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Protein Interaction Profiling of the p97 Adaptor
UBXD1 Points to a Role for the Complex in
Modulating ERGIC-53 Trafficking*s

Dale S. Haines1§**, J. Eugene Leef], Stephen L. Beauparlant}, Dane B. Kylet,
Willem den Bestenq], Michael J. Sweredoski|, Robert L. J. Graham||, Sonja Hess|,
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UBXD1 is a member of the poorly understood subfamily of
p97 adaptors that do not harbor a ubiquitin association
domain or bind ubiquitin-modified proteins. Of clinical
importance, p97 mutants found in familial neurodegen-
erative conditions Inclusion Body Myopathy Paget’s dis-
ease of the bone and/or Frontotemporal Dementia and
Amyotrophic Lateral Sclerosis are defective at interacting
with UBXD1, indicating that functions regulated by a p97-
UBXD1 complex are altered in these diseases. We have
performed liquid chromatography-mass spectrometric
analysis of UBXD1-interacting proteins to identify path-
ways in which UBXD1 functions. UBXD1 displays pro-
minent association with ERGIC-53, a hexameric type |
integral membrane protein that functions in protein traf-
ficking. The UBXD1-ERGIC-53 interaction requires the N-
terminal 10 residues of UBXD1 and the C-terminal cyto-
plasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1
enzyme inhibitors indicate that complex formation be-
tween UBXD1 and ERGIC-53 requires the ATPase activity
of p97, but not ubiquitin modification. We also performed
SILAC-based quantitative proteomic profiling to identify
ERGIC-53 interacting proteins. This analysis identified
known (e.g. COPI subunits) and novel (Rab3GAP1/2 com-
plex involved in the fusion of vesicles at the cell mem-
brane) interactions that are also mediated through the C
terminus of the protein. Immunoprecipitation and Western
blotting analysis confirmed the proteomic interaction data
and it also revealed that an UBXD1-Rab3GAP association
requires the ERGIC-53 binding domain of UBXD1. Local-
ization studies indicate that UBXD1 modules the sub-
cellular trafficking of ERGIC-53, including promoting
movement to the cell membrane. We propose that p97-
UBXD1 modulates the trafficking of ERGIC-53-containing
vesicles by controlling the interaction of transport factors
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P97 (also called VCP for valosin-containing protein or
Cdc48 in yeast) is a highly conserved and abundant protein
and is a member of the AAA (ATPases Associated with diverse
cellular Activities) family of ATPases. The ATPase is mutated
in two familial diseases, Inclusion Body Myopathy Paget’s
disease of the bone and/or Frontotemporal Dementia
(IBMPFD)" and Amyotrophic Lateral Sclerosis (ALS), both of
which display accumulation of ubiquitin positive vacuoles in
affected cell types (1, 2). The protein functions in numerous
cellular pathways, including homotypic membrane fusion,
ERAD (ER-Associated Degradation), mitotic spindle disas-
sembly, degradation of protein aggregates by autophagy and
endo-lysosomal sorting of ubiquitinated caveolins (reviewed
in 3-7, 8, 9, 10). Interestingly, the later two pathways are
altered in cells transfected with mutant P97 alleles derived
from patients as well as in cells isolated from individuals
harboring P97 mutations (8, 9, 10).

P97 exists as a hexamer, with two centrally localized
ATPase domains (reviewed in 3-7). It is thought that p97 uses
energy derived from ATP hydrolysis to apply mechanical force
on substrates, thereby changing their conformation and al-
lowing for subsequent biochemical events. To date, p97 has
been shown to function primarily on ubiquitinated proteins.
Depending on the substrate, p97 can promote substrate deu-
biquitination (11), additional ubiquitination (12), proteasome
delivery (13), and protein complex disassembly (14). Although
p97 has been shown to act on ubiquitinated substrates, it
does not directly bind ubiquitin or ubiquitin chains with high
affinity (15). This activity is mediated by adaptors that harbor
an ubiquitin association domain (UBA) and a p97-docking
module. Numerous adaptors have been identified, including
those having PUB, SHP, UBD, UBX, VBM, and VIM p97

" The abbreviations used are: IBMPFD, Inclusion Body Myopathy
Paget’s disease of the bone and/or Frontotemporal Dementia; ALS,
Amyotrophic Lateral Sclerosis; UBA, ubiquitin associated.
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interaction motifs (reviewed in 16, 17, 18). The majority of
these adaptors interact with the N-terminal domain of p97.
Interestingly, over half of the mammalian UBX-domain con-
taining proteins (the largest family of adaptors) do not harbor
an UBA domain, nor bind ubiquitinated proteins (19). There is
currently very little information pertaining to the activities of
proteins that comprise this sub-family of p97 adaptors.

The biochemical mechanism by which disease-relevant
P97 mutations alter the function of the ATPase is not well
understood. Some of the mutations that cause IBMPFD stim-
ulate the ATPase activity of p97 (20). Other studies indicate
that they alter the binding of specific adaptors to the N-ter-
minal domain of p97, where most of the IBMPFD mutations
are found (21). Intriguingly, these alterations can both pro-
mote the binding of certain adaptors and suppress the inter-
action with others (21). UBXD1, a member of the non-UBA
family of p97 adaptors, has recently been shown to be defi-
cient at interacting with several p97 mutants, including those
commonly found in familial IBMPFD and ALS (10). This study
also demonstrated that UBXD1 collaborates with p97 in the
endo-lysosomal sorting of ubiquitinated caveolins and this
process is altered in cells containing mutant p97 (10). To gain
further insights into the pathways in which p97-UBXD1 com-
plex functions, we used immunopurification and mass spec-
trometric methods to identify proteins that associate with
UBXD1. The results obtained with these methods as well as
follow-up protein interaction and localization studies indicate
that p97-UBXD1 modulates the subcellular localization of
ERGIC-53 containing vesicles.

