/match-
ing, although our scoring method serves to compare the
relative performance of the workflows for one particular type
of data and to assure that a workflow provides optimal per-
formance for a given data set. However, the scoring method
cannot identify the data processing errors that underlie the
observed performance differences.

Comparing quantification performance of homogenous
workflows on the spiked human urine data set, we observed
that the majority of the 10 most discriminating non-spike-
related features were only detected/quantified at one of the
two spiking levels by all three homogenous workflows (sup-
plemental Table S5; the three most discriminating non-spike-
related features are visualized by means of EICs). Moreover,
the 10 most discriminating non-spike-related features were
different for the three homogenous workflows. This indicates
that this type of quantification error is due to random failure of
the feature detection/quantification or feature alignment/
matching modules to detect a particular feature across differ-

ent samples and at different spiking levels. Random failure
may be related to the large number of compounds that are not
related to the spiked peptides relative to the low number of
available samples per sample group, which increases the
chance that this kind of random error occurs only in samples
at one of two spiking levels. We also observed that the com-
binatorial effect between feature detection/quantification, and
feature alignment/matching modules can result in data proc-
essing errors in the form of highly discriminatory features that
are not related to any of the spiked peptides. We observed,
for example, that an isotopic peak of a highly abundant non-
spiked peptides was detected as two separate features (i.e.
feature splitting) in one of 10 samples by the feature detec-
tion/quantification module of SuperHirn. The subsequent fea-
ture alignment/matching resulted in two matched features in
the feature matrix, one of which was highly discriminatory
between the two spiking levels (supplemental Fig. S2). Al-
though the exact reasons for the generation of highly discrim-
inatory non-spike-related features provided by the different
data processing workflows are not always easy to determine,
their negative effect on the overall performance is captured by
our scoring method.

The Venn diagram in Fig. 5 shows that different homoge-
nous workflows in the human urine data set detect different
spike-related features. In fact, MZmine and SuperHirn de-
tected quite different sets of spike-peptide related features
(28 features were detected by both workflows, of which 16
were uniquely detected by SuperHirn and 21 by MZmine),
although OpenMS detected significantly more of the spiked
peptide-related features (64 of the 78 unique features found
by all three workflows). Because the detected spiked peptide-
related features of MZmine and SuperHirn have little overlap,
merging them into a single feature matrix greatly increased
the overall number of discriminatory features and thus the
performance of data processing. Alternatively, taking the in-
tersection of two or more feature matrices may be used to
reduce the number of features (e.g. biomarker candidates) to
be followed up as those features are in general easy to detect,
therefore decreasing the probability that they are data pro-
cessing artifacts. However, this comes at the risk of missing
relevant features that were only detected by one of the
workflows.

The probability to detect more spiked peptide-related fea-
tures in the union of two or more feature matrices depends on
the balance between the accumulation of spiked peptide-
related features (true positives) and other features (false pos-
itives) among the most discriminatory features. We evaluated
the union of all feature matrices obtained with the homoge-
nous workflows (supplemental Fig. S3). The union of the fea-
ture matrices obtained with SuperHirn or MZmine for the
largest concentration difference (blank and samples spiked at
16 times the pLLOQ level) resulted in a slightly increased
score (supplemental Fig. S4). The union of the feature matri-
ces of the other homogenous workflows did not result in
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improved scores, indicating that the union also contained a
larger number of non-spike-related features among the most
discriminating features. The decrease in performance when
combining OpenMS with other workflows is due to the accu-
mulation of non-spike-related features among the most dis-
criminatory features, because OpenMS already detected
most of the spiked peptide-related features when compared
with the other workflows (Fig. 5). When calculating the score
for the high spiking level difference by summing up the scores
of the union feature matrices of the SuperHirn and MZmine
workflows, we did not observe any improvement of the score
(supplemental Fig. S3).

Visualization of selected peaks using EICs is an important
quality check to assess the accuracy of quantitative LC-MS
data processing. For example, EICs can be used to verify
whether the outcome of the feature detection/quantification
modules is supported by the raw LC-MS data. For this pur-
pose we added a module to the msCompare framework,
which allows the user to create EICs (supplemental Fig. S5)
based on a list of features with their corresponding retention
times and mass to charge ratios. It is also possible to export
any feature list in our XML-based format to the feature list
format of the original workflows. This can be used to export
feature lists to the OpenMS format and to use the TOPPView
application of OpenMS for visualization (supplemental
Fig. S5).

