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Abstract
Partial separability (PS) and sparsity have been previously used to enable reconstruction of
dynamic images from undersampled (k, t)-space data. This paper presents a new method to use PS
and sparsity constraints jointly for enhanced performance in this context. The proposed method
combines the complementary advantages of PS and sparsity constraints using a unified
formulation, achieving significantly better reconstruction performance than using either of these
constraints individually. A globally convergent computational algorithm is described to efficiently
solve the underlying optimization problem. Reconstruction results from simulated and in vivo
cardiac MRI data are also shown to illustrate the performance of the proposed method.

Index Terms
constrained reconstruction; partial separability modeling; low-rank matrices; sparsity; dynamic
imaging; real-time cardiac MRI

I. Introduction
This paper addresses an image reconstruction problem that often arises in dynamic imaging,
such as cardiac imaging [1], dynamic contrast-enhanced cancer imaging [2], time-resolved
angiographic imaging [3], and functional neuroimaging [4]. We focus on dynamic Fourier
imaging, in which the measured data can be modeled as
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(1)

where ρ(x, t) is the desired image function and η(k, t) is the measurement noise.
Conventional imaging methods often assume ρ(x, t) to be support-limited in (x, f)-space and
reconstruct ρ(x, t) from samples of s(k, t) acquired at the Nyquist rate. This paper addresses
the problem of reconstructing ρ(x, t) from highly undersampled data, which frequently arises
in accelerated dynamic imaging. Although conventional reconstruction methods cannot
handle sub-Nyquist data, it was demonstrated very early that high-quality images can be
reconstructed from undersampled data with appropriate constraints [5], [6]. Over the last
few years, significant advances have been made in theory and algorithms for solving the
undersampled data reconstruction problem, resulting in a large number of new methods
(e.g., [6]–[34] and references therein). These methods can be roughly grouped into two
classes: (a) sparsity-constrained methods, including the popular compressed sensing
methods and its many variants [7]–[15], and (b) methods utilizing spatiotemporal correlation
in various forms, such as limited spatiotemporal support [16]–[21] and spatiotemporal
partial separability (PS) [6], [22]–[34].

Extending our early conference papers [28], [35], this paper proposes a new method to use
PS and sparsity jointly for image reconstruction from highly undersampled data. PS and
sparsity constraints each have different strengths and limitations for dynamic image
reconstruction. The proposed method combines the complementary advantages of both
constraints by using spatial-spectral sparsity to regularize PS model-based reconstruction,
achieving much better performance than using either of these constraints individually.

Several other methods have also been proposed recently to use joint PS and sparsity
constraints for dynamic imaging. For example, Gao et al. proposed a robust principal
component analysis-based model for dynamic computed tomography [31], which represents
dynamic images as a linear combination of a PS component and a sparse component. This
image model is distinct from our proposed formulation, in which the dynamic image is
assumed to have both PS and sparsity characteristics simultaneously. k-t SLR [32], [33] is
similar to our proposed method except that it enforces the PS constraints implicitly through
the nuclear norm or Schatten p-norm. We will demonstrate later in the paper that using the
PS constraints explicitly in the proposed method has both imaging and computational
advantages.

For convenience, we summarize here the key notation and symbols used throughout the
paper. We use  to denote the field of complex numbers. We denote vectors by bold lower-
case letters (e.g., d), and matrices by bold uppercase letters (e.g., X). xi and Xi,j denote the
ith and (i, j)th entry of x and X, respectively. XH is the Hermitian transpose of X, and  is
the adjoint operator of a linear operator . In denotes the n × n identity matrix.  represents
the identity operator. vec(X) denotes the vector constructed by concatenating the columns of
X. We use the following vector norms (or quasinorms): a) ℓ0 quasi-norm ||d||0 ≜ Σi 1(di ≠ =
0), where 1(·) is the indicator function, b) ℓ1 norm ||d||1 ≜ Σi |di|, and c) ℓ2 norm

. Denoting the ith singular value of X as σi, we also use the following matrix

norms: a) Frobenius norm , b) nuclear norm ||X||* ≜ Σi σi, and c) Schatten

p-norm .
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II. The proposed method
A. Formulation

We use a discrete image model in which ρ(x, t) is represented by its samples on a grid of N

spatial locations  and M time instants . Let

(2)

(the Casorati matrix [24]) and ρ = vec(C) ∈  be the matrix and vector representations of
ρ(x, t). We further assume that D samples are acquired from s(k, t). Then, (1) can be written
as

(3)

where d ∈  contains the measured data, Φ ∈  is the measurement matrix that
models the operations of the spatial Fourier transform and (k, t)-space sparse sampling, and
η ∈  is the noise vector.

In accelerated dynamic imaging, D ≪ NM and (3) is highly underdetermined. Here we
propose a new method to solve this underdetermined system of equations, by imposing the
PS and sparsity constraints jointly using the following formulation:

(4)

In this formulation (called “PS-Sparse”), the penalty functions Rr(·) and Rs(·) are used to
incorporate the PS and sparsity constraints respectively, as explained below.