MATERIALS AND METHODS

Plasmids and Antibodies—Supplementary Table S1 describes
plasmids used in this study and how they were generated. Constructs
encoding amino-terminal FLAG tagged adaptors have been de-
scribed previously (19). Antibodies used in experiments presented
here are anti-FLAG mouse monoclonal antibody M2 (SIGMA), anti-
UBXD1 mouse monoclonal antibody 5C3-1 (22), anti-ERGIC-53
H-245 rabbit polyclonal (Santa Cruz, Santa Cruz, CA), anti-p97 H-120
rabbit polyclonal (Santa Cruz), anti-Rab3GAP1 rabbit polyclonal
(Novus, Littleton, CO), and anti-Rab3-GAP2 rabbit polyclonal
(GeneTex, San Antonio, TX).

Ponasterone-inducible System and Transient Transfections—The
human lung adenocarcinoma cell line H1299 was first transfected by
the calcium phosphate method with the pVgRXR plasmid (Invitrogen,
Carlsbad, CA). Cells were cultured in 400 ug/ml zeocin until visible
colonies were evident. Fourteen colonies were isolated, expanded,
and tested for ponasterone inducibility using a transiently transfected
pIND-LacZ reporter (Invitrogen) and liquid -galactosidase assay. The
clone (#9) giving the best inducibility and the lowest background in
the absence of ponasterone was transfected by calcium phosphate
with a second pVgRXR construct that harbors an introduced puro-
mycin resistance gene. Cells were cultured in the presence of zeo-
mycin (400 pg/ml) and puromycin (0.5 wg/ml) until visible colonies
were present. Twenty-two colonies were isolated, expanded, and
tested for ponasterone inducibility as described above. The clone
(#9-8) giving the best inducibility with the lowest background
was transfected by FUGENE6 (Roche) with pIND (Invitrogen) and
pIND-UBXD17-C expression constructs. Cells were cultured in the

presence of zeomycin (400 pg/ml), puromycin (0.5 png/ml), and hy-
gromycin (200 wg/ml) for 2 weeks to generate a pool of stably trans-
fected cells. To induce UBXD17A% expression, cells were exposed to
the noted concentration of ponasterone for 24-48 h. For experiments
using transiently transfected cells, H1299 or Hek 293Ts (293T) were
transfected with the indicated amount of DNA using FUGENEG6
(Roche) according to the manufacturer’s instructions. Cells were har-
vested or treated with inhibitors 48 h after exposure to plasmid
DNA-FuGENE6 mixtures.

Mass Spectrometric Analyses—Mass spectrometry was performed
as described previously (23). Briefly, cell pellets were collected and
lysed in lysis buffer (50 mm HEPES, pH 7.5; 70 mm KOAc; 5 mm
Mg(OAc),; 0.2% n-dodecyl-8-p-maltoside) containing 1 X protease
inhibitor tablet (Roche) for 30 min on a nutator at 4 °C. The lysates
were centrifuged at 16,600 X g for 15 min to remove cell debris, and
the supernatant was incubated with anti-FLAG beads on a nutator for
1 h at 4 °C. Beads were washed with lysis buffer 5 times, followed by
2 washes with 100 mm Tris-HCI (pH 8.5). Proteins were eluted from
beads in 10 M freshly prepared urea. Digestion was performed in 100
mm Tris-HCI (pH 8.5) containing 8 m urea at 37 °C first with Lys-C (35
ng/mg lysate) for 4 h, and then the urea concentration was reduced to
2 m for trypsin (30 ng/mg lysate) digestion overnight. Following diges-
tion, the tryptic peptides were desalted on a reversed-phase Vivapure
C18 micro spin column (Sartorius Stedim Biotech, Gottingen, Ger-
many) and concentrated using a SpeedVac. Dried samples were
acidified by 0.2% formic acid prior to liquid chromatography-mass
spectrometric analysis.

All liquid chromatography-mass spectrometry experiments were
performed on an EASY-nLC (Thermo Scientific, West Palm Beach, FL)
connected to a hybrid LTQ Orbitrap Classic or LTQ FT (Thermo
Scientific) equipped with a nano-electrospray ion source (Thermo
Scientific). Peptides were separated on a 15-cm reversed phase
analytical column (75 um internal diameter) in-house packed with 3
um C18AQ beads (ReproSil-Pur C,gag) using a 120-min gradient from
13% to 25% acetonitrile in 0.2% formic acid at a flow rate of 350
nL/minute. The mass spectrometer was operated in data-dependent
mode to automatically switch between full-scan MS and tandem MS
acquisition. Survey full scan mass spectra were acquired in Orbitrap
or FT (300-1700 m/z), after accumulation of 500,000 ions, with a
resolution of 60,000 at 400 m/z. The top ten most intense ions from
the survey scan were isolated and, after the accumulation of 5000
ions, fragmented in the linear ion trap by collisionally induced disso-
ciation (collisional energy 35% and isolation width 2 Da). Precursor
ion charge state screening was enabled and all singly charged and
unassigned charge states were rejected. The dynamic exclusion list
was set with a maximum retention time of 90 s, a relative mass
window of 10 ppm and early expiration was enabled.

For data analysis, peaks were generated from raw data files using
MaxQuant (version 1.2.2.5) with default parameters (24) and searched
using the built-in search engine Andromeda (25). Peak lists were
searched against the International Protein Index (IPl) human database
(version 3.54, 75448 sequences) and a contaminant database (262
sequences). The search parameters were tryptic digestion, maximum
of two missed cleavages, fixed carboxyamidomethyl modifications of
cysteine, variable oxidation modifications of methionine, and variable
protein N-terminal carbamylations. SILAC samples were searched
with Arg6 and Lys8 as variable modifications as well. Mass tolerance
for precursor ions were 7 ppm and that for fragment ions were 0.5 Da.
Protein inference and quantitation were performed by MaxQuant with
1% false discovery rate thresholds for both peptides and proteins as
calculated using a decoy search. Additionally, at least two different
peptide sequences were required for protein identification. No thresh-
old was employed for individual MS/MS spectra because we were

