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Abstract
Down syndrome (DS) is a multi-faceted condition resulting in the most common genetic form of
intellectual disability. Mouse models of DS, especially the Ts65Dn model, have been pivotal in
furthering our understanding of the genetic, molecular and neurobiological mechanisms that
underlie learning and memory impairments in DS. Cognitive and pharmacological insights from
the Ts65Dn mouse model have led to remarkable translational progress in the development of
therapeutic targets and in the emergence of DS clinical trials. Unravelling the pathogenic role of
trisomic genes on human chromosome 21 and the genotype-phenotype relationship still remains a
pertinent goal for tackling cognitive deficits in DS.

Introduction
Trisomy of human chromosome 21 (Hsa21) causes overexpression of more than 500 genes,
resulting in the multi-faceted genetic condition characterised as Down syndrome (DS) [1,2].
With an incidence of approximately one in 650-1000 live births worldwide, DS is the most
common genetic form of intellectual disability [3]. Accelerated and precocious aging occurs
in DS, as does early-onset Alzheimer's disease (AD), which is manifested in over 75% of
people with DS by the age of 65 [3-5]. Learning and memory impairments in DS are marked
by perturbed neurodevelopment, altered neuronal structure, and synaptic plasticity deficits.
The cognitive profiles in DS vary in both expressivity and severity; conceivably from allelic
differences in Hsa21 genes and the complex interplay with other non-Hsa21 genes,
epigenetic influences and environmental factors. Understanding these genotype-phenotype
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correlations may help develop pharmacological interventions. Mouse models of DS,
including the Ts65Dn mouse, recapitulate many cognitive phenotypes of DS and have been
instrumental in elucidating the molecular pathogenesis underlying DS, mapping Hsa21
genes to various phenotypes, and assessing the effect of potential therapeutic targets [6-8].
Herein, we highlight recent insights obtained from the Ts65Dn mouse model to unravel
mechanisms of learning and memory impairments in DS; and how these findings have led to
recent breakthroughs in pharmacological interventions.

Cognitive insights from the Ts65Dn mouse
Neurodevelopment

Neurodevelopment is perturbed in DS as demonstrated by a reduced brain volume, reduced
number of neurons, and abnormal neuronal morphology in several brain regions; particularly
the granule cells in the cerebellar cortex [9]. Compared to healthy infants, brains of DS
infants show an increase in total dendritic branching and higher total dendritic length, which
then steadily decreases to lower than normal levels during adolescence and into adulthood.
These structural and dendritic differences may contribute to perturbed cortical information
processing and decreased synaptic plasticity [10]. It is proposed that elongation of the cell
cycle length, from decreased Sonic hedgehog growth factor response, results in reduced
proliferation rates, leading to impaired neurogenesis [9]. A deficient mitotic response to the
Sonic hedgehog growth factor in the Ts65Dn mice is proposed to cause the decreased
proliferation of the cerebellar granule cells and an alteration in neural crest progenitor cells,
which could contribute to the DS-associated craniofacial dysmorphology [11,12]. Cerebellar
granule cell deficits in neural progenitor cells as well as an elevated rate of cell death have
been documented in other mouse models of DS [13,14]. Oxidative stress levels indicative of
elevated rates of neuronal apoptosis are also increased in DS fibroblasts [15,16].

GABAergic system and synaptic plasticity
The majority of the forebrain is comprised of excitatory glutamatergic projection neurons
and approximately 10% inhibitory γ-aminobutyric acid (GABA) interneurons. Neuronal
development and cognitive functioning is dependent on a balanced ratio of excitatory and
inhibitory neurons. A developed and functioning cortex evolves from the neurogenesis of
the proper neurotransmission of excitatory and inhibitory neurons, in distinct sites of origin,
followed by the migration and differentiation of these neurons within the neocortex [17-19].
Alterations in neuronal morphology, function, and neurotransmission have been proposed to
cause synaptic plasticity deficits and impairments in long-term potentiation (LTP), a neural
correlate for learning and memory.

