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Abstract

The phenolic phytoalexin resveratrol is well known for its health-promoting and anticancer properties. Its potential benefits
are, however, limited due to its low bioavailability. Pterostilbene, a natural dimethoxylated analog of resveratrol, presents
higher anticancer activity than resveratrol. The mechanisms by which this polyphenol acts against cancer cells are, however,
unclear. Here, we show that pterostilbene effectively inhibits cancer cell growth and stimulates apoptosis and
autophagosome accumulation in cancer cells of various origins. However, these mechanisms are not determinant in cell
demise. Pterostilbene promotes cancer cell death via a mechanism involving lysosomal membrane permeabilization.
Different grades of susceptibility were observed among the different cancer cells depending on their lysosomal heat shock
protein 70 (HSP70) content, a known stabilizer of lysosomal membranes. A375 melanoma and A549 lung cancer cells with
low levels of HSP70 showed high susceptibility to pterostilbene, whereas HT29 colon and MCF7 breast cancer cells with
higher levels of HSP70 were more resistant. Inhibition of HSP70 expression increased susceptibility of HT29 colon and MCF7
breast cancer cells to pterostilbene. Our data indicate that lysosomal membrane permeabilization is the main cell death
pathway triggered by pterostilbene.
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Introduction

Polyphenols form an extensive group of natural molecules with

potential benefits for human health, e.g. cardiac protection,

anticancer activities and diabetes control. The mechanisms

underlying their anticancer activity have been extensively studied

and include anti-oxidative, pro-apoptotic, pro-autophagic, DNA

damaging, anti-angiogenic, and immunostimulatory effects. Re-

sveratrol (Res), the most investigated polyphenol, shows a clear

anticancer activity by both apoptotic and nonapoptotic mecha-

nisms [1]. However, its low bioavailability (e.g. a 14.4 minutes

half-life in the rabbit blood circulation after intravenous admin-

istration of 20 mg/kg) strongly limits its in vivo use [2].

Pterostilbene (3,5-dimethoxi-49-hydroxystilbene; Pter) is a natural

analogue of Res found in different plants such as grapes,

blueberries and narra tree [3]. This natural phenolic phytoalexin,

whose half-life in the blood stream is approximately five times

higher than that of Res, displays potent fungicidal activity and

similar or even more potent antitumor activitiy than Res [4].

The main problem in cancer treatment is to remove pools of

cells capable of developing immunogenic, chemotherapeutic, and

radiotherapeutic resistance. Apoptotic evasion represents one of

the major obstacles since many classical antitumor agents trigger

caspase-mediated apoptotic cell death [5]. Accordingly, new

antitumoral strategies based on nonapoptotic mechanisms have

been developed in the last years, and autophagy, lysosomal cell

death and necrosis have emerged as alternative cell death

programs in cancer cells [6–8].

Lysosomal volume and trafficking, as well as the expression of

lysosomal hydrolases, are notoriously altered in transformed cells

[9]. In fact, effective invasive growth and neoangiogenesis depend

on these alterations [10]. Moreover, development of multidrug

resistance has been also linked to the alterations in the endosome-

lysosomal compartment [11]. In this sense, agents targeting

lysosomes may provide means to revert multidrug resistance.

Furthermore, lysosomal membrane permeabilization has recently

emerged as an effective inducer of caspase-dependent and -

independent cell death [12], and several inducers of lysosomal

membrane permeabilization are presently under development as

anti-cancer drugs. For example, siramesine (a piperidine analogue

originally developed as an antidepressant) and BAMLET (a

complex of bovine lactalbumin and oleic acid), can trigger

lysosomal membrane permeabilization and non-apoptotic cell

death even in apoptosis resistant cancer cells [7,13].

Apoptosis and autophagy have been postulated as main cell

death mechanisms induced by Res i.e., [1,14,15]. Nevertheless, the

anticancer mechanisms induced by Pter remain unclear. In

agreement with other studies we show here that Pter induces
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growth arrest and cancer cell death [16]. Although Pter can

activate apoptosis, we show that this pathway is not essential for its

cytotoxic effect. Our results show that Pter induces destabilization

of the lysosomal membranes and release of lysosomal hydrolases

into the cytoplasm, thus leading to the activation of a caspase-

independent lysosomal cell death program.

Materials and Methods

Cell Culture and Treatments
The cell lines were purchased from the American Type Culture

Collection (ATCC). Human melanoma A375, human lung

carcinoma A549, and human colon adenocarcinoma HT29 were

cultured in Dulbecco’s modified Eagle’s medium (DMEM,

Invitrogen), and human breast adenocarcinoma MCF-7 in

RPMI-1640 medium (Invitrogen). The mediums were supple-

mented with 10% heat-inactivated fetal bovine serum (FBS,

Invitrogen), 100 units/ml penicillin (Invitrogen), and 100 ml/ml

streptomycin (Invitrogen). Cells were grown under standard cell

culture conditions (37uC, 5% CO2/95% air atmosphere) at a

density of 20,000 cells/cm2.