10.1074/mcp.M111.016444-2

Molecular & Cellular Proteomics 11.6


http://www.mcponline.org/cgi/content/full/M111.016444/DC1

Characterization of UBXD1 and ERGIC-53 Interacting Proteins

A. v UBXD1FLA6
0 131 3 0 .1.3 1 3 uMpon.
Fic. 1. ERGIC-53 is a UBXD1 inter- AUBXD1FLA6
acting protein. A, H1299 cells harboring 5C31 weywee \UBXD1
pIND (V) and pIND-UBXD1FA¢ were
generated and exposed to varying doses i
of ponasterone. Extracts were prepared FLAG TS |-UBXD1#FLAS
and Western blots carried out with anti-
UBXD1 (5C31) and anti-FLAG antibod- B Inputs anti-FLAG IPs
ies. B, Extracts prepared from mock and - v UBXD1FLAG v UBXD1FLAG
induced cells were subjected to anti- 0 .03 3 0 .03 3 uM pon. 0 .03 3 0.03 3 uMpon.
UBXD1 immunoprecipitation, followed
by western bots with anti-FLAG and FLAG -l—UBXDl‘“‘G FLAG ~= ) |-UBXD1FLAG
anti-ERGIC-53 antibodies.
ERGIC-53| =~ =~ w~ — — —| grGIC-53 ERGIC-53 Y e -ERGIC-53

primarily interested in protein identification and not specific peptide
sequences or post-translational modifications. Peptides were as-
signed to proteins using the principle of maximum parsimony. Addi-
tionally, protein groups were formed where there was no evidence to
disambiguate protein isoforms. Relative protein amounts were semi-
quantitatively measured using spectral counts using all peptides (dis-
tinct and shared) within a protein group. In the case of SILAC exper-
iments, spectral counting was still employed because H/L ratios were
often incalculable because of the binary nature of the experiments. To
identify proteins with spectral counts significantly different, binomial
tests were performed assuming equal probability of observation in
either case (i.e. bait or empty, heavy or light). Proteins were deter-
mined to be significant if their p value was lower than the Bonferroni
adjusted threshold of 0.05/n where n is the number of tests per-
formed. Complete files of the proteomic analysis are presented in
supplementary Tables S1 to S5.

Immunoprecipitations and Western Blotting—Cell pellets were
lysed in EBC (50 mm Tris-HCI pH7.5, 120 mm NaCl, 1% Nonidet P-40)
or n-dodecyl-B-p-maltoside-based buffer (see previous section) sup-
plemented with protease inhibitors for 15 min at 4 °C. Extracts were
subjected to centrifugation and supernatants transferred to a new
tube. Protein concentration was determined by the Bradford method
using a kit from Bio-Rad. For immunoprecipitations, samples contain-
ing 0.5-1 mg of lysate were incubated with anti-FLAG beads for
1-3 h on a nutator at 4 °C. Beads were then pelleted, washed three
times in lysis buffer, resuspended in 1 X SDS-PAGE loading buffer
and placed at 95 °C for 5 min. Proteins were resolved by SDS-
PAGE in running buffer (250 mm Glycine, 25 mwm Tris, 0.1% SDS)
and transferred to nitrocellulose membranes in methanol-contain-
ing transfer buffer (200 mm Glycine, 25 mm Tris, 20% Methanol) for
1 h at 125 V. Membranes were then washed in phosphate-buffered
saline (PBS)-Tween-20 (PBS-T) (63 mm Na,HPO,, 15.5 mm
NaH,PO,, 7.5 mm NaCl, 0.1% Tween-20) and blocked in 5% milk in
PBS-T for 1 h at room temperature. Primary antibodies were added
at appropriate dilutions in 5% milk in PBS-T and rocked overnight
at 4 °C. Following primary antibody, membranes were washed and
incubated with secondary antibody (at appropriate dilution) in 5%
milk in PBS-T for an hour. Membranes were washed and treated
with Western Lightning Plus - ECL (PerkinElmer) as per manufac-
turer’s instructions. Chemiluminescence was detected by exposure
on X-ray film.

Immunofluorescence—Cells were grown to 40% confluency on
glass cover slips that had been placed in six-well plates. Cells were
washed twice in PBS, and then fixed in 4% paraformaldehyde PBS
for 15 min. Samples were washed twice in PBS. Samples were
blocked for 1 h at room temperature in blocking solution (10% FBS,
0.1% Triton X-100 in PBS). After two more washes in PBS, samples

were incubated in primary antibodies (0.5 ml of 10% fetal bovine
serum in PBS) for 1 h at 37°C with gentle rocking. After two more PBS
washes, samples were incubated in secondary antibodies (0.5 ml of
10% FBS in PBS) for 45 min at 37°C. After the final 2 washes in
PBS, cover slips were inverted onto glass slides with 1 drop mount-
ing solution (SloFade Gold with DAPI, Invitrogen). Cells were visu-
alized using a Leica TCS SP5 confocal microscope. For confocal
microscopy, all scans were created using sequential capture to
prevent bleed through or cascading fluorescence. Excitation lasers
and detection ranges are as follows: DAPI: 405 nm, 415 nm-476
nm; AlexaFluor 568 (ERGIC-53): 561 nm, 571 nm-638 nm; Alex-
aFluor 647 (UBXD1): 633 nm, 644 nm-703 nm. Images were mod-
ified and analyzed with either Spot Advanced sofware or LAS AF
software. Post-processing of images obtained with LAS AF soft-
ware consisted of mean baseline correction and medium noise
reduction.