Neurophysiological studies in the Ts65Dn mouse have revealed enlarged boutons and
dendritic spine heads in cortical and hippocampal neurons and excessive inhibition leading
to failed LTP induction in the hippocampus and fascia dentate [20-22]. This increased
inhibitory input has been attributed to an altered efficiency of the GABAergic system in the
DG of Ts65Dn mice, rather than a decrease in inhibitory synapse density, and is a proposed
mechanism for synaptic plasticity defects in DS [21-26]. Electrophysiological data revealed
enhanced GABAA and GABAB receptor-mediated neurotransmission with an accompanied
reduction of paired-pulse ratios of evoked inhibitory postsynaptic currents (IPSCs);
suggesting increased presynaptic release of GABA. These data correlate with larger, but not
increased, number of inhibitory synapses found in the DG of Ts65Dn mice.

Contribution of Hsa21-encoded genes
The perturbed neurodevelopment and the over-inhibition in DS and Ts65Dn mice is likely
caused by triplicated genes on Hsa21 (Table 1). Oligodendrocyte transcription factor 1
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(Olig1) and lineage transcription factor 2 (Olig2) genes are implicated in neurogenesis and
oligodendrogenesis [27,28]. Normalising these two genes to disomic levels in Ts65Dn mice
corrected the enhanced inhibitory interneuron phenotype, providing a causal explanation of
the gene-dosage imbalance of Olig1 and Olig2 genes in producing the excitatory-inhibitory
(E-I) imbalance [29].

Enhanced postsynaptic GABAB signalling could be explained by the triplication of the
KCNJ6 (potassium inwardly-rectifying channel, subfamily J, member 6) gene and increased
expression of the protein it encodes, Kir3.2, a channel that modulates postsynaptic GABAB
receptors. Overexpression of Kcnj6 in Ts65Dn mice leads to increased Kir3.2 channel
density, increased current, and increased inhibitory GABAB signalling [30]. A recent study
also documented enhanced GABAB/Kir3.2 signalling in DG granule cells of Ts65Dn mice
[25]. Kcnj6 overexpression has also been suggested to lead to an imbalance between
GABAB and GABAA inhibition of CA1 pyramidal neurons through a pathway specific
mechanism to perturb hippocampal circuitry functioning [31]. Synaptojanin 1 (SYNJ1)
encodes a nerve terminal protein that is implicated in membrane trafficking and is another
Hsa21 gene that is essential for maintaining GABAergic neurotransmission stability [32].

DYRK1A (dual specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A) is heavily
implicated in neurodevelopment and is strongly expressed in neural precursor populations
during embryonic neurogenesis. It is conceivable that altered DYRK1A expression levels
perturb developmental pathways, leading to postnatal neurodevelopmental difficulties [33].
Overexpression of DYRK1A has been found to decrease neuron-restrictive silencer factor
(REST/NRSF) chromatin remodelling complex levels and to deregulate genes that
contribute to DS-associated neuronal phenotypes, including dendritic growth impairments,
pluripotency, and embryonic stem cell fate [34,35]. RCAN1 (regulator of calcineurin 1) is a
negative regulator of calcineurin that subsequently modulates NMethyl-D-aspartate receptor
(NMDAR) activation kinetics by decreasing the probability of opening time of the NMDAR
channel. DYRK1A directly phosphorylates RCAN1, leading to reduced nuclear factor of
activated T-cells (NFATc) translocation to the nucleus. NFATc transcription factors are
regulators of vertebrate development and destabilisation of this regulatory circuit through
triplication of DYRK1A and RCAN1 may contribute to the enhanced Tau phosphorylation
seen in DS [36,37].

DSCAM (Down syndrome cell adhesion molecule) has a critical role in dendrite
morphology and neuronal wiring. Overexpression of DSCAM in hippocampal neurons
inhibits dendritic branching; impairments in NMDA-mediated regulation of DSCAM local
mRNA translation may be one mechanism through which aberrant dendritic morphology
and synaptic plasticity deficits occurs during development [38]. Overexpression of SIM2
(single-minded homolog 2), a transcriptional repressor, dramatically reduces levels of DBN1
(Drebrin 1), a neuronal gene that modulates dendritic spine cytoskeletal dynamics at
postsynaptic terminals. The reduction of DBN1 levels could explain the morphological
neuronal changes and the resulting learning and memory deficits prevalent in DS [39,40].