A1. PS constraints—The PS constraint assumes that ρ(x, t) is spatiotemporally partially
separable in the following sense [24]:

(5)

where L is the order of the PS model, and  and  are sets of spatial and
temporal functions, respectively. The PS model was proposed to capture spatiotemporal
correlation often observed in dynamic image sequences [24]. It is easy to show that with (5),

any set of functions of the form  are linearly dependent if L̂ > L. The PS
constraint defined in (5) also implies that the rank of C is upper bounded by L [24]. As a
consequence, C has at most 2L(M + N − L) real degrees of freedom [27], which is often
much smaller than the total number of elements in C. Selection of L for (5) often needs to
balance the representation capability of the model and the numerical condition of the
resulting model fitting problem. When L is too low, the model may fail to capture some
temporal features, although the corresponding model fitting problem is often well-
conditioned. When L is too high (with respect to the number of measurements available), the
model fitting problem is often ill-conditioned, which can amplify modeling errors and
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measurement noise. A key contribution of this paper is a new algorithm that enables high-
order PS model to be used without the concomitant ill-conditioning problem.

The PS constraint can be enforced in several ways. One way is to enforce it “implicitly”
using the nuclear norm or Schatten p-norm (p < 1). In this case, we have Rr(ρ) = λr||C||* or

, which are respectively convex and non-convex surrogates for rank(C). These
implicit PS constraints have been investigated for dynamic imaging in [32], [33].

Another way is to enforce the PS constraint explicitly with a known L [24], [29], by using

(6)

Using (6) is equivalent to forcing C to have the following decomposition,1

(7)

where Us ∈  represents a basis for the spatial (or column) subspace of C, and Vt ∈ 
contains a basis for the temporal (or row) subspace of C.

An even stronger way to enforce the explicit PS constraints is to assume that Vt in (7) is
known, or can be accurately estimated prior to full image reconstruction. This assumption is
generally valid when specialized data acquisition schemes are used to sample (k, t)-space
[8], [22]–[27]. For example, if s(k, t) is fully sampled at the temporal Nyquist rate for a
number of k-space locations, then the dominant (rank-L) temporal subspace of these
measurements can be extracted using singular value decomposition (SVD). Assuming that
this subspace is representative of the dominant subspace of C, Vt can be obtained from the L
dominant right singular vectors from the above SVD. This approach was originally
described in [22]–[24], and similar approaches have also recently been proposed in [8], [25].
2

In this paper, we focus on imposing the explicit PS constraints with a known Vt (or
estimated as described above). We further assume, without loss of generality, that Vt has L
orthonormal rows. It will be demonstrated later in the paper that this approach has
advantages over using implicit PS constraints.

A2. Sparsity constraints—Dynamic image sequences often have spatiotemporal features
that lead to approximately sparse representations [8], [9]. Here we assume that Ψ ρ is sparse
(or has a small ℓ0 norm) under a certain sparsifying transform Ψ. Generally, the choice of Ψ
is application-dependent. In this paper, we use the temporal Fourier transform as an example
to derive our proposed algorithm. Directly enforcing the sparsity constraints through the ℓ0
norm is not desirable, although greedy algorithms for ℓ0 minimization exist [36]. An
important development in compressed sensing is the establishment of a theoretical
foundation for the use of surrogate cost functions that are more tractable to optimize.
Specifically, the convex ℓ1 norm is much easier to optimize and has proven optimality for
sparsity-constrained inverse problems under certain conditions [37], [38], although

1Note that Us and Vt in (7) are not unique, but the columns of Us span the same column subspace and rows of Vt span the same row
subspace.
2The method in [8] uses a full-rank Vt (i.e., rank(Vt) = M) in contrast to a low-rank Vt here. With a full-rank Vt, the rank constraint is
not imposed and Vt serves as a spatiotemporal transform in [8].
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noncovex surrogate functions, such as the ℓq quasinorm (0 < q < 1) [39], can also be used. In
this paper, we use the ℓ1 norm to impose the sparsity constraint and the corresponding
penalty function is Rs(ρ) = λs||Ψρ||1. This constraint and its variants have been widely used
for dynamic imaging in previous work (e.g., [8]).

A3. Reconstruction with joint PS and sparsity constraints—Under the
assumptions described above, the solution to (4) is given by Ĉ = ÛsVt, where Ûs is given by

(8)

where Ω :  →  represents the (k, t)-space sampling operator, Fs ∈  is the spatial
Fourier matrix, Vf = VtFt, and Ft ∈  is an orthonormal temporal Fourier matrix. The
solution to (8) reduces to the basic PS-constrained reconstruction [24] (referred to as Basic-
PS) when λ = 0, i.e.,

(9)

and to a basic (x, f)-domain sparsity constrained reconstruction [8] (referred to as Basic-
Sparse) if L = M and rank(Vt) = M, i.e.,

(10)

The proposed method incorporates both the PS and sparsity constraints in a single
formulation, providing some desirable advantages over (9) and (10) summarized here (to be
demonstrated in Section III): a) In Basic-PS, the model order L cannot be high because it is
limited by the number of measurements available. In principle, for the solution of the Lth
order Basic-PS to be well-defined, each k-space location has to have at least L temporal
samples. In practice, many more measurements are often needed to avoid an ill-conditioned
model fitting problem. The proposed method overcomes the limitations with the sparsity
constraint serving as an effective regularizer. b) A major limitation of Basic-Sparse is that
spatiotemporal blurring often appears when (k, t)-space is highly undersampled. This is
because many different sparse solutions can closely match the highly undersampled (k, t)-
space data. By imposing a PS constraint with L ≪ M, the proposed method effectively
exploits spatiotemporal correlations in the data to significantly reduce the set of candidate
sparse solutions. This frequently yields better reconstruction results, removing blurring in
the sparsity-constrained reconstructions.