RESULTS

Mass spectrometric analysis identifies ERGIC-53 as a high
abundance UBXD1 interacting protein. We first generated a
H1299 derived cell line that allows for regulated expression
control of a C-terminally FLAG-tagged UBXD1 protein
(UBXD1F%) using the Drosophila hormone ponasterone (Fig.
1A). After generation of this line, cells were exposed to two
different concentrations (0.1 and 0.3 um) of hormone, which
results in modest overexpression of UBXD17A€ (in the two-
fivefold range over endogenous UBXD1) (Fig. 1A). UBXD1™A¢
and interacting proteins were immunopurified from extracts
using anti-FLAG antibody-conjugated beads and subjected to
mass spectrometric analysis using an LTQ-FT instrument.
Table | provides a list of proteins present in the UBXD17-AC
samples and not present in control anti-FLAG immunoprecipi-
tations from mock-induced cells harboring the empty vector.
As expected, UBXD1 and p97 were abundant constituents of
both UBXD17““® immunoprecipitates. The protein that
yielded the next highest number of spectra counts was
ERGIC-53. Also present in both UBXD1™*% immunoprecipi-
tations was the actin binding protein LIMA1 (also called
EPLIN1), SEPT9 and DST (Table I). CAV1, a recently identified
UBXD1 interacting protein (10), was detected but the number
of spectral counts for CAV1 was low and did not reach sta-
tistical significance.
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TABLE |
Spectral counts of proteins associated with UBXD upon pona-
sterone induction in H1299 cells.? *Indicates significant enrichment in
UBXD1™4% immunoprecipitations (p < 0.05 Bonferroni corrected)

1FLAG

# of assigned

Proteins® spectra®
0.1 uM 0.3 uM
Transitional endoplasmic reticulum 183 512*
ATPase (VCP; p97)
UBX domain-containing protein 1 74* 89*
(UBXD1)
ER-Golgi intermediate compartment 33" 34*
53kDa protein (ERGIC-53)
Epithelial protein lost in neoplasm 6 22"
(EPLIN, LIMAT)
SEPT9 protein (SEPT9) 3 16*
Dystonin (DST) 8 13*

? Mass spectrometry was performed with LTQ-FT instrument.
b peptides and proteins were filtered at a 1% false discovery rate.
¢ Inclusion limit set at a minimal of 10 spectra counts for 0.3 um.

In addition to performing the analysis with the inducible
H1299 system, we characterized "SUBXD1 interacting pro-
teins using transiently transfected 293T cells. For these stud-
ies, we used SILAC (stable isotope labeling with amino acids
in culture) and an LTQ-Orbitrap instrument. Samples were
comprised of a 1:1 mixture of FLAG immunoprecipitates from
“light” 293T cells (cultured in media supplemented with stand-
ard lysine and arginine) that had been transiently transfected
with UBXD1™4C plasmid versus “heavy” 293T cells (cultured
in media containing Arg6 (U-'2C6) and Lys8 (U-'3C6, U-"°N2))
that had been transfected with the empty vector control.
Table Il provides a list of proteins that were present in
UBXD1FA¢ immunoprecipitates. These proteins were not
found in the control immunoprecipitations (i.e. no heavy pep-
tides found). P97, UBXD1 and ERGIC-53 were present at high
abundance. Numerous proteins were also identified in this
second round of analysis, including 3 additional p97 interact-
ing proteins (UBXD8, UBXD9, NPL4), ERGIC-53 binding pro-
teins (MCFD2 and COPA) and others with diverse functions
(CAD, ATP5B, PRKDC, IRS4, FLOT1). We also found high
abundance proteins that are routinely found in shotgun mass
spectrometry experiments, including ribonucleotide protein
HNRNPU, translation elongation factor EEF1A2, transcription
factors RUVBL1 and RUVBL2 and components of various
chaperone systems (GRP78, UGGT1, HSPA1A, CCT8).
TUBA1C and TUBBG6 were identified as well, which is inter-
esting as numerous tubulin proteins were later found to be
highly enriched in "“A“ERGIC-53 immunoprecipitations.

We decided to focus our follow-up studies on ERGIC-53,
the most dominant novel UBXD1™4% interacting protein iden-
tified in the three different experiments. ERGIC-53 is a man-
nose-binding ER resident protein that participates in the early
part of the secretory pathway (reviewed in 26, 27). It contains
a single-pass transmembrane domain oriented such that the
vast majority of the molecule is present in the lumen of the ER,
with only 12 C-terminal residues at the C terminus exposed to

TaBLE Il
Spectral counts of proteins associated with UBXD in transiently
transfected 293T cells as assessed by SILAC?

1FLAG

# of assigned

Proteins® c
spectra

Transitional endoplasmic reticulum 598
ATPase (VCP; p97)

UBX domain-containing protein 1 (UBXD1) 403

ER-Golgi intermediate compartment 103
53kDa protein (ERGIC-53)

Tubulin alpha-1C chain (TUBA1C) 75

Aspartate carbamoyltransferase (CAD) 55

RuvB-like 2 (RUVBL2) 52

78 kDa glucose-regulated protein (GRP78) 48

UBX domain-containing protein 9 (UBXD9) 37

UDP-glucose:glycoprotein 33
glucosyltransferase 1 (UGGT1)

Heat shock 70 kDa protein 1A/1B 33
(HSPA1A,HSPA1B)

cDNA FLJ54303, highly similar to Heat 30
shock 70 kDa protein 1

UBX domain-containing protein 8 (UBXD8) 28

Elongation factor 1-alpha 2 (EEF1A2) 29

cDNA FLJ52712, highly similar to Tubulin 29
beta-6 chain (TUBB6)

RuvB-like 1 (RUVBL1) 27

Tubulin beta-6 chain (TUBBG6) 27

ATP synthase subunit beta, mitochondrial 23
(ATP5B)

40S ribosomal protein S3 (RPS3) 20

DNA-dependent protein kinase catalytic 19
subunit (PRKDC)

T-complex protein 1 subunit theta (CCT8) 19

Insulin receptor substrate 4 (IRS4) 18

Nuclear protein localization protein 4 17
homolog (NPL4)

Calnexin (CANX) 17

Flotillin-1 (FLOT1) 15

Heterogeneous nuclear ribonucleoprotein 15
U (HNRNPU)

Multiple coagulation factor deficiency 14
protein 2 (MCFD2)

Coatomer subunit alpha (COPA) 13

# Mass spectrometry was performed with LTQ-orbitrap instrument.

b Peptides and proteins were filtered at a 1% false discovery rate.