Cancer cells were plated and allowed to attach for 24 h. Then

cells were treated with Res (Sigma-Aldrich) or Pter (Green

Molecular) for 24, 48, and/or 72 h.

Cell Growth Analysis and IC50 Determination
Cell growth was analyzed using the Countess Automated Cell

Counter (Invitrogen). To evaluate IC50s in the presence of Pter or

Res we used the Sulphorhodamine B Toxicology Assay Kit

following manufacturer’s instructions (Sigma-Aldrich) and U.S.

NCI recommendations. Briefly, cells were seeded in 96-well plates

(5,000 cells/well) and treated with Pter or Res (Sigma-Aldrich) (0–

200 mM). Forty-eight hours after polyphenols addition cells were

fixed with 10% trichloroacetic acid. Cell viability was determined

by cellular staining with sulforhodamine B (0.4%) in acetic acid

(1%). Viability data were represented in semilog dose-response

curves. The IC50 values were calculated with Prism GraphPad

software, where the IC50 value represents the concentration of the

test item that induces a response halfway between the baseline and

a maximum response.

Flow Cytometric Analyses
Cells were treated with polyphenols for 24 h, washed in

phosphate buffered saline (PBS), trypsinized, collected with cold

PBS, pelleted (1,000 g for 2 minutes), fixed with 70% chilled

ethanol, and kept at 4uC overnight. Then these cells were pelleted

and washed once in PBS before DNA staining with propidium

iodide (Sigma-Aldrich), in the presence of RNase for 15 minutes.

Analysis of apoptotic and necrotic cell death was carried out

according to manufacturer instructions using Annexin V Alexa

Fluor 488 (Invitrogen) and propidium iodide. Briefly, cancer cells

were seeded and, 24 h later, were treated with different

concentrations of Pter or Res. After 48 h in the presence of

polyphenols cells were harvested and washed once in PBS, then

incubated with a solution containing Annexin V Alexa Fluor 488

in a buffer containing propidium iodide.

Lysosomal membrane integrity was evaluated using acridin

orange. In these experiments after Pter treatment (see above) cells

were stained with 2 mg/ml acridine orange (Invitrogen) which was

present in the culture medium for 15 minutes.

The DNA cellular content, cell death analysis and lysosomal

membrane integrity was analyzed with a BD FACSCanto II flow

cytometer (10,000 cell events were collected per sample).

5-Bromo-29-Deoxyuridine Incorporation Assay
Proliferation assays were done using the Roche Cell Prolifer-

ation ELISA BrdU kit according to manufacturer’s instructions.

Cells were plated in 96-well microplates and, 24 h later, treated

with Pter for 4 h. Then, cells were labeled by the addition of BrdU

(10 mM/well) for another 2 h. After that, cells were fixed and

DNA was denatured with FixDenat solution (200 ml for 30

minutes) at room temperature. Finally, antiBrdU-POD solution

was added for 90 minutes. Using a TMB-like substrate, immune

complexes were detected by measuring the absorbance at 370 nm

and 492 nm using a MultiskanH Spectrum (Thermo scientific).

Caspase Activity Assay
Detection of caspase-3/7 activity was performed with the Apo-

One Homogeneous Caspase-3/7 Assay Kit (Promega) according

to manufacturer instructions. The assay was configured for 96 well

plates (5,000 cells/well). Capase-3/7 activities were evaluated 24

and 48 h after polyphenols addition. This assay provides a

profluorescent substrate (Z-DEVD-R110) which is cleaved by

caspase-3/7 activity to generate the fluorescent rhodamine 110.

Fluorescence was measured by a Fluoroskan Ascent FL (Thermo

Labsystems) (excitation at 485 nm; emission at 538 nm).

Protein Extraction and Western Blot Analysis
After experimental treatments cells were rinsed twice with cold

PBS. Then, proteins were extracted from cultured cells by scraping

in ice-cold lysis buffer (CelLyticTM MT Mammalian Tissue Lysis/

Extraction Reagent, Sigma-Aldrich) containing a protease and

phosphatase inhibitors cocktail (Sigma-Aldrich). Equal amounts of

extracted proteins (30 mg/condition) were resolved using a

criterion XT bis-tris 4–12% gel (Bio-rad) and transferred to an

Immun-BlotTM PVDF membrane (Invitrogen). Blots were incu-

bated overnight at 4uC, separately, with the primary antibodies:

Rabbit polyclonal LC3A/B antibody (1:500) (Abcam); rabbit

monoclonal GAPDH antibody (1:1,000) (Cell signaling); rabbit

monoclonal p62 antibody (1:1,000) (Sigma-Aldrich); rabbit

monoclonal HSP70 antibody (1:200) (Enzo Life Science). Blots

were incubated for 1 h at room temperature with the appropriate

peroxidase-conjugated secondary antibody: Anti-rabbit IgG HRP-

linked antibody (1:1,000) (Cell signaling). Blots were visualized

using a chemiluminescence detection kit ECL western blotting

substrate (Pierce, Thermo Scientific) and the signals were captured

using a ChemiDocTM XRS+Imaging System (Bio-Rad). The

density of the bands was measured using Image Lab SoftwareTM

version 2.0.1 (Bio-Rad).