B. Algorithm
In this section, we present a globally convergent, efficient solution algorithm to solve (8).
The cost function of (8) is convex and coercive over ; therefore, there exists at least one
optimal solution [40]. In most cases of interest, strict convexity also holds, which guarantees
uniqueness of the optimal solution to (8). We focus here on finding any optimal solution.
Note that (8) is a large-scale, non-smooth convex optimization problem for which a number
of algorithms can be adapted (e.g., [41]–[45]). We develop an algorithm based on additive
half-quadratic regularization [42], [46], [47] with continuation [42], [45], [48]. The proposed
algorithm is efficient and simple to implement, although computational efficiency could
potentially be improved by considering other algorithms. In the following, we first present
an overview of the proposed algorithm in Section II-B1, then describe each step of the
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algorithm in detail from Section II-B2 to II-B5, and finally present a convergence analysis in
Section II-B6.

B1. Summary of Algorithm—Because the regularization term in (8) is non-
differentiable, solving (8) directly can be challenging. We approximate it with the following
differentiable cost function,

(11)

where ϕ(t) :  →  is the Huber function defined as

(12)

The parameter α controls the accuracy of the approximation of (8) by (11); Note that as α
→ 0, (11) approaches (8).

In Section II-B2, we will show that for a fixed α, solving (11) is equivalent to solving the
following half-quadratic minimization problem:

(13)

where G is an auxiliary matrix. Note that (13) is non-quadratic in G but quadratic in Us.

Equation (13) can be solved by a simple alternating minimization procedure. Specifically, at

the (ℓ + 1)th iteration, we first optimize (13) over G with a fixed , i.e.,

(14)

and then minimize (13) with respect to Us with a fixed G(ℓ+1), i.e.,

(15)

General solutions to these two problems are described in Sections II-B3 and II-B4,
respectively, and a faster computational algorithm is described in Section II-B5 for the case
of Cartesian Fourier sampling. The above alternating minimization procedure is repeated

until G(ℓ+1) and  converge. This iterative procedure can be viewed as a majorize-
minimize algorithm for solving (11).

For a fixed non-zero α, the solution to (11) only yields an approximation to the solution of
(8). To obtain a better solution, we apply a continuation scheme in which we gradually
reduce α to zero. The continuation procedure starts with a large value of α, for which the
optimization problem is approximately quadratic. In this case, the alternating minimization
typically converges rapidly. For each subsequent continuation step, we decrease the value of
α and use the previous solution as an initialization for the next round of optimization. This
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procedure is repeated until the cost function of (11) well approximates that in (8).
Convergence of this procedure is described in Section II-B6.

B2. Equivalence of (11) and (13)—Note that the Huber function ϕ(t) can be
equivalently expressed as [47]

(16)

where g is an auxiliary variable. With (16), the regularization term in (11) can be written as

(17)

Therefore, minimizing (11) is equivalent to minimizing (13).

B3. Solution of (14)—Equation (14) is separable with respect to each entry of G, and
G(ℓ+1) can be obtained analytically through [49]

(18)

where  :  →  is a soft-thresholding operator defined as

(19)

for any Q ∈ .

B4. Solution of (15)—Equation (15) is a standard linear least squares problem, and its
optimal solution is given by the following normal equations:

(20)

where (U) ╜ Ω(FsUVt) and (U) ╜ UVf. It can be shown that   is positive definite
when Vt has full row rank. Since   is also positive semidefinite, the coefficient matrix
corresponding to  is positive definite, guaranteeing a unique solution to (20).
Since we assumed that the rows of Vt are orthonormal, it can be shown that the rows of Vf
are also orthonormal, and thus (20) can be rewritten as

(21)

Equation (21) can be solved efficiently using iterative matrix solvers. Our implementation

uses the conjugate gradient (CG) algorithm, initialized with  to improve computational
speed.
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B5. Efficient computation of (15) for Cartesian Fourier sampling—If Fs is
orthonormal, as is often the case with Cartesian Fourier sampling, (15) can be decoupled to
enable much more efficient computation. Specifically, in this case, (15) can be converted
into

(22)

where  and . Equation (22) has a decoupled structure, which
can be understood by rewriting

(23)

where un ∈  represents the nth row of Uk, and Ωn is the sampling operator that takes
samples from the nth row of UkVt. The solution to (22) can be shown to be equivalent to

(24)

for n = 1, …, N, where dn is the measured data from the nth row of Ω*(d) and  is the nth
row of B(vℓ). To obtain the solution to (24), we solve

(25)

for n = 1, …, N, where (u) ╜ Ωn(uVt). Note that each of the normal equations in (25) has
only L unknowns. Equation (25) implies that the coefficient matrix of the linear least
squares problem (22) can be permuted to have a block diagonal structure. There are a total
of N blocks, each of which has L × L elements. Such a block diagonal matrix guarantees that
CG has fast convergence (CG converges to the optimal solution within L iterations [50],
assuming exact arithmetic).

B6. Convergence analysis—The proposed algorithm has the following convergence
properties. First, as α → 0, the optimal solution of (13) converges to that of (8). Second, for

a fixed α, the sequence {(G(ℓ), )} generated by the alternating minimization algorithm
converges to an optimal solution of (13). Third, some entries of G have finite convergence,
and the other entries of G and Us have q-linear (quotient-linear) convergence rates. The first
property follows from the fact that the continuation procedure belongs to a special case of
the quadratic penalty method and thus has guaranteed global convergence (see Proposition
4.2.1 in [40]). The derivation of the remaining two properties is more involved, and is given
in the Appendix.