Sod1 (superoxide dismutase 1) overexpression also reduces hippocampal neuronal
progenitors and LTP, enhances sensitivity to degeneration and apoptosis, and up-regulates
GABAergic neurotransmission [41,42]. Amyloid protein (APP) is strongly implicated in
neurodegeneration, and triplication of this gene has been associated with early onset AD
[43]. However, recent evidence for a role in neurodevelopment for APP stems from studies
in which lowering of beta-amyloid levels, an APP metabolite that is the main constitute of
amyloid plaques in AD, improved cognitive deficits in Ts65Dn mice [44].
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Pharmacological insights from the Ts65Dn mouse
The identification of behavioural, morphological, and neurobiological alterations in the
Ts65Dn mouse model have led to invaluable insights into the pathogenesis of DS that allow
for potential therapeutic targets to be explored (Table 2).

SSRIs and mood stabilisers
Chronic treatment in Ts65Dn mice with fluoxetine, a serotonin selective reuptake inhibitor
(SSRI), increased neurogenesis by enhancing the proliferation and survival of neurons in the
DG [45]. Recently, studies examined whether early pharmacotherapy with fluoxetine could
improve neurogenesis. Untreated Ts65Dn neonatal mice exhibited impaired cellular
proliferation and demonstrated normal levels of serotonin (5-HT), but a lower expression of
5-HT1A receptors and brain-derived neurotrophic factor (BDNF) levels [46]. Treating
Ts65Dn neonatal mice with fluoxetine not only rescued impaired proliferation and increased
the number of surviving cells, but also restored the expression of 5-HT receptors and BDNF
levels to that of control mice [46]. Lithium has also been examined as a potential treatment
to improve neurogenesis. Treating Ts65Dn mice with lithium restored cellular proliferation
in the subventricular zone [47]. These studies demonstrate the potential of early
pharmacotherapy to correct for neurogenesis impairments by using readily available and
approved drugs.

Neuroprotective peptides
Pharmacological intervention with neuroprotective peptides has also been demonstrated to
promote neurodevelopment. Vasoactive intestinal peptide (VIP) levels are altered in DS; and
cortical astrocytes in Ts65Dn neonatal mice demonstrate reduced responsiveness to VIP
stimulation [48,49]. Activity-dependent neuroprotective protein (ADNP) and activity-
dependent neurotrophic factor (ADNF) are neuroprotective neurotrophic factors released by
VIP stimulation of astrocytes [50]. Combined treatment of DS cortical neurons with active
fragments of ADNP and ADNF, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively,
increased neuronal survival, restored morphological changes and protected from oxidative
damage and apoptosis [51]. The efficacy of these neuroprotective peptides in preventing
developmental delay and glial deficits through prenatal treatment was examined in Ts65Dn
mice. Untreated Ts65Dn mice displayed developmental delays in achieving motor and
sensory milestones, downregulated ADNF expression, and glial deficits [52]. Prenatal
treatment with NAP+SAL reversed all these deficits [52]. This study identifies a potential
intervention during pregnancy that could improve developmental delays and glial deficits in
DS.