Confocal and Fluorescence Microscopy
A375-, A549-, MCF7-, and HT29-GFP-LC3 cells were seeded

out on coverslips in 24-well plates and allowed to attach for 24 h.

Then cells were treated with Pter (50 mM) for 24 h, or with

Concanamycin A (2 nM) (Sigma-Aldrich) or Rapamycin (100 nM)

(Sigma-Aldrich) for 1 h. Both control and treated cells were fixed

with paraformaldehyde (PFA) 4% for 10 minutes at 4uC. Cells

were washed twice with DPBS (Invitrogen), mounted on

microscope slides with ProLong Gold antifade reagent (Invitro-

gen), and, then, were visualized using a confocal laser microscope

(Leica TCS Sp2).

Lysosomal visualization was carried out after Pter treatment

using the fluorophore Lysotracker Red (Invitrogen). Briefly, cells

were seeded in 6-well cell culture plates. After 24 h of treatment

with Pter cells were stained according to manufacturer recom-

mendations (75 nM, 30 minutes) and imaged with a Nikon

Diaphot inverted microscope.

Anticancer Mechanisms Induced by Pterostilbene
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Lactate Dehydrogenase Assay
Cytotoxicity induction was determined by measuring lactate

dehydrogenase (LDH) activity released to the extracellular

medium. The LDH release assay was performed using a

citotoxicity detection kitplus (LDH) (Roche Diagnostics) according

to the manufacturer’s instructions. This kit determines spectro-

photometrically the amount of reduced formazan at 490 nm.

This measurement was done with a Multiskan Spectrum

(Thermo scientific). The LDH content of each sample was

calculated according to the following formula: Cytotoxicity

(%) = [(experimental value 2 low control)/(high control 2 low

control)] 6 100.

Cathepsin Activity Assays
Cancer cell lines were seeded in six well-plates (0.26106

cells/well) and, 24 h later, were treated with Pter (0–100 mM).

After removal of the medium, extraction buffer containing

different concentrations of digitonin (Sigma-Aldrich) was used to

separate cytosolic (20 mg/ml) and total (200 mg/ml) cathepsins.

When necessary, the concentration of digitonin was optimized

for different cell types. Cells were incubated with extraction

buffer for 15 minutes at 4uC on a rocking platform. Cysteine

and aspartate cathepsin activities were measured using the

fluorescent substrates z-fr-AFC (AFC = 7-Amino-4-trifluoro-

methylcoumarin) (excitation at 405 nm; emission at 510 nm)

(Enzo Life Sciences) and Mca-GKPILFFRLK(Dnp)-DR-NH2

[Mca = (7-methoxycoumarin-4-yl)acetyl; Dnp = dinitrophenyl]

(excitation at 320 nm; emission at 420 nm) (Enzo Life Sciences),

respectively. Pepstatin A (5 mg/ml) (Sigma-Aldrich) and Leu-

peptin (50 mg/ml) (Sigma-Aldrich) were used to inhibit the

activity of aspartyl peptidases and serine-cysteine proteases,

respectively.

Electron Microscopy
Cell monolayers were fixed with 2% glutardaldehyde in 0.1 M

phosphate buffer, pH 7.4, for 30 minutes, and with 2% osmium

tetroxide in water for 1 h. Then, samples were dehydrated with

ethanol and counterstained with uranyl acetate, and finally

embedded in TAAB resin (T002, Taab Laboratories). Cells were

sectioned at 2 mm and stained with toluidine blue. Selected

semithin sections were re-embedded and trimmed for ultrathin

sectioning. Ultrathin sections were stained with lead citrate and

examined in a Jeol JEM-1010 electron microscope.

siRNA Transfection
Cells were transfected with siRNA targeting HSPA1A and

HSPA1B (ON-TARGETplus SMARTpool, Dharmacon Re-

search, USA) at a final concentration of 25 nM per well. As

positive control we used a siRNA against glyceraldehyde

phosphate dehydrogenase (ON TARGETplus GAPDH Control

Pool, Dharmacon Research, USA). To account for the nonse-

quence-specific effects, siControl Non-Targeting Pool from

Dharmacon was used.

MCF7 and HT29 cell lines were seeded on 12-well plates

(75,000 cells/well) one day prior to transfection. DharmaFECT

1 siRNA Transfection Reagent (3 ml) was added to 98 ml of

serum free medium and incubated at room temperature for 5

minutes. Hsp70, negative or positive control siRNA (100 ml)

were added and incubated for another 20 minutes. The

transfection reagent/siRNA complex was mixed with 1 ml of

DMEM with 10% FBS and added to the cells. After siRNA

addition, the cells were incubated at standard culture conditions

(37uC, 5% CO2).