¢ Inclusion limit set at a minimal of 10 spectra counts and all
proteins are significantly enriched in UBXD1™¢ immunoprecipita-
tions (p < 0.05 Bonferroni corrected).

the cytosol. Like p97, ERGIC-53 exists as a hexamer. The
current working model is that ERGIC-53 binds ER-localized
client proteins on its own or via its co-factor MCFD2. Upon
client binding, ERGIC-53 undergoes COPII-dependent bud-
ding from the ER, which requires its C-terminal diphenylala-
nine motif. ERGIC-53 containing vesicles then move to a
structure called the ER-Golgi Intermediate Compartment
(ERGIC), where they fuse and deliver client proteins for further
sorting and trafficking. ERGIC-53 is recycled from the ERGIC
to the ER by COPI-complex-dependent budding, which is
specified by two lysine residues that precede the C-terminal
phenylalanine residues.
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Fic. 2. Specificity of UBXD1-
ERGIC-53 interaction. H1299’s were
transfected with 3 wg of the indicated

Inputs
kDa 1 2 3456 789 1011 12
75— 1V
- ——————— i G ~ 2: UBXD1-NH2 tag
3: UBXD1-COOH tag
50-| ——e - | uBX's 4: UBXDS
FLAG - S: UBXD6
- 6: UBXD7
7: UBXD8
8: p47
ERGIC-53 I—-- R -_-I—ERGIC-53 9: Npl4
10: Aspll
11: FAF1
p97 ::.........d_pw 12: SAKS1

FLAG-tagged expressions constructs.
Extracts were prepared and immuno-
precipitations carried out with anti-
FLAG beads. Western blots were then

anti-FLAG IPs

kDa 1 2 3 4 5 6 7 8 9101112

performed with anti-FLAG, anti-ERGIC- 75—
53, and anti-p97 antibodies. - -
— - .
50— 4 — =
- | usx's
FLAG -
- LR R R R
ERGIC-53|™ ™ 2 |-raic-s3
D97 - - - —-._-._.__._p97
—

We first sought to validate the mass spectrometry findings
by conventional immunoprecipitation and Western blotting.
Two concentrations of ponasterone were used for this verifi-
cation experiment: one (0.03 uwm) that results in the production
of UBXD1™ A% at physiologically relevant levels and another (3
uM) that results in ~10-fold overproduction (Fig. 1A). After
induction, cells were harvested, extracts prepared, and im-
munoprecipitations carried out with anti-FLAG beads. Immu-
noprecipitated proteins were resolved by SDS-PAGE,
transferred to nitrocellulose membranes and probed with anti-
FLAG and anti-ERGIC-53 antibodies. As shown in Fig. 1B,
endogenous ERGIC-53 was present in both anti-FLAG
immunoprecipitates.

ERGIC-53 interacts specifically with UBXD1. We next as-
sessed if ERGIC-53 associates with other UBX domain-con-
taining p97 adaptors. For this experiment, expression con-
structs encoding 10 different FLAG-tagged UBX proteins
were transiently transfected into H1299 cells. Protein extracts
were prepared and immunoprecipitations using anti-FLAG
beads were performed as described above. Western blotting
was then carried out with FLAG, ERGIC-53, and p97 antibod-
ies. As shown in Fig. 2, UBXD17*¢ was the only UBX do-
main-containing adaptor that bound ERGIC-53.

N-terminal region of UBXD1 and C-terminal tail of
ERGIC-53 are required for complex formation. During the
course of testing for interactions between ERGIC-53 and the
various p97 adaptors, we noticed that whereas UBXD17-AC
was proficient at binding endogenous ERGIC-53, N-terminal-
ly-tagged F**GUBXD1 was not (Fig. 2). These results raised
the possibility that the N terminus of UBXD1 is important for
ERGIC-53 binding. To test this idea, we generated a series of
N-terminal UBXD1™€ deletion mutants and examined their

ability to bind endogenous ERGIC-53 and p97 in transiently
transfected H1299 cells. As shown in Fig. 3A, deletion of the
first 10 amino acids of UBXD1™C resulted in the loss of
binding to ERGIC-53, but not p97. We next performed ala-
nine-scanning mutagenesis to identify individual amino acids
within this region that are required for ERGIC-53 association.
Fig. 3B shows that mutating N-terminal residues 2, 4, 5, 7, and
8 compromised the ability of UBXD17-A¢ to associate with
ERGIC-53.

Given the known topology of ERGIC-53 in the ER mem-
brane, we reasoned that the last 12 amino acids of
ERGIC-53 mediate binding to UBXD1. To test this, cells
were co-transfected with constructs encoding C-terminally
HA-tagged UBXD1 (UBXD1"4) and expression plasmids en-
coding N-terminally FLAG-tagged ERGIC-53 ("“*®ERGIC-
53) or a mutant lacking the last 12 amino acids ("“*“ERGIC-
53AC). Extracts were prepared and immunoprecipitations
were performed with anti-HA conjugated beads. Westerns
were then carried out with anti-FLAG and anti-UBXD1 anti-
bodies. As shown in Fig. 3C, deletion of the C-terminal 12
residues of "“*®ERGIC-53 resulted in the loss of UBXD1"4
binding.

UBXD1-ERGIC-53 association is suppressed by the p97
inhibitor DBeQ, but not the E1 ubiquitin activation enzyme
inhibitor PYR-41. We next wanted to assess if the interaction
between UBXD1 and ERGIC-53 requires the enzymatic func-
tion of the ATPase or ubiquitin modification. Cells harboring
ponasterone-inducible UBXD1 % were exposed to hormone
for 6 h in the absence and presence of the p97 inhibitor DBeQ
(28) or the E1 ubiquitin activation enzyme inhibitor PYR-41
(29). After treatments, cells were harvested, extracts were
prepared, and immunoprecipitations performed with anti-
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A. Inputs (10%) anti-FLAG IPs
Amutants Amutants
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C. Inputs anti-HA IPs
- 4 - - 4 4 UBXDIHA - 4 - - 4 4+ UBXDIMA
- 4 - 4 - FfUAGERGIC-53 - - 4 - 4 - FAGERGIC-53
- - - 4 - 4 FfAGERGIC-53AC - - 4 - 4 FAGERGIC-53AC
SR —UBXD1HA 5c31 : —UBXD1#A
FLAG| N W | FL/CERGIC-53 FLAG| —  |-f1cERGIC-53