III. Application example
In this section, we show some representative results from simulation and in vivo real-time
cardiac MRI experiments to illustrate the performance of the proposed method.
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A. Simulation results
A complex-valued numerical cardiac phantom was used for our simulation studies. The
simulation was designed to emulate single-channel, real-time cardiac MR experiments with
variable heart rate and variable respiratory rate. The phantom was created from real human
cardiac MR data which were collected using retrospective ECG-gating during a single
breath-hold and used to generate a time series of images representing a single prototype
cardiac cycle. We applied multiple time-warps to this prototype to simulate heart rate
variability, and the individual time-warped heart-beats were concatenated together to form a
long image sequence spanning multiple cardiac cycles. Subsequently, respiration was
modeled by applying an additional quasi-periodic spatial deformation [51] to this image
sequence. The simulated cardiac and respiratory variability were consistent with statistics
from the PhysioBank archive [52]. Acquisition parameters for our simulations included:
acquisition matrix size = 200 × 256, field of view (FOV) = 273 mm × 350 mm, effective
spatial resolution = 1.36 mm × 1.36 mm, slice thickness = 6 mm, and TR = 3 ms.

A Cartesian Fourier-based sampling scheme was used for our simulations, part of which is
shown in Fig. 1(a). We acquire one k-space line per TR in an interleaved fashion, alternating
between sampling one line from central k-space and sampling one line from outer k-space.
The lines from central k-space are acquired in a sequential order, while the lines acquired
from outer k-space follow a random order. Let Nc and Np respectively denote the number of
lines for central and complete k-space. With this (k, t)-space sampling pattern, one full set
of k-space lines (called a “data frame”) is acquired in a time interval of 2(Np − Nc)TR. The
total acquisition time Ta is 2Ndf (Np − Nc)TR, with Ndf being the total number of data
frames.

In image reconstruction, we assume that the entire data acquisition interval can be divided
into subintervals of length Tm, as illustrated in Fig. 1(b), during which temporal signal
variations are negligible. Under this assumption, the measured data within each Tm interval
can be treated as an instantaneous snapshot. This kind of temporal modeling is commonly
used in real-time imaging, although other types of temporal modeling, such as the
bandlimited model in [30], could also be used.

Using the above sampling and temporal modeling schemes, the measured data can be
partitioned into two sets. One set contains the fully sampled central k-space data with high
temporal resolution, and the other contains the sparsely sampled data with high spatial
resolution. We determine Vt from all the data in the fully sampled region of k-space as
described in Section II-A [8], [22]–[27]. Note that with this scheme for sampling and Vt
estimation, Vt is automatically synchronized temporally with all the data used for image
reconstruction. Also Vt can represent general temporal variations (e.g., periodic or
aperiodic) in the data.

Throughout all the simulations, we used Nc = 8 and Np = 200 for data acquisition. We used
Tm = 2NcTR = 16TR for the temporal modeling. As a consequence, 16 readout lines (i.e., 8
percent of the full k-space data) were measured at each reconstructed time point, and the
reconstructions were performed at a frame rate of 21 images per second (i.e., an effective
temporal resolution of 48 ms).

A1. General evaluation—We compared PS-Sparse with Basic-PS and Basic-Sparse,
using simulated data for Ta = 35.3 s (i.e., Ndf = 32). We performed Basic-PS reconstruction
for 1 ≤ L ≤ 32. With the proposed sampling scheme, the Basic-PS solution is unique for
these values of L, since Ndf (equal to the minimum number of times each k-space line is
sampled) is always greater than or equal to L. We also performed PS-Sparse reconstructions
using the same data set for 1 ≤ L ≤ 800. Note that in our simulation setup, L = M = Ta/Tm =
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800 is the full model order, for which PS-Sparse corresponds to Basic-Sparse. We manually
chose the regularization parameter λ for PS-Sparse at every 10 model orders (including the
full model order) to minimize the following reconstruction error:

(26)

where Cg ∈  is the gold standard.

As a comparison, Eckart-Young (EY) approximation [50], defined as

(27)

with L ranging from 1 to 800 was also computed from the gold standard using SVD. The
rank-L EY approximation represents the best possible performance that any order-L PS
model can achieve. The error of the EY approximations reflects the underlying model
mismatch between the PS model and the ground truth.

The reconstruction errors for these simulations are shown in Fig. 2. Note that when L is
small, both Basic-PS and PS-Sparse have large reconstruction errors, due to the limited
capability of the low-order PS models. As L increases, the reconstruction accuracy of Basic-
PS and PS-Sparse improves, as expected. However, as we continue to increase L (e.g.,
beyond 16), the Basic-PS reconstructions quickly deteriorate because the inverse problem
becomes increasingly ill-conditioned. This ill-conditioning problem is nicely overcome by
PS-Sparse, with sparsity as a regularizer, as shown in Fig. 2(b). As L approaches the full
model, PS-Sparse reduces to Basic-Sparse and the reconstruction error becomes worse.