Statistical Analyses
Values are expressed as the mean 6 SD. All experiments were

repeated at least three independent times. Data were analyzed

using the Graph Pad Prism version 5.00. The significance of the

difference between the control and each experimental test

condition was analyzed by Student’s t test or one way ANOVA

followed by a Tukey-test. A value of P,0.05 was considered

significant.

Results

Pterostilbene Shows Higher Anticancer Potential than
Resveratrol

Structural modifications of the Res molecule can increase its in

vivo half-life without causing toxic side-effects in normal tissues

[17]. Treatment of human A375 (melanoma), MCF7 (breast

adenocarcinoma), A549 (lung cancer) and HT29 (colon cancer)

cells with Pter reduced tumor cell number in vitro in a

concentration- and time-dependent manner (Figure 1). IC50s

determined by Sulphorhodamine B showed that the growth

inhibitory effect of Pter was cell type-dependent, being much lower

for HT29 (Pter IC50 = 60,3 mmol/L; Res IC50 = 71,9 mmol/L) and

MCF7 (Pter IC50 = 44,0 mmol/L; Res IC50 = 56,6 mmol/L) cells

than for A375 (Pter IC50 = 14,7 mmol/L; Res IC50 = 25,5 mmol/L)

and A549 (Pter IC50 = 28,6 mmol/L; Res IC50 = 36,2 mmol/L)

cells. Notably, the IC50 values were lower for Pter than for Res in

all cases.

Pterostilbene Induces Cell Cycle Arrest and Blocks DNA
Synthesis

Microscopic analysis (data not shown) and data presented above

clearly showed that Pter induced cell death in all cancer cell lines

studied. In order to test whether the cell death was preceded or

accompanied by a growth arrest, we analyzed the effect of Pter on

cell cycle distribution at the 24 h time point. A375 and A549 cells

showed an arrest in the S phase of the cell cycle after 24 h of

treatment with 20 mM Pter (Figure 2A). A similar S phase arrest

was observed in HT29 cells upon treatment with 75 mM Pter, and

also MCF7 cells treated with 10–20 mM Pter showed a tendency to

arrest in the S phase (Figure 2A). Notably, higher concentration

(75 mM) of Pter significantly reduced the portion of A375 cells in

the S phase suggesting that the cells arrested in the S phase before

succumbing (Figure 2A).

To evaluate the effect of Pter on DNA synthesis we measured the

ability of cells to incorporate BrdU after 4 h incubation with

increasing concentrations of Pter. Akin to earlier reports on Res and

other polyphenols [14,15,18], Pter reduced the BrdU incorporation

in a concentration-dependent fashion in all cell lines.

Cell Death Induction by Pterostilbene is Time- and
Concentration-Dependent

The molecular mechanisms underlying the anticancer effects of

natural polyphenols are poorly defined. Res has been shown to be

a potent inducer of both apoptosis [1,14] and autophagy [1,15], as

well as a carcinogenesis inhibitor [19,20]. However, anticancer

mechanisms of its dimethylated analog, Pter, have not been

extensively analyzed. For this purpose we investigated the ability of

Pter ability to induce apoptosis, autophagy and necrosis.

First, we measured the activity of apoptotic effector caspases 3

and 7 (DEVDase activity) in cancer cells treated with Pter. Pter

induced a significant caspase 3/7 activation in A375 and A549

cells, but not in HT29 and MCF7 cells (Figure 3A). Accordingly,

Pter induced the translocation of annexin V to the cell surface

Anticancer Mechanisms Induced by Pterostilbene
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(marker of apoptosis) only in A375 and A549 cells (Figure 3B). To

evaluate the contribution of apoptosis on cell death induction we

used a cell-permeable pan-caspase inhibitor z-VADfmk. Notably,

z-VAD-fmk failed to inhibit the Pter-induced reduction in cell

number (Figure 3C). Positive controls of apoptosis and zVADfmk

inhibition capability are shown in Supporting Information (Figure

S1). These results suggest that caspase-independent mechanisms

may play a role in Pter-induced cytotoxicity.

To investigate the involvement of autophagy in Pter-induced

cytotoxicity, we analyzed the levels of LC3II and P62/

SQSTM1 that should increase and decrease, respectively, upon

autophagy induction [21,22]. Notably, 24 h treatment with Pter

induced a concentration-dependent accumulation of both LC3II

(Figure 4A) and P62 (Figure 4B) proteins in all four cell lines as

analyzed by immunoblotting. Furthermore, confocal and fluo-

rescence microscopy of A375, A549, MCF7, and HT29 cells

Figure 1. Effect of pterostilbene and resveratrol on tumor cell growth in vitro. A375, A549, HT29 and MCF7 cells were incubated for 24, 48
or 72 h with indicated concentrations of Pter or Res. Actual cell number was analyzed using the Countess Automated Cell Counter. Results were
expressed as relative proliferation index 6 SD (n = 4) where control is 100% (*P,0.05).
doi:10.1371/journal.pone.0044524.g001

Anticancer Mechanisms Induced by Pterostilbene
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expressing a GFP-tagged LC3 revealed a clear increase in the

number of large LC3-positive vesicles upon 24 h treatment with

Pter (Figures 4A bottom, and 4C). Visualization of numerous

large (diameter up to 2 mm) vesicles surrounded by a double

membrane by transmission electron microscopy confirmed that

these vesicles are enlarged autophagosomes (Figure 4C). These

results are suggestive of autophagosome accumulation due to

inhibited autophagic flux [22].

