

Genome Sequence of the Marine Bacterium *Marinobacter hydrocarbonoclasticus* **SP17, Which Forms Biofilms on Hydrophobic Organic Compounds**

Regis Grimaud, ^a Jean-François Ghiglione, ^b Christine Cagnon, ^a Béatrice Lauga, ^a Pierre-Joseph Vaysse, ^a Arturo Rodriguez-Blanco, b Sophie Mangenot,^c Stephane Cruveiller,^d Valérie Barbe,^c Robert Duran,^a Long-Fei Wu,^e Emmanuel Talla,^e Patricia Bonin,^f and **Valerie Michoteyf**

Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Equipe Environnement et Microbiologie, UMR 5254, CNRS, IBEAS, Université de Pau et des Pays de l'Adour, Pau, France^a; Laboratoire d'Océanographie Microbienne LOMIC, Laboratoire Arago, Université Pierre et Marie Curie Paris 06, CNRS UMR 7621, Banyuls-sur-Mer, France^b; CEA/DSV/IG/Genoscope, LF, Evry, France^c; CEA/DSV/IG/Genoscope, LABGEM, Evry, France^d; Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR 7283, CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France^e; and Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU, UMR 7294, Marseille, France^f

Marinobacter hydrocarbonoclasticus **SP17 forms biofilms specifically at the interface between water and hydrophobic organic compounds (HOCs) that are used as carbon and energy sources. Biofilm formation at the HOC-water interface has been recognized as a strategy to overcome the low availability of these nearly water-insoluble substrates. Here, we present the genome sequence of SP17, which could provide further insights into the mechanisms of enhancement of HOCs assimilation through biofilm formation.**

Hydrophobic organic compounds (HOCs) encompassing lip-
ids, hydrocarbons, and some organic pollutants are widely distributed in the environment but are weakly soluble in water and as a consequence poorly available for assimilation by heterotrophic bacteria. Biofilm formation at the HOC-water interface is a strategy employed by *Marinobacter hydrocarbonoclasticus* SP17 (ATCC 49840) to overcome the low bioavailability of HOCs. SP17 was isolated from chronically oil-contaminated sediment for its ability to use alkanes as the sole carbon and energy source [\(5\)](#page-1-0). *M. hydrocarbonoclasticus* is a Gram-negative, aerobic, motile, nonspore-forming, and rod-shaped bacterium [\(5\)](#page-1-0). It exhibits extreme halotolerance (0.08 to 3.5 M NaCl) and synthesizes ectoine as an osmoprotectant [\(2,](#page-1-1) [3\)](#page-1-2).

SP17 adheres and forms biofilms on alkanes and produces an extracellular-surface-active compound [\(2,](#page-1-1) [6\)](#page-1-3). Physiological and proteomic studies revealed that biofilm formation is an efficient strategy to colonize hydrophobic interfaces [\(1,](#page-1-4) [11,](#page-1-5) [12\)](#page-1-6). SP17 forms biofilms at the interface between aqueous-phase and HOC substrates like *n*-alkanes, fatty alcohols, or apolar lipids, such as wax esters and triacylglycerols. In contrast, biofilms were not observed on the nonmetabolizable compounds $(n-C_{32})$ alkanes, pristane, and heptamethylnonane) and glass or plastics [\(7\)](#page-1-7). The discrimination between metabolizable and nonmetabolizable compounds indicates that at some level, biofilm formation is controlled by the presence of a nutritive interface. Adhesion and biofilm formation could be a behavioral strategy to acquire carbon and energy from HOCs contained in marine aggregates.

The sequencing of the *M. hydrocarbonoclasticus* SP17 genome was obtained using a conventional whole-genome shotgun strategy with three libraries (3-, 10-, and 25-kb fragments) on ABI3730 sequencers. Assembly was done using the Phred/Phrap/Consed software package (www.phrap.org) with primer walking, PCR, and *in vitro* transposition technology (Template generation system II kit; Finnzyme, Espoo, Finland) as finishing steps, yielding a single contig molecule without gaps. Automatic genome annotation was performed using the MAGE annotation server [\(9,](#page-1-8) [10\)](#page-1-9) followed by manual annotation. The genome of SP17 encompasses a unique chromosome with a similar $G+C$ content (57.43%) to but a smaller size (3989,480 bases) than that of the other *Marinobacter* genomes (ranging between 4,333 and 4,894 kb) [\(4,](#page-1-10) [8,](#page-1-11) [13\)](#page-1-12). The SP17 genome contains 3 rRNA operons, 50 tRNA genes, and 3807 protein-coding sequences (CDSs) (967.89-bp average length, 91.74% coding density). It carries multiple genes known to be involved in biofilm formation, including four pilus gene clusters and three clusters of polysaccharide biosynthesis genes, as well as the *lap* genes. The SP17 genome encodes 58 proteins containing GGDEF, EAL, or HD-GYP domains, which are involved in the metabolism of the intercellular signaling molecule, c-di-GMP, whose concentration regulates the transition between sessile and biofilm lifestyles.