Our scoring method has limitations in that it provides rela-
tive scores, which makes it impossible to compare the scores
obtained by two different workflows on different data sets.
This becomes apparent when comparing the scores of the
CSF data set with those of the urine data set. The scores for
the CSF data set regarding the high spiked in concentration
difference category the best performing workflow only
reaches 41, whereas the score of the worst performing work-
flow in the urine data set is 116. These differences can be
explained mainly by the differences in number of spiked pep-
tides in the two data sets. In fact, the porcine CSF data set
used 14 peptides for spiking, whereas in the human urine data
set 70 peptides were used for spiking. Even using the same
set of spiked peptides at the same concentration levels would
not result in similar scores, because of ionization differences
resulting in differences in charge state distribution of the
spiked peptides on different instrument (59). In addition, up-
front fragmentation, unspecific cleavage, association with ad-
duct ions (e.g. sodium), and peptide modifications such as
methionine oxidation or acetylation further increase the num-
ber of spiked peptide-related features. The scoring method
was solely designed to compare different data processing
workflows for label-free LC-MS analyzing the same data set(s)
and not to compare data sets with each other. A useful aspect
of our scoring algorithm is that the score is largely indepen-
dent of the parameters used, with similar ranks of workflow
performances obtained within one data set for a wide range of
parameters (supplemental Fig. S6).

Another important aspect of the scoring method is that it
was initially designed to support the biomarker discovery
studies. These studies are generally performed by comparing
a control group with a group of interest. Our scoring method
mimics this situation closely by using two groups of samples
spiked with known compounds at different concentration lev-
els. The scoring approach can, however, also be applied to
time series analysis or other experimental designs because it
provides a general performance assessment of the feature
quantification and matching accuracy independently from the
number of sample groups in an experiment.

Most “omics” studies use a representative, pooled sample
to control the quality of the analytical profiling method. Be-
cause our scoring method requires a data set containing
samples that are spiked with known compounds at different
concentration levels, it is possible to extend this concept to
include pooled samples that have been spiked with known
compounds at different levels, for example, with a standard-
ized peptide mixture that is currently available from various
suppliers. Including such a set of samples would allow as-
sessment of the performance of the analytical platform as well
as that of the data processing workflow and to determine
which workflow or combination of workflows provides the
optimal performance in a particular case.

In summary, we have developed a generic framework that
harmonizes the various formats used by modules of different
quantitative LC-MS data processing workflows, thus allowing
their integration and the user-defined combination of distinct
modules. We expect that integration will be greatly facilitated
by acceptance of standard data formats for feature lists and
matched, quantitative feature matrices based on the APML
standard used in the Corra framework (45) or the currently
ongoing development of mzquantML (47). The msCompare
framework supports the most common standard data formats
to read raw LC-MS data such as mzXML, mzML, and mzData
(the latter two are supported by modules in the OpenMS
framework).

The msCompare framework facilitates future incorporation
of additional modules from other workflows, thereby increas-
ing the possibilities for creating “custom-made” data proc-
essing workflows. Additionally, the framework enables the
use of existing modules in combination with new modules,
allowing rapid evaluation of new data processing tools. By
creating a modular, computational framework, we open the
possibility of combining feature detection/quantification and
feature alignment/matching modules from different open
source workflows into “hybrid” heterogeneous workflows that
may outperform their original predecessors. Data processing
workflows such as OpenMS, SuperHirn, or MZmine are con-
tinuously improving their algorithms, and new developments
from other research groups enter the field. Our framework
forms the basis for integrating these new developments and
comparing their relative performance based on well designed
data sets. The testing ground can be further extended based
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on spiked sample sets in data repositories such as PRIDE
(http://www.ebi.ac.uk/pride/) and TRANCHE (https://
proteomecommons.org/tranche/), covering the effect of sam-
ple complexity, the biological matrix, variable retention time
shifts, and the influence of mass analyzers of different reso-
lution and mass accuracy on the final result. To enable easy
use of msCompare for the wider community of life scientists,
we have implemented msCompare in the Galaxy framework
and provide a web-based online processing service at the
Galaxy server of the Netherlands Bioinformatics Center ac-
cessible at http://galaxy.nbic.nl/galaxy.

In conclusion, we show that data processing has a crucial
effect on the outcome of comprehensive proteomics profiling
experiments. Our framework (which is available for download
at https://trac.nbic.nl/mscompare/, including the LC-MS data,
information on the parameters used for this article and a
Galaxy installation manual) demonstrates that existing work-
flows contain modules that, when properly combined, result in
optimal individual or combined heterogeneous workflows that
may outperform the originals. Differences between the best
and the worst performing workflows can be surprisingly large,
and the choice of algorithm can strongly affect further statis-
tical analysis and the biological interpretation of the results.
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