To determine the ability of Pter to induce necrotic cell death, we

investigated the integrity of the plasma membrane by measuring

the release of cytosolic lactate dehydrogenase (LDH) to the culture

supernatant [23]. The LDH release was stimulated in all cell lines

after 24 h treatment with Pter at concentrations$50 mM

(Figure 5A). Akin, flow cytometry analyses with Annexin V-FITC

and propidium iodide showed just a moderate necrosis increase in

A375 and A549 (Figure 5B). Although, LDH release was increased

after 48 and 72 h of Pter treatment (Figure 5A), inhibition of

Figure 2. Effect of pterostilbene on cell cycle distribution and DNA synthesis. A) Tumor cells were seeded in six well-plates and treated
24 h later with indicated concentrations of Pter. After 24 h, cells were fixed and stained with propidium iodide as explained under material and
methods. The DNA content of the cells was analyzed by flow cytometry (10,000 cell events were collected per sample). Representative cell cycle
histograms for Control and Pter-treated cells are shown. Results are expressed as % of total cells 6 SD (n = 3) (*p,0.05 Vs. Control). B) DNA synthesis
was evaluated by BrdU incorporation after 4 h of incubation with Pter followed by 2 h with Pter and 10 mM BrdU.
doi:10.1371/journal.pone.0044524.g002
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necroptosis, a serine–threonine kinase receptor-interacting protein

1 (RIP1) dependent form of necrosis [24], did not affect Pter-

induced cell death (Figure 5 C). Thus indicating that other type of

cell death induction different of apoptosis, autophagy, and necrosis

may be activated by Pter. Positive controls showing the capability

of necrostatin-1 to inhibit necroptotic cell death are shown in

Supporting Information (Figure S2).

Pterostilbene Induces Lysosomal Membrane Alterations
Lysosomal leakage has been described as an inducer of cell

death [7,25], and lysosomal destabilization has been shown to

be a common consequence of microtubule-targeting drugs [26].

Thus, to further elucidate the mechanisms underlying Pter-

induced cancer cell death, we studied its possible effects on

lysosomes. For this purpose we evaluated lysosomal membrane

alterations by different methods. First, lysosomal volume was

assayed using acridine orange staining and flow cytometry 24 h

after exposure to Pter. Acridine orange is a metachromatic

fluorescent cationic dye that emits red light when in high

concentration inside the lysosomes, and green light in the

cytosol and nucleus where it mainly stains DNA and RNA and

is less concentrated than in acidic lysosomes. We evaluated the

red fluorescence as an indicator of lysosomal volume [27].

Significant increases in red fluorescence were observed in all

Figure 3. Pter induces caspase-independent cell death. A) Caspase-3/7 (DEVDase) activities were evaluated 24 and 48 h after addition of Pter.
Results are expressed as a relative index of fluorescence 6 SD (n = 3) when compared with control (100%). The results were statistically analyzed by
ANOVA and contrasted by the Tukey test (*p,0.001; **p,0.01 Vs. Control). B) Induction of apoptosis was assayed by staining with Annexin V. The
total percentage of Annexin V-positive cells was determined by flow cytometry 48 h after treatment with DMSO or with increasing concentrations of
Pter (*p,0.001 Vs. Control). C) Effect of Pter on tumor cell number in the presence of 20 mM pancaspase inhibitor zVAD fmk, which was added 1 h
prior to the addition of 50 mM Pter or vehicle (1.5 ml/ml DMSO). Cell number was analyzed 24 and 48 h later. Results are expressed as relative
proliferation index 6 SD (n = 3) where control is 100%.
doi:10.1371/journal.pone.0044524.g003
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tumor cell lines upon treatment with Pter 50 mM (Figure 6A).

As shown by fluorescence microscopy of cells stained with

lysotracker, Pter induced an increase in the number and/or size

of lysosomes (Figure 6B) We observed that these changes were

higher in A375 and A549 than in HT29 and MCF7 cells

(Figure 6A, B).

Next, we analyzed the release of lysosomal cysteine (B, L and

H) and aspartate (D and E) cathepsins to the cytosol as a

marker of lysosomal membrane permeabilization. Remarkably,

Pter caused a concentration-dependent increase in the cytosolic

cathepsin activities in all four cell lines without affecting the

total cellular activities after 24 h of treatment (Figure 6C, D).

To determine the contribution of cysteine (B, L, and H) and

aspartate (D, and E) cathepsins to cell death, we inhibited the

activity of aspartyl peptidases with pepstatin A, and the serine

cysteine proteases with leupeptin. As shown in Figure 6E Pter

induced the same effect in the presence or absence of these

enzyme inhibitors.