To illustrate the reconstruction improvement of PS-Sparse over Basic-PS and Basic-Sparse,
a set of mid-systolic cardiac snapshots are shown in Fig. 3; the corresponding temporal
variations from a vertical line through the left ventricle are shown in Fig. 4. At very low
model orders (such as L = 8), the PS constraint is too restrictive and both Basic-PS and PS-
Sparse reconstructions suffer from severe blurring (e.g., in the endocardial border and
papillary muscles). Increasing the model order to 16 benefits both reconstruction methods.
The advantages of PS-Sparse over Basic-PS become clearer as the model order further
increases. For example, at L = 32, the Basic-PS reconstruction has severe artifacts due to ill-
conditioning, which are removed in the PS-Sparse reconstruction. The PS-Sparse
reconstruction remains stable for much higher model orders (e.g., L = 60). When L equals
the full model order, the PS-Sparse reconstruction reduces to the Basic-Sparse
reconstruction, and image artifacts, such as spatiotemporal blurring, appear.

To complement the results in Figs. 3 and 4, reconstructions of four different cardiac phases,
ranging from end-systole to end-diastole in a cardiac cycle, are shown in Fig. 5. As can be
seen, the PS-Sparse reconstructions are consistently better than the other reconstructions
across all cardiac phases.

A2. Influence of Ta—We have also evaluated PS-Sparse with respect to different data
acquisition window lengths, which provides useful insight into the performance of PS-
Sparse in accelerating imaging experiments. The simulation study was done with Ta = 26.5,
35.3, 44.2, and 53.0 s (i.e., Ndf = 24, 32, 40 and 48). Image reconstruction was done using
Basic-PS, Basic-Sparse, and PS-Sparse, with L = 8, 16, and 24 for Basic-PS and PS-Sparse.
As before, we manually selected the regularization parameter of each method for each data
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acquisition window length to optimize their performance. Fig. 6 shows the reconstruction
errors as a function of Ndf. The reconstruction errors of Basic-PS of all three model orders
improve as Ndf increases, as expected, because longer data acquisition windows resulted in
better conditioning of the PS model fitting. This effect becomes more pronounced for
higher-order PS models (e.g., L = 24). For Basic-Sparse, since the ratio of the number of
measurements to the number of reconstructed spatiotemporal voxels remains the same for
different acquisition window lengths, the reconstruction error of Basic-Sparse stays at about
the same level for different values of Ndf. For PS-Sparse, the reconstruction error is
relatively less sensitive to Ndf for both high and low model orders, and is lower than that of
either Basic-PS (with matched model order) or Basic-Sparse for a given Ndf.

Fig. 7 shows the reconstructions of one mid-diastolic phase using Ndf = 24 and 48. When L
= 8, the PS constraint causes significant blurring in both Basic-PS and PS-Sparse
reconstructions, which did not improve as the length of data acquisition window increases.
For L = 24, Basic-PS reconstructed a higher quality image, though this only occurred with a
relatively long data acquisition (Ndf = 48). With shorter data acquisition windows, the Basic-
PS reconstructions have serious artifacts due to ill-conditioning problem. In contrast, PS-
Sparse with the same model order reconstructs higher-quality images at both Ndf = 24 and
48. Although the Basic-Sparse reconstructions are relatively stable for Ndf = 24 and 48, they
both suffer from significant blurring artifacts. To better illustrate the image artifacts, we
show the error images of these reconstructions in Fig. 8, which were obtained by subtracting
the reconstructions from the gold standard.

A3. Influence of noise—We have also investigated the noise sensitivity of PS-Sparse
using simulations. We simulated data acquisition with Ta = 35.3 s (i.e., Ndf = 32), and
contrast-to-noise ratios (between the blood pool and background) of 20 and 10.
Reconstructions were performed using Basic-PS, Basic-Sparse, and PS-Sparse with L = 24
and manually-selected regularization parameters. We include a video clip of these
reconstruction results in the supplementary material. As can be seen, the Basic-PS
reconstructions suffer from noticeable artifacts at both noise levels. Basic-Sparse
reconstructions are also corrupted by significant spatiotemporal blurrings. These problems
were nicely overcome by PS-Sparse.

A4. Comparison with implicit PS reconstruction—Lingala et al. recently proposed
to use implicit PS constraints based on the Schatten p-norm along with a sparsity constraint
for dynamic image reconstruction [32], [33]. The reconstruction problem was formulated as

(28)

where p = 1 was used in [33], and p < 1 in [32].

We compared PS-Sparse with the above two methods, denoted as NN-Sparse and Sch-
Sparse, respectively. We used (x, f)-domain sparsity constraints for our comparisons for the
sake of consistency, noting however that [32] used an alternative sparsity constraint based
on spatiotemporal smoothness. The data was simulated with Ta = 26.5 s (i.e., Ndf = 24). For
PS-Sparse, we used L = 32 and manually selected λ. For NN-Sparse and Sch-Sparse, we
manually chose the regularization parameters λs and λr to optimize their performance. We
chose p = 0.1 for Sch-Sparse. Note that Sch-Sparse is nonconvex and subject to local
minima, but that our results were insensitive to the initialization in this case. Fig. 9 shows
reconstructions from the end-diastolic and end-systolic cardiac phases. Although Sch-Sparse
has slightly better performance over NN-Sparse, its reconstructed spatial and temporal
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images still suffer from significant blurring and artifacts. In contrast, the corresponding PS-
Sparse reconstructions show higher spatial and temporal fidelity than both the NN-Sparse
and Sch-Sparse reconstructions.

