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Targeted drugs are less toxic than traditional chemother-
apeutic therapies; however, the proportion of patients
that benefit from these drugs is often smaller. A marker
that confidently predicts patient response to a specific
therapy would allow an individual therapy selection most
likely to benefit the patient. Here, we used quantitative
mass spectrometry to globally profile the basal phospho-
proteome of a panel of non-small cell lung cancer cell
lines. The effect of the kinase inhibitor dasatinib on cellu-
lar growth was tested against the same panel. From the
phosphoproteome profiles, we identified 58 phosphoryla-
tion sites, which consistently differ between sensitive and
resistant cell lines. Many of the corresponding proteins
are involved in cell adhesion and cytoskeleton organiza-
tion. We showed that a signature of only 12 phosphoryla-
tion sites is sufficient to accurately predict dasatinib sen-
sitivity. Four of the phosphorylation sites belong to
integrin �4, a protein that mediates cell-matrix or cell-cell
adhesion. The signature was validated in cross-validation
and label switch experiments and in six independently
profiled breast cancer cell lines. The study supports that
the phosphorylation of integrin �4, as well as eight further
proteins comprising the signature, are candidate bio-
markers for predicting response to dasatinib in solid tu-
mors. Furthermore, our results show that identifying
predictive phosphorylation signatures from global, quan-
titative phosphoproteomic data is possible and can open
a new path to discovering molecular markers for re-
sponse prediction. Molecular & Cellular Proteomics 11:
10.1074/mcp.M111.016410, 651–668, 2012.

The introduction of targeted drugs for treating cancer is a
major biomedical achievement of the past decade (1, 2).
Because these drugs selectively block molecular pathways
that are typically overactivated in tumor cells, they are more
precise and less toxic than traditional chemotherapeutics.
However, although many cancer patients benefit from a spe-
cific targeted therapy, many others do not. Therefore, predic-

tive molecular markers are needed to confidently predict pa-
tient response to a specific therapy. Such markers would
facilitate therapy personalization, where the selected therapy
is based on the molecular profile of the patient.

Predictive tests currently used in the clinic are frequently
based on one particular marker that is often linked to the drug
target. A well known example for a predictive test is assessing
HER2/neu overexpression using immunohistochemistry or
fluorescent in situ hybridization to predict the response to
therapy with trastuzumab (Herceptin�; Roche) (3, 4). How-
ever, in some cases the expression or mutational status of the
target or other singleton markers might not be sufficient to
predict a therapeutic response. Recently, several studies tried
to identify molecular signatures comprising multiple markers
for response predictions, usually based on gene expression
profiling (5, 6). To our knowledge, no study successfully
identified a signature from global phosphoproteomic pro-
files so far.

Recent advances in mass spectrometry, methods for en-
riching phosphorylated proteins or peptides, and computer
algorithms for analyzing proteomics data have enabled the
application of mass spectrometry-based proteomics to mon-
itor phosphorylation events in a global and unbiased manner.
These methods have become sufficiently sensitive and robust
to localize and quantify the phosphorylation sites within a
peptide sequence (7–9). Phosphorylation events are impor-
tant in signal transduction, where signals caused by external
stimuli are transmitted from the cell membrane to the nucleus.
Aberrations in these signal transduction pathways are partic-
ularly important for understanding the mechanisms of certain
diseases, such as cancer, inflammation, and diabetes (10, 11).

Approximately 391,000 incidences and 342,000 deaths
from lung cancer were estimated in Europe in 2008 (12),
accounting for nearly 20% of all cancer deaths in Europe.
Approximately 85% of all lung cancer incidences are non-
small cell lung cancer (NSCLC)1 (13). Dasatinib (Sprycel�;
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Bristol-Myers Squibb) is a multikinase inhibitor targeting BCR-
ABL, the Src kinase family, c-Kit, ephrin receptors, and plate-
let-derived growth factor receptor � (14, 15). It is currently
approved for chronic myelogenous leukemia and Philadelphia
chromosome-positive acute lymphoblastic leukemia. Re-
cently, dasatinib was clinically evaluated in patients with ad-
vanced NSCLC. Dasatinib had modest clinical activity, with
only one partial response and 12 stable diseases among 30
patients. Neither Src family kinase activation nor EGFR and
K-ras mutations could predict the response to dasatinib (16).

In this study we wanted to identify a signature of protein
phosphorylation that predicts the response to dasatinib in
NSCLC cell lines. In total, 26 NSCLC cell lines were tested for
their response to dasatinib. The identical cell lines were pro-
filed in a global, unbiased, phosphoproteomics study, and the
obtained phosphoproteome profiles were used to assemble a
biomarker signature of 12 phosphorylation sites. We evalu-
ated the performance of this signature in a cross-validation
setup and investigated the robustness of the selected predic-
tive features. Finally, we confirmed the predictive power of the
signature in an independent set of breast cancer cell lines.