Fic. 3. Defining domains/amino acids of UBXD1 and ERGIC-53 required for binding. A, H1299 cells were transfected with 3 ug of
expression constructs encoding UBXD1™A€ or deletion mutants lacking the indicated number of amino-terminal amino acids. Extracts were
prepared and immunoprecipitations carried out with anti-FLAG beads. Western blots were performed with anti-FLAG, anti-ERGIC-53, and
anti-p97 antibodies. B, The experiment was performed as described in A with UBXD17A% mutants harboring the indicated substitutions in the
first 10 amino acids. C, 293T cells were transfected with 2 ug of UBXD1H* expression construct and 2 ug of "“AERGIC-53 or "“*®ERGIC-53AC
mutant lacking the last 12 amino acids of the protein. Extracts were prepared and immunoprecipitations carried out with anti-HA antibody
conjugated beads. Western blots were performed with the indicated antibodies.

FLAG antibody. The amounts of endogenous ERGIC-53 in
these immunoprecipitations was determined by Western blot-
ting. As shown in Fig. 4A, treatment of cells with DBeQ
suppressed an interaction between UBXD17*¢ and ERGIC-
53. The E1 ubiquitin activation enzyme inhibitor PYR-41 had
no apparent effect on UBXD1™4¢ association with ERGIC-53.
Similar results were obtained in 293T cells transiently trans-
fected with UBXD17A¢ (Fig. 4B). Treatment of transfected
cells with 10 um DBeQ for 8 h inhibited binding of endogenous
ERGIC-53 to UBXD17A4, without altering p97-UBXD17-A¢
interaction. PYR-41 exposure had no discernable effect on
the binding of UBXD17-A% to ERGIC-53 (Fig. 4B).
Quantitative mass spectrometric analyses for ERGIC-53
interacting proteins. We next characterized the interactome
for ERGIC-53. For these experiments, we performed SILAC
mass spectrometric analysis of “light” labeled 293T cells that
had been transfected with the "*“ERGIC-53 expression con-
struct versus “heavy” labeled 293T cells that had been trans-
fected with the empty vector control. Table Il provides a list of
proteins that were detected in "*“*ERGIC-53 but not in con-
trol immunoprecipitates in two independent experiments. In-

teractions were detected with proteins that make up the COPI
complex (COPA, COPB2, COP3, COPB1) as well as with
Rab3GAP1 and Rab3GAP2. COPI proteins promote the ret-
rograde transport of ERGIC-53 to the ER (30). Rab3GAP1 and
Rab3GAP2 form a stable heteromeric complex and regulate
the fusion of vesicles to the plasma membrane (31). Their
interactions with ERGIC-53 have yet to be reported. Numer-
ous tubulin proteins (TUBB2C, TUBB3, TUBB4, TUBB2,
TUBB), which could play a role in facilitating transport of
ERGIC-53 containing vesicles, were also present in "®ERGIC
immunoprecipitations. Not surprisingly, a few chaperones
were present in these immunoprecipitations as well, including
HSPA8, HSPA1A/HSPA1B, and DNAJCY. Curiously, although
we did identify p97 peptides in the "*SERGIC-53 immuno-
precipitates, we did not detect UBXD1. There are a couple of
possible explanations for this, including that the amount of
interacting UBXD1 is below our detection limits and/or that
p97 can interact with ERGIC-53 via UBXD1 independent
mechanisms, perhaps even with misfolded polypetides during
the process of ERAD. It is also curious that we did not identify
any COPII proteins in this analysis. The percentage of ERGIC-

10.1074/mcp.M111.016444-6

Molecular & Cellular Proteomics 11.6



Characterization of UBXD1 and ERGIC-53 Interacting Proteins

A. anti-FLAG IPs
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Fic. 4. Effects of the p97 inhibitor DBeQ and the E1 ubiquitination activation enzyme inhibitor PYR-41 on UBXD1-ERGIC-53
interaction. A, Cells harboring ponasterone-inducible UBXD1F-A¢ were untreated or exposed to 3 um ponasterone in the absence or presence
of 10 um DBeQ or 10 um PYR-41 for 6 h. Cells were harvested, extracted prepared and immunoprecipitations performed with anti-FLAG beads.
Western blots were then carried out with anti-FLAG and anti-ERGIC antibodies. B, 293T cells were transfected with 1 ug of FLAG-tagged
UBXD1. Forty-eight hrs after transfections, cell were treated with the indicated concentration of DBeQ or PYR-1. Cells were harvested,
extracted prepared and immunoprecipitations performed with anti-FLAG beads. Western blots were then carried out with anti-FLAG,

anti-ERGIC-53, and anti-p97 antibodies.

53-COPIl complexes at any one time may be small or just
highly unstable under the conditions used here.

Identification of proteins that require the C-terminal tail of
ERGIC-53 for binding. Considering that UBXD1 binds to the
C-terminal tail of ERGIC-53 and may regulate interactions that
also occur there, we next wanted to identify "“*®ERGIC-53
binding proteins that require this tail for association. SILAC-
based quantitative proteomics was again performed, mea-
suring the level of enriched "*“ERGIC-53 interacting proteins
in cells transfected with full length "*®ERGIC-53 versus the
C-terminal deletion mutant. Table IV displays a list of proteins
whose peptide spectral counts were significantly decreased
more than 3 fold in ""*®ERGIC-53AC immunoprecipitates as
well as the ratio of known proteins that are part of these
complexes that were in both "*®ERGIC and ™*®ERGIC-53
immunoprecipitation. Rab3GAPs and COPI complex proteins
were the only proteins found to require the C-terminal tail of
FLAGERGIC-53 for binding.