The superior performance of PS-Sparse can be attributed to the use of the explicit PS
constraints. Since the explicit PS constraints have fewer degrees of freedom than the implicit
PS constraints, the low-rank structure was enforced more strongly. It has been observed
empirically that low-rank matrix recovery using explicit PS constraints can be more
effective than the nuclear norm constraint when the number of measurements is small [53]–
[55].

Computationally, PS-Sparse is more efficient than NN-Sparse and Sch-Sparse, especially in
the case of Cartesian Fourier sampling. In addition to using explicit PS, PS-Sparse also
employs a pre-determined temporal subspace, resulting in a much smaller number of degrees
of freedom and a significantly simplified computational problem. In addition, the proposed
solution algorithm avoids computation-intensive SVD evaluations used in the
implementations of NN-Sparse [33] and Sch-Sparse [32]. We implemented these methods
on a 2×Intel® Quad-Core Xeon® 3.16GHz workstation with 48GB RAM running
MATLAB® R2011b on a Linux platform. In the experiments described above, PS-Sparse
took 11 minutes while NN-Sparse and Sch-Sparse each took more than 2 hours based on the
implementations described in [32], [33]. However, it should be noted that a faster
augmented Lagrangian algorithm has been implemented on graphics processing units [56],
leading to significant reductions in computation time compared to the implementations in
[32], [33]. Our proposed method can also benefit from similar implementation, although in-
depth evaluation of computational efficiency are beyond the scope of this paper.

B. In vivo results
In this section, we show some representative results of applying PS-Sparse to real-time
cardiac imaging. Experimental data were collected from rats on a Bruker (Billerica, MA)
Avance AV1 4.7 T magnet, equipped with a 40 G/cm shielded gradient set and a 4-channel
array coil. A customized FLASH pulse sequence was used for data acquisition. Acquisition
parameters for in vivo experiments included: TR = 7.5 ms, TE = 2.4 ms, acquisition matrix
size = 128 × 128, FOV = 40 mm × 40 mm, effective spatial resolution = 0.31 mm × 0.31
mm, and slice thickness = 1.5 mm. A similar sampling pattern to Fig. 1(a) was used with Nc
= 1. All experiments were performed in compliance with federal and institutional regulations
and guidelines.

Image reconstruction was done using a sliding window method [57], Basic-PS, Basic-
Sparse, and PS-Sparse. For Basic-PS, Basic-Sparse and PS-Sparse, we used Tm = 2TR, (i.e.,
two readout lines for each reconstructed time point). The reconstructions were performed at
a frame rate of 67 images per second. We manually chose L = 16 for both Basic-PS and PS-
Sparse based on empirical evaluation of the reconstruction quality. Specifically, an initial
estimate of the model order was selected using the method described in [58]. We performed
image reconstruction for a range of model orders about this initial estimate, and chose the
final model order based on visual evaluation of reconstruction quality. The regularization
parameters for Basic-Sparse and PS-Sparse were chosen based on the discrepancy principle
[59]. The noise variance for the discrepancy principle was estimated from the variance of the
signal in high-frequency regions of k-space where measurement noise is dominant [60].

Some representative reconstruction results are shown in Fig. 10. The sliding window (SW)
reconstruction is included as a reference to illustrate the level of undersampling in (k, t)-
space as well as the noise level of the measured data. For Basic-PS and Basic-Sparse, the
reconstructions suffer from poor conditioning and blurring artifacts respectively, which is
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consistent with our simulation results. As can be seen from the last row of Fig. 10, PS-
Sparse produced much improved reconstructions in both magnitude and phase. A video clip
of these reconstructions is included in the supplementary material.

IV. Discussion
PS-Sparse makes use of specialized data acquisition and processing to pre-estimate the
temporal subspace of C. It results in a simplified problem that can be solved efficiently. Pre-
estimating the temporal subspace from a subset of the measured data (e.g., a number of fully
sampled central k-space points) is based on the assumption that this set of data and C share
the same temporal subspace. In addition to the results shown in this paper, this strategy has
been successfully used in a number of other dynamic MRI contexts [24], [26], [61].
However, it is worth noting that the use of the PS model itself does not require pre-
estimation of Vt, and reconstruction accuracy can be further improved by using all, rather
than just a subset, of the measured data to determine the temporal subspace [29], [30], [62].
The proposed method can be extended to simultaneously estimate Us and Vt from all of the
measured data. For example, the PowerFactorization algorithm can be used to perform this
extension [29], [30], [53], [62], in which Us and Vt are estimated in an alternating manner.
Some preliminary investigations indicate that this approach can further improve robustness
to PS modeling error and measurement noise, although the solution is computationally much
more challenging.

The examples shown in this paper made use of (x, f)-domain sparsity, which is a useful
constraint for real-time cardiac imaging. Extending the proposed method to other types of
sparsity constraints is mathematically straightforward. For example, we can reformulate the
reconstruction problem with joint PS and spatial total variation (TV) constraints. The
resulting optimization problem can be solved using the algorithm in [35]. Although the TV
constraints did not necessarily improve reconstruction results in that case, further
improvement could potentially be obtained with other sparsifying transforms.

Both PS-Sparse and Basic-PS use an explicit model order for image reconstruction.
Generally, choice of the model order L must be made to balance representational power, the
required number of measurements, and noise sensitivity. Because of the additional sparsity
constraints, PS-Sparse demonstrates improved robustness to the choice of the model order
compared to Basic-PS. In practice, this makes model-order selection easier for PS-Sparse
than for Basic-PS. However, in the absence of ground truth, defining meaningful
quantitative metrics to evaluate the performance of PS-Sparse under different model orders
is nontrivial and is an interesting open problem. Preliminary investigation on the use of
information-theoretic model-selection methods for this purpose has been done in [29], [62],
but further study is necessary to gain deeper insight.