In a recent study, Andersen et al. (17) identified phosphor-
ylation sites predicting response to phosphatidylinositol 3-ki-
nase inhibitors. Their study differs in two aspects from the
study presented here. First, the authors focused on the phos-
phatidylinositol 3-kinase and MAPK pathways by immunopre-
cipitating phosphorylated peptides with antibodies directed
against corresponding phosphomotifs. In contrast, we fol-
lowed an unbiased approach, where no hypothesis about the
involved signaling pathways has to be made. Second, the au-
thors first investigated the regulation of phosphorylation sites
upon drug treatment in one sensitive cell line and subsequently
confirmed the applicability of one site to response prediction by
evaluating its basal phosphorylation in a panel of cell lines. Here,
we started directly by investigating the basal phosphoproteome
of a panel of sensitive and resistant cell lines.

EXPERIMENTAL PROCEDURES

Cell Culture

Based on the half-maximum growth inhibitory concentrations (GI50)
of dasatinib on a panel of 84 NSCLC cell lines reported in supple-
mental Table 5 of Sos et al. (18), 13 cell lines with low and 13 with high
GI50 values were selected (cf. supplemental Table S1). These 26 cell
lines were obtained from LGC Standards (Wesel, Germany), from the
Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braun-
schweig, Germany), and Roman Thomas’s group at the Max Planck
Institute for Neurological Research (Cologne, Germany). The six
breast cancer cell lines were obtained from LGC Standards (see
supplemental Table S1).

All of the cell lines were cultivated in RPMI 1640, 10% fetal bovine
serum, 2 mM glutamine, 1 mM sodium pyruvate, and penicillin/strep-
tomycin (PAA Laboratories, Cölbe, Germany). The cells were routinely
monitored for mycoplasma infection using the MycoAlert reagents
(Lonza, Cologne, Germany).

Metabolic labeling of the cell lines was performed using stable
isotope labeling with amino acids in cell culture (SILAC) (19). The cells
were cultivated in media containing SILAC-RPMI (PAA) and dialyzed

fetal bovine serum (Invitrogen). L-Lysine and L-arginine were replaced
by normal L-lysine (Lys0) and L-arginine (Arg0), or medium isotope-
labeled L-D4

14N2-lysine (Lys4) and L-13C6
14N4-arginine (Arg6), or

heavy isotope-labeled L-13C6
15N2-lysine (Lys8) and L-13C6

15N4-argi-
nine (Arg10). Isotope-labeled amino acids were purchased from Cam-
bridge Isotope Laboratories (Andover, MA). The cells were cultivated
for a minimum of six doubling times to obtain an incorporation effi-
ciency for the labeled amino acids of at least 95%.

16 NSCLC cell lines were selected as a reference pool: A549,
Calu6, H1395, H1437, H1755, H2030, H2052, H2172, H28, H460,
HCC827 (obtained from LGC Standards), LCLC103H, LouNH91 (ob-
tained from the Deutsche Sammlung von Mikroorganismen und
Zellkulturen), H322M, HCC2279, and HCC2429 (obtained from MPI
for Neurological Research). The selected cell lines were grown in
SILAC medium supplemented with the natural “light” forms of argi-
nine and lysine. The labeled cells of each cell line were lysed, pooled,
aliquoted, and stored at �80 °C. In total, 40 aliquots with 12 mg of
protein each were generated.

Determination of Cellular Growth Inhibition

Sensitivity of the cell lines for dasatinib was determined by mea-
suring the cellular ATP content after 96 h of treatment using the
CellTiter Glo chemiluminescent viability assay (Promega, Mannheim,
Germany). The cells were cultivated in 96-well plates (Greiner, Frick-
enhausen, Germany) in the presence of dasatinib (LC Laboratories,
Woburn, MA) within a concentration range between 3 nM and 30 �M.

The raw data from the chemiluminometer (FLUOstar OPTIMA;
BMG Labtech, Offenburg, Germany) was used to determine the GI50

value. First, the background was determined by calculating the me-
dian value of the plate’s border wells, which contained only growth
media. This value was then subtracted from each inner well. Because
two experiments were conducted on one 96-well plate with 10 com-
pound concentrations each (0 nM (DMSO control), 3 nM, 10 nM, 30 nM,
100 nM, 300 nM, 1 �M, 3 �M, 10 �M, and 30 �M), three data points per
concentration and experiment were available. Ratios representing the
percentage of growth inhibition were calculated by dividing each data
point coming from a concentration �0 nM by the median of the
DMSO values. A logistic regression was performed to fit a curve to
those ratios and compute the GI50 value.

Classification into Sensitive/Resistant

The calculated GI50 values of the 26 selected cell lines were com-
pared with the values reported in Ref. 18. Although the correlation
between the two sets was strong (Pearson correlation � 0.50, p �
0.009 on logged GI50 values), a few cell lines showed inconsistent
behavior. By setting the threshold to discriminate between sensitive
and resistant cells to a GI50 value of 1 �M, seven cell lines were
classified inconsistently (five were resistant in Ref. 18 but sensitive in
this study, and two were sensitive in Ref. 18 but resistant in this
study). Consequently, these cell lines were excluded from the work-
flow that aims at finding a predictive phosphosignature.