An interaction between ERGIC-53 and the Rab3GAP com-
plex has yet to be reported and we thus wanted to verify this
association by immunoprecipitation and Western blotting. We
also wanted to test if UBXD1, ERGIC-53 and Rab3GAPs can
form a ternary complex. As shown in Fig. 5, "“*®ERGIC-53
interacted with endogenous Rab3GAP1 and Rab3GAP2 and
these associations were not observed with a "“*®ERGIC-53
mutant lacking the C-terminal 12 residues of the protein. Fig.
5 also shows that whereas RabGAP1 was present in
UBXD17A immunoprecipitates, it was not present in those

using the UBXD1A107“*® mutant that was unable to bind
ERGIC-53. We were unable to detect Rab3GAP2 in the
UBXD17A¢ immunoprecipitations, presumably because of
the insensitive nature of the anti-Rab3GAP2 antibody used
here. Notwithstanding, these studies indicate that an
ERGIC-53 hexamer can accommodate the docking of multi-
ple protein complexes to its C-terminal tail.

UBXD1 modulates ERGIC-53 localization. As the C-terminal
tail of ERGIC-53 plays an important role in controlling its
localization in cells via interaction with various protein traffick-
ing complexes (reviewed in 26, 27), we wanted to evaluate if
UBXD1F"4¢ expression influences the subcellular localization
of ERGIC-53. We again used the ponasterone inducible sys-
tem for this analysis and included cells that inducibly express
the UBXD1A107*¢ mutant that is ERGIC-53 binding defi-
cient. Cells harboring the empty vector control, UBXD17-A€ or
UBXD1A10™4C were exposed to 1 um ponasterone for 48 h.
Cells were fixed and localization of endogenous ERGIC-53
and induced UBXD17*¢ was determined by indirect immu-
nofluorescence with rabbit anti-ERGIC-53 and mouse anti-
UBXD1 antibodies. We observed two distinct types of altered
ERGIC-53 localization phenotypes upon expression of
UBXD17AS and in both cases, UBXD17A¢ staining over-
lapped with ERGIC-53. First, there was an increase in the
percentage of ERGIC-53 protein present in cytoplasmic vac-
uoles (noted by arrows with dashed lines) (Fig. 6). This was
observed in 50-60% of UBXD1™% expressing cells. Sec-
ond, we observed an enhancement in the amount of
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ERGIC-53 localized close to or at the cell membrane in ~20%
of UBXD1 @ positive cells (noted by arrows with solid lines).
Cytoplasmic vacuole or membrane localization of ERGIC-53
was not observed in cells expressing UBXD1A1074€ (Fig. 6).

DISCUSSION

UBXD1 is a member of the non-UBA domain family of p97
adaptors and it has recently been shown to be defective at
binding p97 mutants found in familial IBMPFD and ALS (10).

TaBLE Il
Spectral counts of proteins associated with F“A°ERGIC-53 in tran-
siently transfected 293T cells as assessed by SILAC?

# of assigned

inab
Proteins specira®
ER-Golgi intermediate compartment 495/209
53kDa protein (ERGIC-53)
Rab3 GTPase-activating noncatalytic 84/23
subunit (RAB3GAP2)
Rab3 GTPase-activating catalytic 71/51
subunit (RAB3GAP1)
Heat shock cognate 71 kDa protein 60/100
(HSPAS)
Heat shock 70 kDa protein 1A/1B 45/58
(HSPA1A,HSPA1B)
Coatomer subunit alpha (COPA) 43/22
cDNA FLJ543083, highly similar to 43/58
Heat shock 70 kDa protein 1
Transitional endoplasmic reticulum 35/27
ATPase (VCP)
Tubulin beta-2 chain (TUBB2C) 78/47
Tubulin beta-3 chain (TUBB3) 50/34
Coatomer subunit beta’ (COPB2) 32/22
Tubulin beta-4 chain (TUBB4) 66/37
Tubulin beta-2A chain (TUBB2) 64/39
Tubulin beta chain (TUBB) 75/56
Coatomer subunit epsilon (COPE) 26/19
Coatomer subunit beta (COPB1) 23/17
DnaJ homolog subfamily C member 7 19/14
(DNAJC?)
Protein disulfide-isomerase (P4HB) 15/14

@ Mass spectrometry was performed with LTQ-Orbitrap instrument.

b peptides and proteins were filtered at a 1% false discovery rate.

¢ Inclusion limit set at a minimal of 10 spectra counts and all
proteins were significantly enriched in replicate (p < 0.05 Bonferroni
corrected).

These results indicate that processes requiring the activity of
a p97-UBXD1 complex are altered in human disease and
underscore the importance of elucidating its biochemical and
molecular activities. To begin to uncover these functions, we
used liquid chromatography mass spectrometry based ap-
proaches to identify interacting partners for UBXD1. We have
found that UBXD1 interacts strongly with ERGIC-53, a mole-
cule that functions in protein trafficking (reviewed in 26, 27).
This interaction is very specific (not observed with other UBX
proteins) and requires the amino-terminal domain of UBXD1
and the carboxy-terminal tail of ERGIC-53. Interestingly,
UBXD1-ERGIC-53 interaction is suppressed by the p97 inhib-
itor DBeQ that blocks the ATPase activity of the enzyme (28).
These results indicate that formation of a stable UBXD1-
ERGIC-53 complex requires the enzymatic activity of p97. We
have also found that UBXD1-ERGIC-53 association is unaf-
fected by the E1 ubiquitin activation enzyme inhibitor. This
suggests that UBXD1-ERGIC-53 interaction is not mediated
by ubiquitination and indicates that the non-UBA family of p97
adaptors can couple p97 to substrates in an ubiquitin-inde-
pendent manner.

What might be the biochemical consequence of these as-
sociations? Based on the data presented here, we propose
that p97 and UBXD1 cooperate in regulating the association
of trafficking factors with the C-terminal tails of hexameric
ERGIC-53. P97 and UBXD1 may work together in displacing
proteins that interact with the ERGIC-53 tails and/or promote
the formation of new stable interactions, including with
UBXD1 itself. As we find that Rab3GAP1 interacts with
UBXD1 through ERGIC-53, it is possible that the tails of a
single ERGIC-53 hexamer can link together different com-
plexes that in cooperation modulate ERGIC-53 trafficking.