PS-Sparse also requires the choice of the regularization parameter λ. In our simulation
studies, the regularization parameters were manually tuned for optimal performance of the
algorithms, but this was only possible because we knew the ground truth. Although
automatic selection of optimal regularization parameters is still an open problem, a number
of methods have been proposed [59], including: a) discrepancy principle-based method, b)
L-curve method, and c) generalized cross-validation method. For processing our in vivo
experimental data, we used the discrepancy principle-based method to select λ, which
yielded good empirical results. It is also worth reiterating that in PS-Sparse, the sparsity
constraint serves as a regularizer to stabilize the PS model. So a large range of λ values
would produce similar reconstruction results, as long as stability is achieved. However, if λ
is chosen too big, PS-Sparse would overemphasize the sparsity constraint, resulting in
blurring artifacts.
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The simulations and experiments presented in this paper used a random sampling pattern
that can lead to large k-space jumps between subsequent phase encodings. This kind of
sampling is reasonable for certain types of pulse sequences, such as the FLASH sequence
used in our in vivo experiment. However, abrupt changes in the phase encoding gradient
pattern could cause problems like eddy currents, which can lead to undesirable image
artifacts for pulse sequences like balanced SSFP [63]. Previous work has addressed such
problems by slightly reducing the randomness of the sampling pattern to obtain a trajectory
with reduced eddy current artifacts [63], [64]. To enable PS-Sparse with balanced SSFP, we
can use the same type of approaches to modify the sampling pattern. Preliminary
simulations (not shown in the paper) indicate that PS-Sparse has similar performance with
these modified trajectories.

This paper is focused on presenting a general image reconstruction method that can be
applied to a variety of dynamic imaging applications. Although improved performance was
demonstrated in real-time cardiac imaging, systematic assessment of the clinical utility of
PS-Sparse still requires further investigation with respect to specific clinical applications
(e.g., cardiac functional analysis and wall motion abnormality detection). PS-Sparse can be
subject to many of the limitations shared by other constrained reconstruction methods. In
particular, accelerated data acquisition can come at the risk of the potential loss of image
features, and the usefulness of the proposed method for specific clinical applications will be
dependent on application-specific data characteristics and the image features of clinical
interest. Some preliminary results have demonstrated the potential utility of PS-Sparse for a
range of dynamic imaging applications, including first-pass myocardial perfusion imaging
[61], [65], dynamic speech imaging [66], and parameter mapping [67].

V. Conclusion
This paper presented a new method for image reconstruction from highly undersampled (k,
t)-space data using joint partial separability and sparsity constraints. The proposed method
incorporates the complementary advantages of both constraints into a single formulation by
using sparsity constraint to regularize PS model-based reconstruction. An efficient, globally
convergent algorithm based on half-quadratic regularization with continuation was presented
to solve the resulting optimization problem. The performance of the proposed method was
evaluated using simulated and in vivo real-time cardiac imaging data. The results
demonstrated that the proposed method yields significantly better performance than using
partial separability and sparsity constraints individually. The proposed method should prove
useful for various dynamic imaging applications.
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Appendix
The convergence of the alternating minimization procedure (i.e., (18) and (20)) for solving
(13) is established here. We first convert (18) and (20) into a similar form to that used in
[42], and then establish the nonexpansiveness of the linear operators in the alternating
minimization. Based on these nonexpansiveness properties, we apply the theorems in [42] to
obtain the finite and q-linear convergence results in Section II-B6.

For convenience, the proposed alternating minimization for solving (13) is first summarized
below:

(29)

(30)

We next convert (29) and (30) to a form similar to (3.4) and (3.5) in [42]. First, the matrix
representation of  is denoted by K ∈ , i.e.,

(31)
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Second, we have

(32)

Let , where ⊗ is the Kronecker product of two matrices. Based on

the property of the Kronecker product and the fact that , it can be shown that the
columns of D are orthonormal, i.e.,

(33)

Finally, we introduce the following two positive definite matrices,

(34)

and

(35)

It can be easily shown that the maximum singular value of T is less than 1.

Based on the above notation, (29) and (30) can be rewritten as follows,

(36)

(37)

where s performs element-by-element soft-thresholding of a vector with the threshold value

of α,  for ∀ v ∈ , and ∘ represents the composition of two
operators.

The above alternating minimization procedures (36) and (37) have the same structure as
(3.4) and (3.5) in [42]. Furthermore, we can establish that s and h in (36) have the same
nonexpansiveness properties as those in Proposition 3.1 and 3.2 in [42], which were used to
prove the following theorems for convergence. Specifically, for s, we have that |s(a)i − s(b)i|
≤ |ai − bi|, for i = 1, …, NM and ∀ a, b ∈ , and |s(a)i − s(b)i| = |ai − bi| if and only if
s(a)i − s(b)i = ai − bi; for h, ||h(w) − h(w̃)||2 ≤ ||w − w̃||2, ∀ w, w̃ ∈ , and ||h(w) − h(w̃)||2
= ||w − w̃||2 if and only if h(w) − h(w̃) = w − w ̃.