GABAA antagonists
To restore the E-I imbalance, several pharmacological interventions have aimed to decrease
the excessive inhibition of GABAergic neurotransmission prevalent in Ts65Dn mice
[25,26]. Ts65Dn mice have been treated with non-competitive GABAA antagonists,
pentylenetetrazol (PTZ) and picrotoxin (PTX), which inhibit GABAA receptors. Chronic
treatment with PTZ reversed the deficits seen in the novel object recognition task (NORT)
and spontaneous alternation tasks in Ts65Dn mice [53]. Surprisingly, the improvement in
cognition and LTP was sustained for up to 2 months after initial treatment, suggesting a
lasting effect of treatment on neuronal circuit modification. Chronic treatment with PTZ for
8 weeks in Ts65Dn mice did not modify sensorimotor abilities and locomotor activity in
home cages; however it did rescue learning and memory performance in the Morris water
maze (MWM) task [54]. Treating Ts65Dn mice with PTX also reversed deficits in NORT
that were exhibited in untreated mice; these improvements were retained for up to 2 weeks
[53]. In untreated Ts65Dn mice, impaired LTP was coupled with reduced synaptic activation
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of NMDAR due to excessive inhibition of DG cells [21]. Administering PTX to suppress
inhibition resulted in improved induction of LTP and normalised NMDAR-mediated
currents [21]. Recently, chronic treatment in Ts65Dn mice with an inverse agonist selective
for the α5 subunit of the GABAA benzodiazepine receptor (α5IA) improved cognitive
deficits in the MWM and normalised Sod1 overexpression with an enhancement in learning-
evoked immediate early genes expression levels [55]. Encouraged by this body of evidence,
Roche, a healthcare company, recently announced the commencement of a trial to examine
the cognitive impact of reducing GABAergic neurotransmission in the hippocampus using a
drug selective for the α5 subunit of GABAA receptors [56].

NMDAR antagonists
Learning is also improved by the non-competitive NMDAR antagonist, memantine, which
reduces abnormal activation of glutamate neurotransmission. Administration of memantine,
an open-channel antagonist, rescued Ts65Dn performance deficits in a fear conditioning test
[57] and improved spatial learning in MWM task [58]. Long-term memantine treatment
improved spatial reference memory in a MWM task and recovered object discrimination
ability in a NORT, but spontaneous activity remained unaltered [59]. Upon histopathological
analysis, no morphological modifications indicative of neuroprotection were observed in the
neurons of the basal forebrain or locus coeruleus (LC), however, an increase in BDNF
expression was documented in the hippocampus and frontal cortex [59]. Interestingly, acute
treatment of memantine 30 mins prior to testing was sufficient to enhance performance on
the NORT [59]. Despite mouse studies demonstrating promising benefits of memantine, a
recently published clinical trial reported that memantine is not an effective pharmacological
treatment for cognitive decline or dementia in people who are above 40 years old and have
DS [60]. This suggests that therapies that are effective in people with AD may not
necessarily confer benefits in DS.

Conclusion
Triplication of Hsa21 genes leads to a plethora of multi-system pathologies that characterise
DS, rendering it complex to understand. Despite this, since the discovery of DS in the 19th

century, the life expectancy of people with DS has increased from an average age of 12
years old in the 1940s to 60 years of age at present due to dramatic advances in medical
treatment and social intervention [3]. Mouse models of DS, especially the Ts65Dn mouse,
have provided an unequivocal contribution to dissecting the genetic, molecular and
neurobiological processes that underlie the syndrome, and in deciphering the genotype-
phenotype relationship of overexpressed Hsa21 genes in causing the clinical manifestation
of DS. This approach has successfully led to the development of pharmacological targets
and the emergence of DS clinical trials. However, to fully understand the genetic basis of
DS and its consequent perturbations still remains a challenge and further investigations are
necessary to tackle various aspects of the syndrome. The development and study of DS
mouse models that more closely resemble the gene-dosage imbalance in humans with DS,
and genome-wide association studies of individuals with DS, will be instrumental in
identifying dosage-sensitive genes and the pathogenic mechanisms underlying DS-
associated phenotypes.
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Highlights

DS causes perturbed synaptic plasticity and excessive inhibitory neurotransmission

Ts65Dn mouse model recapitulates behavioural and cognitive phenotypes of DS

Several triplicated Hsa21-associated genes in Ts65Dn mice are implicated

Insights from Ts65Dn have led to pharmacological interventions and clinical trials
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Table 1