ERGIC-53 is known to cycle between the ER, ERGIC, and
Golgi (reviewed in 26, 27). It has also been shown that upon
transient overproduction, ERGIC-53 localizes to the cell sur-
face, where it can subsequently undergo endocytosis (32).
This cell surface localization was deemed aberrant and attrib-
uted to the saturation of cofactors required for intracellular
retention (32). We would like to suggest that a pool of endog-
enous ERGIC-53 naturally localizes to the plasma membrane,
perhaps in a regulated manner, and is recycled by endocyto-

TABLE IV
Quantitative analysis of proteins associating with f“ASERGIC-53 versus T“A®ERGIC-53AC?. *Indicates significant decrease in ""A*SERGIC-53AC
immunoprecipitations (p < 0.05 Bonferroni corrected)

Proteins®

# of assigned spectra
Heavy (F“ACWT)

Light ((“ASAC)

ER-Golgi intermediate compartment 53kDa protein (ERGIC-53)
Coatomer subunit alpha (COPA)*

Rab3 GTPase-activating catalytic subunit (RAB3GAP1)*
Coatomer subunit beta’ (COPB2)

Rab3 GTPase-activating non-catalytic subunit (RAB3GAP2)
Coatomer subunit delta (COPD)

Coatomer subunit zeta-1 (COPZ1)

*1019 671

N
[¢e]
- O0O0wWwoOo

@ Mass spectrometry was performed with LTQ-Orbitrap instrument.

b peptides and proteins were filtered at a 1% false discovery rate.
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with anti-FLAG, anti-ERGIC-53,
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UBXD1 ERGIC-53

V..

UBXD.IA]O. .

Fic. 6. Effects of UBXD1 expression on localization of endoge-
nous ERGIC-53. H1299 cells harboring pIND (V) and pIND-
UBXD1F4 were exposed to 1 um of ponasterone for 48 h. ERGIC-53
and UBXD1€ |ocalization was assessed by indirect immunofiuo-
rescence and confocal microscopy using rabbit anti-ERGIC-53 poly-
clonal antibodies and the mouse anti-UBXD1 antibody 5C3-1.

Merge

UBXD1

UBXD1

sis. Three observations support this idea. First, proteomics
studies have identified endogenous ERGIC-53 in purified early
endosomes (33). Second, UBXD1 can promote the localiza-
tion of endogenous ERGIC-53 to the cell periphery. Third,
both transfected and endogenous ERGIC-53 (this is deduced
based on detecting an interaction between UBXD1 and
Rab3GAP1 that is dependent on the ERGIC-53 binding do-
main of the protein) bind Rab3GAPs, a protein complex in-
volved in promoting vesicle fusion at the cell membrane (31).
If this speculation is correct, it will be interesting to define

protein constituents of vesicles that contain ERGIC-53 and
Rab3GAPs and what functions they confer. A number of
ERGIC-53 clients have been identified, including alpha-1 an-
titrypsin (34), coagulation factors V/VII (35), and cathepsin C
(36) and Z (37). However, considering that these are luminal
and/or secreted proteins as well as their trafficking are routed
through the Golgi, it seems unlikely that a p97-UBXD1 com-
plex is promoting the movement of these ERGIC-53 clients to
the cell surface. Rather, p97-UBXD1 may induce cell surface
trafficking of other integral or peripheral membrane proteins
that are present on ERGIC-53 positive vesicles and perhaps
function at the cell surface or on endocytosed vesicles. This
could even pertain to p97 and UBXD1 themselves. Interest-
ingly, p97 and UBXD1 have recently been reported to pro-
mote endo-lysosomal sorting of ubiquitinated caveolins (10).
Perhaps ERGIC-53 plays a role in the routing of p97-UBXD1
so it can function in this process. Alternatively, p97-UBXD1
may not directly regulate ERGIC-53 localization, but influence
how ERGIC-53 loaded with luminal ligands is packaged into
transport vesicles that move to specific locations. This could
be through controlling the association/disassociation with
various transport factors with the C-terminal tails or regulating
the oligomerization of ERGIC-53 by binding the tails. Future
studies are obviously needed to work out the mechanistic
consequences of these newly discovered interactions.
UBXD1 is defective at binding p97 mutants found in familial
IBMPFD and ALS (10). It will therefore be important to test if
trafficking of ERGIC-53 or ERGIC-53 containing vesicles are
compromised in cells harboring mutant p97. ERGIC-53 is
mutated in a rare autosomal recessive clotting disorder in
which the amount of its client proteins coagulation factors V
and VIII are diminished in the plasma (38). Most mutations
reported to date lead to absence of ERGIC-53 protein and
there has yet to be any report of other abnormalities in these
individuals. It is therefore unlikely that loss of ERGIC-53 func-
tion alone is causal for IBMPFD and ALS phenotypes in pa-
tients with mutant p97. A recent study has shown that dele-
tion of ERGIC-53 alleles in mice results in a modest decrease
in factor V and VIl levels in the serum and interestingly, a
partially penetrant, perinatal embryonic lethality (39). Thus,
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ERGIC-53 is likely to have yet to be discovered functions that
are influenced by polymorphic alleles. If so, the presence of
these alleles in situations of defective p97-UBXD1 regulated
ERGIC-53 trafficking may contribute to IBMPFD and/or ALS.
Alternatively, loss of p97-UBXD1 function may result in a gain
of ERGIC-53 activity that promotes these diseases. Future
experiments using loss of functional approaches will address
the functional role of p97-UBXD1 in the trafficking of
ERGIC-53 and ERGIC-53 containing vesicles and if these
processes are disturbed in cells harboring mutant p97. As
UBXD1 shows high expression in neurons (40), it is likely that
these cells will be the most appropriate for future studies
investigating the role of UBXD1 in modulating the trafficking of
ERGIC-53 containing vesicles, defining how this activity im-
pinges on cellular processes, and determining if alterations in
this pathway contribute to neurodegeneration.
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