As a result, the global convergence property for the proposed method can be established
based on Theorem 3.4 of [42]. Let (G∞, ) denote an optimal solution of (13).
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Theorem 1 (Theorem 3.4 [42])

For any fixed α > 0, the sequence {(G(ℓ), )} generated by (36) and (37) from any starting

point (G(0), ) converges to (G∞, ) of (13).

Furthermore, we can apply Theorems 3.5 and 3.6 in [42] to characterize the convergence
rate of G and Us. The following theorems will make use of two new index sets defined as:

 and E = {1, …, NL}\I, where \ represents a set
difference operation.

Theorem 2 (Theorem 3.5 [42])

For the sequence {( , G(ℓ))} generated by (36) and (37) from any starting point ( ,

G(0)), there exists  such that ∀i ∈ I, vec(G(ℓ))i = vec(G∞)i as long
as ℓ ≥ ζ0, where

Theorem 3 (Theorem 3.6 [42])
Let TEE = [Ti,j]i,j∈E be a |E| × |E| submatrix of T whose entries are taken from T according

to E. The sequence {( , G(ℓ))} generated by (36) and (37) satisfies

for ℓ ≥ ζ0, where , σmax(·) represents the maximum

singular value of a matrix, and  is any positive semidefinite Hermitian square root of the

Hermitian matrix M, i.e., .
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Fig. 1.
(a) (k, t)-space sampling pattern and (b) temporal modeling used for image reconstruction.
As shown in (a), we acquire one k-space line per TR in an interleaved fashion, alternating
between sampling one line from central k-space and one line from outer k-space. The lines
acquired from central k-space follow a sequential order, while the lines acquired from outer
k-space follow a random order. Using this sampling pattern, it takes 2(Np − Nc)TR to collect
a full set of k-space lines, denoted as a data frame. The total data acquisition time Ta is 2(Np
− Nc)TRNdf with a total number of Ndf data frames. In image reconstruction, we assume that
the entire data acquisition interval can be subdivided into intervals of length Tm, shown by
dashed lines in (b), during which temporal signal variations are negligible.
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Fig. 2.
(a) Reconstruction error versus L (ranging from 1 to the full model order) with Ndf = 32 as
calculated using (26), and (b) zoomed-in plot showing model orders from 1 to 60. Note that
PS-Sparse is significantly more robust to changes in model order than Basic-PS. PS-Sparse
also has smaller reconstruction error than Basic-Sparse except when the full model order is
adopted (when PS-Sparse becomes Basic-Sparse).
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Fig. 3.
Reconstructions from the mid-systolic cardiac phase (zoomed in on the heart). Note that
rank-L EY provides the best performance that Lth order Basic-PS and PS-Sparse could
achieve, and that full-order EY is equivalent to the gold standard. Note the improvements of
PS-Sparse reconstructions over Basic-PS reconstructions and the robustness of PS-Sparse to
different model orders.
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Fig. 4.
The temporal variations of a vertical line passing through the left ventricle (zoomed in on
the heart), corresponding to reconstructions in Fig. 3. Note the ill-conditioning problem with
Basic-PS with L = 32, and the blurring artifacts in the Basic-Sparse reconstruction.
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Fig. 5.
Reconstructions in four cardiac phases ranging from end-systole to end-diastole based on the
same measurements used in Fig. 3. To avoid repetition, four time points shown here are
different from the single time point shown in Fig. 3. Note the improved reconstruction
quality of PS-Sparse over Basic-PS and Basic-Sparse.
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Fig. 6.
Reconstruction error versus the number of data frames for Basic-PS (dashed lines), Basic-
Sparse (red dotted line), and PS-Sparse (solid lines). Note that PS-Sparse has lower
reconstruction error than either Basic-PS (with the same model order) or Basic-Sparse at
each data acquisition window length. In addition, the reconstruction error of PS-Sparse is
relatively robust to Ndf for both high and low model orders.
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Fig. 7.
Reconstructions of the mid-diastolic cardiac phase (zoomed in on the heart) using Ndf = 24
and 48. Note the superior performance of PS-Sparse in the presence of limited
measurements and also its robustness to the number of measurements.
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Fig. 8.
Error images for the reconstructions in Fig. 7, which were obtained by subtracting the
reconstructions from the gold standard. Note that the error images have been scaled up for
visualization purpose (the maximum value of the error images is one seventh of that in Fig.
7.).
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Fig. 9.
Comparison of NN-Sparse, Sch-Sparse, and PS-Sparse. The first two rows show end-
diastolic and end-systolic cardiac images, and the last row shows the reconstructed temporal
variations of a line passing through the left ventricle. Note that the PS-Sparse
reconstructions have higher spatial and temporal fidelity than the NN-Sparse and Sch-Sparse
reconstructions (e.g., the myocardial border and the motion of the papillary muscles are
much better defined in the PS-Sparse reconstructions than in the NN-Sparse and Sch-Sparse
counterparts.).
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Fig. 10.
Reconstructions from an in vivo real-time cardiac MR experiment on rats. The first two
columns show the reconstructions in two cardiac phases, and the last two columns show the
reconstructed magnitude and phase of temporal variations for a line passing through the left
ventricle. Consistent with the simulation results, PS-Sparse shows improved performance
over Basic-PS and Basic-Sparse (e.g., regions marked by arrows). Furthermore, the PS-
Sparse reconstructions are also capable of capturing the phase changes in dynamic image
sequences.

Zhao et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