Tumor Resistance to Pterostilbene Correlates with HSP70
Cellular Levels

Heat shock protein 70 (HSP70) is an evolutionary conserved

protein that promotes the survival of stressed cells, where

stabilization of lysosomal membranes is one of the protective

mechanisms [28]. Different studies have shown a relationship

between Res and HSP70 expression, although taking into account

the protector role of the protein, HSP70 levels could regulate the

distinct grade of susceptibility shown by the tumor cell lines. To

characterize the higher resistance of HT29 and MCF7 to Pter

treatment (Figure 1, Figure 2, Figure 3A, B and Figure 4C) we

analyzed the possible involvement of HSP70. As shown in

Figure 7A, Hsp70 levels were found to be higher in HT29 and

MCF7 cells than in A375 and A549. Moreover, siRNA-mediated

Figure 4. Effects of pterostilbene on autophagic flux. Proteins were detected by western blot with LC3A/B (A) or SQSTM1/p62 antibodies
(B). Graphic shows the percentage of induction of eGFP-LC3 punctuation/aggregation in control and Pter (50 mM) conditions after 24 h of
treatment (A). Densitometric analysis of SQSTM1/p62 correlated with GAPDH levels. The ratio in untreated control cells was set to 100% (B).
MCF7-eGFP-LC3 cells were visualized by confocal and transmission electronic microscopy after treatment with 50 mM Pter for 24 h or 100 nM
Rapamycin for 1 h (C).
doi:10.1371/journal.pone.0044524.g004

Anticancer Mechanisms Induced by Pterostilbene
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reduction of HSP70 in HT29 and MCF7 (Figure 7B) cells resulted

in a marked cell death induction (Figure 7C) and a higher

lysosomal membrane susceptibility to Pter (Figure 7D). Therefore,

HSP70 levels, indeed, correlate with the sensitivity of the tumor

cells to Pter-induced cytotoxicity.

Discussion

Cancer is a genetic and epigenetic disease which is associated

with unlimited replicative potential, reduced dependence on

growth-promoting signals, resistance to growth-inhibitory signal-

ing, evasion of cell death activation, sustained angiogenesis, as well

as the ability for tissue invasion and metastatic spread [5].

Although new therapies may extend patients’ lives for days,

months, or even years, the quality of life added is in most cases

questionable. Thus, the development of therapies that could

improve efficacy without compromising a reasonable quality of

life, are urgently required. It is in this particular sense that natural

polyphenols may offer some hope [29].

Anticancer mechanisms elicited by natural polyphenols have

been extensively studied in the last years. However, reported

effects claimed for polyphenols must be carefully evaluated since

large differences, even controversial, are found depending on

experimentals [29]. Res, one of the most studied polyphenols,

shows the ability to induce apoptosis and autophagy, and has

antiproliferative effects [1,14,15,30,31]. However, its antioxidant

properties may potentially reduce oxidative stress thereby inhib-

iting apoptosis and enhancing cell survival [32]. Although potent

anticancer effects have been shown in cultured cells, potential

inhibition of cancer growth by Res in vivo is strongly limited due to

its low bioavailability [2]. Therefore, it is important to take into

consideration other chemical structures, which may preserve

anticancer properties while having higher bioavailability.

It is in this context that Pter, a natural dimethylated analog of

Res with a longer half-life [29], represent an attractive option. Pter

showed higher anticancer effects than Res in all the tumor cell

lines assayed (Figure 1). Nevertheless, A375 melanoma and A549

lung cancer cells were more susceptible to the anticancer action

than HT29 colon cancer and MCF7 breast cancer cells. Thus

suggesting that, the reduction in tumor cell number induced by

Pter depends on differences in the cell lines assayed.