Further in-depth analysis of this genome and comparison with the genomes of *Marinobacter aquaeolei*, the heterotypic synonym of SP17, and other *Marinobacter* species could provide valuable information on the molecular mechanisms of biofilm formation on HOCs and more generally on strategies of colonization of nutritive surfaces in marine environments.

Nucleotide sequence accession number. The complete genome sequence of *M. hydrocarbonoclasticus* strain SP17 has been deposited in GenBank under accession no. [FO203363.](http://www.ncbi.nlm.nih.gov/nuccore?term=FO203363)

ACKNOWLEDGMENTS

This work was supported by the CNRS, the University of Pau et les Pays de l'Adour, the University of Aix-Marseille, and the Genoscope.

Received 4 April 2012 Accepted 11 April 2012 Address correspondence to Regis Grimaud, regis.grimaud@univ-pau.fr. Copyright © 2012, American Society for Microbiology. All Rights Reserved. [doi:10.1128/JB.00500-12](http://dx.doi.org/10.1128/JB.00500-12)

REFERENCES

- 1. **Ballihaut G, et al.** 2004. Analysis of the adaptation to alkanes of the marine bacterium *Marinobacter hydrocarbonoclasticus* SP17 by two dimensional gel electrophoresis. Aquat. Living Resour. **17**:269 –272.
- 2. **Fernandez Linares L, Acquaviva M, Bertrand JC, Gauthier M.** 1996. Effect of sodium chloride concentration on growth and degradation of eicosane by the marine halotolerant bacterium *Marinobacter hydrocarbonoclasticus*. Syst. Appl. Microbiol. **19**:113–121.
- 3. **Fernandez Linares L, Faure R, Bertrand JC, Gauthier M.** 1996. Ectoine as the predominant osmolyte in the marine bacterium *Marinobacter hydrocarbonoclasticus* grown on eicosane at high salinities. Lett. Appl. Microbiol. **22**:169 –172.
- 4. **Gardes A, et al.** 2010. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genomic Sci. **3**:97–107.
- 5. **Gauthier M, et al.** 1992. *Marinobacter hydrocarbonoclasticus* gen-nov, sp-nov, a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. **42**:568 –576.
- 6. **Klein B, Bouriat P, Goulas P, Grimaud R.** 2010. Behavior of *Marinobacter hydrocarbonoclasticus* SP17 cells during initiation of biofilm formation at the alkane-water interface. Biotechnol. Bioeng. **105**:461–468.
- 7. **Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R.** 2008. Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at

the alkane-water interface by *Marinobacter hydrocarbonoclasticus* SP17. Res. Microbiol. **159**:137–144.

- 8. **Singer E, et al.** 2011. Genomic potential of *Marinobacter aquaeolei*, a biogeochemical "opportunitroph." Appl. Environ. Microbiol. **77**:2763– 2771.
- 9. **Vallenet D, et al.** 2009. MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford) **2009**:bap021. doi:10.1093/database/bap021.
- 10. **Vallenet D, et al.** 2008. Comparative analysis of *Acinetobacters*: three genomes for three lifestyles. Plos One **3**:e1805. doi:10.1371/ journal.pone.0001805.
- 11. **Vaysse PJ, et al.** 2009. Proteomic analysis of *Marinobacter hydrocarbonoclasticus* SP17 biofilm formation at the alkane-water interface reveals novel proteins and cellular processes involved in hexadecane assimilation. Res. Microbiol. **160**:829 –837.
- 12. **Vaysse PJ, Sivadon P, Goulas P, Grimaud R.** 2011. Cells dispersed from *Marinobacter hydrocarbonoclasticus* SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface. Environ. Microbiol. **13**:737–746.
- 13. **Wang H, et al.** 2012. Genome sequence of deep-sea manganese-oxidizing bacterium *Marinobacter manganoxydans* MnI7-9. J. Bacteriol. **194**:899 – 900.