Physiological and pathogenic role of affected Hsa21 genes

Hsa21 genes Physiological role Pathogenic role Reference

OLIG1/OLIG2 Implicated in neurogenesis and
oligodendrogenesis

Causes GABAergic excitatory-inhibitory
imbalance

Lu et al., 2002; Zhou &
Anderson, 2002; Chakrabarti et

al., 2010

KCNJ6 Effector protein for GABAB

receptors; modulates potassium
channel current and density

Contributes to enhanced GABAB signalling Best et al., 2007; Best et al., 2011;
Kleschevnikov et al., 2012

SYNJ1 Nerve terminal protein implicated in
membrane trafficking and synaptic
transmission

Inability to maintain stable GABAergic
neurotransmission

Luthi et al., 2001

DYRK1A Regulates signalling and cell
proliferation; involved in
neurogenesis and neurodevelopment

Deregulates genes implicated in dendritic
growth, cell pluripotency and embryonic
stem cell fate; deregulates NFAT circuits
and may cause enhanced Tau
phosphorylation

Altafaj et al., 2001; Lepagnol-
Bestel et al., 2009; Canzonetta et
al., 2008; Arron et al., 2006; Jung

et al., 2011

RCAN1 Inhibits calcineurin-dependent
signalling pathways affecting
development; modulates NMDAR
activation

Decreases opening probability of NMDAR
channel; deregulates NFAT circuits and
may cause enhanced Tau phosphorylation

Arron et al., 2006; Jung et al.,
2011

DSCAM Cell adhesion molecule with a critical
role in dendrite morphology and
neuronal wiring

Inhibits dendritic branching and causes
aberrant synaptic plasticity; aberrant
NMDA-mediated regulation of DSCAM
local translation

Alves-Sampaio et al., 2010

SIM2 Transcriptional repressor implicated
in synaptic plasticity and morphology

Reduces DBN1 levels causing
morphological cytoskeletal changes at
postsynaptic terminals in dendritic spines

Ooe et al., 2004; Hayashi et al.,
1996

SOD1 Cytoplasmic protein implicated in
oxidative stress

Reduces hippocampal neuronal progenitors
and LTP; enhances sensitivity to
degeneration and apoptosis; up-regulates
GABAergic neurotransmission

Gahtan et al., 1998; Levkovitz et
al., 1999

APP Cell surface receptor and
transmembrane precursor protein that
promotes transcriptional activation

Forms the protein basis of amyloid plaques
prevalent in AD and DS; mechanism of
action unknown

Rovelet-Lecrux et al., 2006;
Netzer et al., 2010
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Table 2

Pharmacological interventions to tackle DS-associated cognitive deficits

Neurobiological Pathway Pharmacological Compound Cognitive Effect References

SSRIs and mood stabilisers

Fluoxetine Increases neurogenesis by enhancing
proliferation and survival of neurons;

restores 5-HT receptor and BDNF levels

Clark et al., 2006; Bianchi et
al., 2010

Lithium Increases neurogenesis by restoring cell
proliferation in subventricular zone

Bianchi et al., 2010

Neuroprotective peptides NAPVSIPQ+SALLRSIPA Protection from oxidative damage and
apoptosis; prenatal treatment prevents

developmental delays, glial deficits and
aberrant ADNF expression

Brenneman et al., 2004;
Busciglio et al., 2007; Toso et

al., 2008

GABAA antagonists

Pentylenetetrazol Improves hippocampal-based learning in
behavioural tasks and enhances LTP

Fernandez et al., 2007; Rueda
et al., 2008

Picrotoxin Improves hippocampal-based learning in
behavioural tasks, enhances LTP and

normalises NMDAR-mediated currents

Kleschevnikov et al., 2004;
Fernandez et al., 2007

α5IA Improves hippocampal-based learning in
behavioural tasks, normalises Sod1

overexpression and enhances learning-
evoked immediate gene expression levels

Braudeau et al., 2001; Roche,
2011

NMDAR antagonists Memantine Improves hippocampal-based learning and
fear conditioning in behavioural tasks,

reduces excessive glutamate
neurotransmission and increases BDNF

levels

Costa et al., 206; Rueda et al.,
2010; Lockrow et al., 2010;

Mohan et al., 2009
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