To assay if pterostilbene shows a preferential effect on cancer

cell lines versus their normal counterparts we used normal human

primary epidermal melanocytes from neonatal foreskin and

epithelial lung cells (BEAS2B). The growth inhibitory effect in

vitro was determined by Sulphorhodamine B and showed that

Pter’s IC50 for melanocytes (Pter IC50 = 52,1 mmol/L) was similar

to that found for breast (MCF7) and colon (HT29) cancer cell lines

(see Results section). Whereas epithelial lung cells showed a much

lower IC50 value (Pter’s IC50 = 1,8 mmol/L), but again similar to

Figure 5. Effect of pterostilbene on necrosis induction. A)
Release of LDH activity to the extracellular medium. Cells were exposed
to Pter for 24, 48 and 72 h. Results are expressed as relative LDH
activities 6 SD (n = 3) where control was set to 100%. B) Propidium
iodide fluorescence was plotted against annexin-V fluorescence 24 h
after treatment. Results are expressed as total percentage of necrotic
cells 6 SD (n = 3). C) Effect of Pter on tumor cell number in the presence
of the necroptosis inhibitor 5-(Indol-3-ylmethyl)-(2-thio-3-methyl)hy-
dantoin (Nec-1, Calbiochem). Nec-1 25 mM was added 1 h prior to the
addition of 50 mM Pter. Cell number was analyzed 24 and 48 h later.
Results are expressed as relative proliferation index 6 SD (n = 3) where
control is 100%. The results were statistically analyzed by ANOVA and
contrasted by the Tukey test (***p,0.001; **p,0.01; *p,0.05 Vs.
Control).
doi:10.1371/journal.pone.0044524.g005
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Figure 6. Pterostilbene induces lysosomal membrane permeabilization. A) Flow cytometry analysis of acridine orange staining after 24 h
incubation with indicated concentrations of Pter. Increases in red fluorescence (x-axis), observed in treated cells, indicated changes at the lysosomal
membrane. B) Microscopic images of Lysotracker red-stained cells untreated or treated with indicated concentrations of Pter for 24 h. C) Cytosolic
cysteine cathepsin (zFRase) activity expressed as percentage of total activity (n = 7) was measured 24 h after Pter addition. D) Cytosolic aspartyl
cathepsin activity expressed as percentage of total activity (n = 7) after 24 h of Pter treatment. The results were statistically analyzed by ANOVA and
the Tukey test (*p,0.05; **p,0.01; ***p,0.001 vs. control). E) Cathepsins B and D inhibitors, Leupeptin and Pepstatin A, were added 1 h prior to the
addition of 50 mM Pter. Cell number was analyzed 24 h later.
doi:10.1371/journal.pone.0044524.g006
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Figure 7. HSP70 depletion sensitizes cells to Pter. A) Representative HSP70 and GAPDH (loading control) immunoblots of proteins extracted
from indicated cells. Densitometric analysis of the immunoblots (n = 3) are shown below. B) Inhibition of HSP70 expression by siRNA. Cells were
transfected with HSP70 siRNA or GAPDH SiRNA (positive control). Protein levels were measured by western blotting. C) HT29 and MCF7 cells were
seeded and transfected with HSP70 siRNA 24 h later. Pter was added at 24 h post-transfection. Cell viability was performed by sulforhodamine B
colorimetric assay 48 h later. The number of replicates per experiment was at least six (n = 3). The results were statistically analyzed by ANOVA and
the Tukey test (*p,0.05; ***p,0.001 vs. control). D) Cysteine and aspartyl cathepsins were determined in HT29 and MCF7 cells 72 h post- HSP70
siRNA transfection and 24 h after Pter treatment (n = 6). The results were statistically analyzed by ANOVA and the Tukey test (***p,0.001 vs. Pter
50mM).
doi:10.1371/journal.pone.0044524.g007
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those found for A375 or A549 cells. Nevertheless, this is no

surprise. Different polyphenols, such as e.g. resveratrol, curcumin,

green tea polyphenols, or pterostilbene, have anticancer activity in

vivo but without showing any relevant toxicity for the host at

therapeutic effective doses (e.g. [4,33,34]). Naturally this apparent

biological paradox is intriguing. However it seems obvious that

under in vivo conditions other mechanisms, besides polyphenols

(but related to), play a relevant role. In this sense the tumor

microenvironment is of particular interest. For instance, in a

previous report, we showed that intravenous administration to

mice of pterostilbene and quercetin, two structurally related and

naturally occurring small polyphenols, inhibits in vivo metastatic

growth of highly malignant B16 melanoma F10 (B16–F10) cells

[35].

Pterostilbene and quercetin inhibit bcl-2 expression in

metastatic cells, which sensitizes them to vascular endotheli-

um-induced cytotoxicity [35] (a physiological defense mecha-

nism against metastatic cell invasion [36]). In addition

polyphenols increased endothelial NO synthase expression in

the vascular endothelium, thus favoring endothelial NO-induced

tumor cell cytotoxicity during the process of cancer cell-vascular

endothelium interaction [35]. A complex network of intercellu-

lar signaling mechanisms, as well as intracellular signaling

cascades, may also regulate these interactions within the

metastatic microenvironment [37]. This hypothesis opens a

fantastic array of possibilities which, although far beyond the

scope of a single paper, deserve further research.

Polyphenols like Pter show potent cytostatic effects [38,39].

Although, in our experiments we detected lower DNA synthesis

capability and cell cycle arrest in S phase (Figure 2A, B), as suggested

by others [40], the high reduction in cell number elicited by Pter can

be only understood if cell death mechanisms are activated.

Apoptosis has been previously postulated as the main cell death

program activated by Pter [38,40,41]. However, concentrations

unreachable under in vivo conditions have been usually tested in vitro

($75 mM). We evaluated the possible contribution of apoptotic cell

death by analyzing caspase 3/7 activity and the consequence of

their inhibition on the rate of tumor cell growth. Although, caspases

are clearly activated by Pter in A375 and A549 cells, pre-incubation

with the pancaspase inhibitor zVADfmk was unable to reduce cell

death induction (Figure 3A, C). Moreover, HT-29 and MCF7 cells,

latter of which do not express caspase-3 [42], failed to activate

effector caspases and induce apoptotic caspase-dependent cell death

upon Pter treatment (Figure 3A, B). These results suggest that Pter-

induced cell death may also occur via caspase-independent

mechanism. For this reason we investigated the role of other types

of cell death in Pter-induced cytotoxicity.

Macroautophagy (hereafter referred to as autophagy) is an

essential conserved cellular process by which lysosomes degrade

and recycle damaged organelles and macromolecules and

maintain cellular energy levels under nutrient and growth

factor deficiency [43,44]. Although this process regulates the

cellular energy homeostasis during nutrient limitation, autoph-

agy may also represent an independent mode of programmed

cell death [45,46]. Indeed, autophagy activation has been

proposed as an alternative mechanism of cell death induced by

polyphenols [15,40]. However, contradictory results are pre-

sented in the literature [47]. Our data show that Pter induces

an accumulation of autophagosomes (Figure 4C) as well as the

conversion of cytosolic LC3-I to its lipidated membrane-

associated form LC3-II (Figure 4A). Because LC3-II itself is

degraded by autophagy, the relative amount of LC3 at a single

time point alone, does not necessarily indicate an increase in

autophagic flux [22]. P62/sequestosome 1 is a common

component of protein aggregates being degraded by autophagy

[48], and thus the expression level of this protein serves as a

complementary marker for autophagic flux. Pter induced a clear

accumulation of P62/sequestosome 1 indicating an inhibition of

autophagic flux (Figure 4B).

Microtubules have been suggested to be essential for vesicular

and autophagic traffic and consequently, vincristine treatment

induces an accumulation of autophagosomes [26,49]. This

accumulation is caused by a failure in the fusion of autophago-

somes with lysosomes [50], the increase in autophagosome

formation rate [51], or the combination of the two [49]. LC3-II

and P62/sequestosome 1 accumulation and the increment in

the acidic compartment and lysosomal size suggest that fusion of

autophagosomes and lysosomes is alterated. Indeed, natural

polyphenols and synthetic analogs are able to inhibit tubulin

polymerization acting like anti-mitotic drugs [52]. Lysosomal

size alterations by different treatments have been reported to

correlate with reduced lysosomal stability and sensitization to

non-apoptotic cell death pathways [26,53]. Accordingly, Pter

induced an increase in the size of lysosomes, lysosomal

membrane destabilization (Figure 6A, B) and intraluminal

content release (Figure 6C, D).

Taken together our data show that Pter-induced cytotoxicity was

not primarily the consequence of classic apoptosis, autophagy, or

necrosis. Recently, a lysosomal cell death program has been

presented as an alternative cell death pathway for demising highly

apoptosis-resistant tumor cells [7]. In this sense, we show that Pter

promotes the release of lysosomal cathepsins and other hydrolases

into the cytosol. Although Res has been shown capable to induce

cancer cell death through lysosomal cathepsin D [54] and L [55]

release, in our experiments the inhibition of lysosomal cathepsins by

pharmaceutical protease inhibitors did not delay the death process

(Figure 6E). Therefore, lysosomal membrane permeabilization

could be an epiphenomenon of the death process or alternatively,

the cytotoxic effect induced by the massive release of lysosomal

hydrolases simply cannot be inhibited by blocking the activity of

cathepsins D, E, B, L and H. Due to the numerous proteases present

inside the lysosomes, and the impossibility to inhibit all of them

simultaneously without causing massive alterations in cellular

functions, we analyzed the protective effect of HSP70. Interestingly,

resistance to Pter treatment correlates with cellular HSP70 levels

(Figure 1 and Figure 7A). In fact, inhibition of HSP70 expression

(Figure 7B) increased Pter-induced cytotoxicity (Figure 7C) and

lysosomal cathepsins release (Figure 7D).

Our results demonstrate that tumor cell death induction elicited

by Pter is preferentially mediated through lysosomal membrane

permeabilization and depends on HSP70 levels.

Supporting Information

Figure S1 Positive controls of apoptosis and zVADfmk
inhibition capability. Activation of apoptosis and the ability of

zVADfmk to inhibit the process were determined studying cleaved

PARP (Cell Signaling) by western blot. Cells were treated with

Camptothecin [A375 (50 nM); A549, HT29, and MCF7 (500 nM)]

(A), or Pter (20 mM-50 mM) (B) for 24 and 48 h, in absence or

presence of 20 mM pancaspase inhibitor zVAD fmk, which was

added 1 h prior to the addition. C) Percentage of apoptotic cells

after camptothecin treatment was analyzed by fluorescence

microscopy in absence or presence of zVAD fmk.

(TIF)

Figure S2 Positive controls showing the capability of
necrostatin-1 to inhibit necroptotic cell death. Cells were

treated with TNF-a (50 nM) or TNF-a+zVADfmk (20 mM) in
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presence or absence of 30 mM necrostatin-1 for 48 h to show the

capability of necrostatin-1 to inhibit necroptosis. The amount of

cell death induced by TNF-a was evaluated by the tripan blue

exclusion assay.

(TIF)
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