Phosphoproteomics Workflow

Responsive and nonresponsive cell lines were grown in medium or
heavy SILAC medium, and after washing twice with ice-cold PBS, the
cells were lysed directly on the plates by the addition of ice-cold lysis
buffer (8 M urea, 50 mM Tris, pH 8.2, 5 mM EDTA, 5 mM EGTA, Sigma
HALT phosphatase inhibitor mix, Roche Applied Science complete
protease inhibitor mix). After sonication cell debris was sedimented
by centrifugation, and the protein concentration was determined by
Bradford assays. Equal protein amounts of the reference cell culture
mix and a medium and heavy labeled cell line (7 mg protein each)
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were mixed as depicted in supplemental Fig. S2 and subsequently
subjected to reduction (20 mM DTT, 30 min 37 °C) and alkylation (50
mM iodoacetamide for 30 min at room temperature) prior to proteo-
lytic cleavage. Then 80 �g of LysC (Wako) was added for 4 h followed
by a 4-fold dilution with 50 mM Tris, pH 8.2. Proteolytic cleavage was
continued by the addition of 120 �g of trypsin (Promega) overnight.
The peptide mixtures were acidified by the addition of TFA to a final
concentration of 0.5% and subsequently desalted via C18 SephPack
columns (Waters). The peptides were eluted with 50% ACN and dried
under vacuum. For a first separation of phosphorylated and nonphos-
phorylated peptides, the dried peptide powder was reconstituted in 1
ml of strong cation exchange chromatography buffer A (5 mM

K2HPO4, pH 2.7, 30% ACN) and loaded onto a polysulfoethyl column
(9.4 � 250 mm; PolyLC) using an ÄKTA purifier chromatography
system equipped with a fraction collector. The peptides were sepa-
rated by a linear gradient to 25% strong cation exchange chroma-
tography buffer B (buffer A supplemented with 500 mM KCl) over 40
min at flow rate of 3 ml/min. Twenty fractions (12 ml each) were
collected across the gradient.

Prior to immobilized metal ion affinity chromatography enrichment,
the solvent of the strong cation exchange chromatography fractions
was removed by lyophilization. Dried peptides were reconstituted in 1
ml of 0.1% TFA and desalted by using C18 reversed phase cartridges
(Waters). The bound peptides were eluted with 50% ACN, 0.5%
HOAc, and the peptides were lyophilized again. Dried peptides were
reconstituted in 40% ACN, 25 mM formic acid, and phosphopeptides
were captured using PhosSelect (Sigma) according to the manufac-
turer’s instructions. Eluted phosphopeptides were subjected to mass
spectrometric analysis.

LC-MS/MS Analysis

Mass spectrometric analysis was carried out by on-line nano LC-
MS/MS. The sample was loaded directly by an Agilent 1200 nanoflow
system (Agilent Technologies) on a 15-cm fused silica emitter (New
Objective) packed in-house with reversed phase material (Reprusil-
Pur C18-AQ, 3 �m; Dr. Maisch GmbH) at a flow of 500 nl/min. The
bound peptides were eluted by a gradient from 2 to 40% of solvent B
(80% ACN, 0.5% HOAc) at a flow of 200 nl/min and sprayed directly
into a LTQ-Orbitrap XL or LTQ-Orbitrap Discovery mass spectrometer
(Thermo Fischer Scientific) at a spray voltage of 2 kV applying a
nanoelectrospray ion source (ProxeonBiosystems). The mass spec-
trometer was operated in the positive ion mode and with a data-de-
pendent switch between MS and MS/MS acquisition. To improve
mass accuracy in the MS mode, the lock mass option was enabled.
Full scans were acquired in the orbitrap at a resolution r � 60,000
(Orbitrap XL) or 30,000 (Orbitrap Discovery) and a target value of
1,000,000 ions. The five most intense ions detected in the MS were
selected for collision-induced dissociation in the LTQ at a target value
of 5000. The resulting fragmentation spectra were also recorded in
the linear ion trap. To improve complete dissociation of phosphopep-
tides, the multistage activation option was enabled, applying addi-
tional dissociation energy on potential neutral loss fragments (precur-
sor minus 98, 49, and 32.7 Thompson). Ions that were once selected
for data-dependent acquisition were dynamically excluded for 90 s for
further fragmentation.

MaxQuant Analysis

The raw mass spectral data were processed using the MaxQuant
software (version 1.1.1.25) (20) applying the Andromeda search en-
gine for peptide and protein identification. The human UNIPROT
database (version: 57.12) was used comprising 110,595 database
entries including the UNIPROT splice variants database. The minimal
peptide length was set to 6 amino acids, trypsin was selected as

proteolytic enzyme, and maximally three missed cleavage sites were
allowed. Carbamidomethylation of cysteines was selected as a fixed
modification, whereas methionine oxidation, N-terminal protein
acetylation, and phosphorylation of serine, threonine, and tyrosine
residues were considered as variable modifications. Because
MaxQuant automatically extracts isotopic SILAC peptide triplets, the
corresponding isotopic forms of lysine and arginine were automati-
cally selected. The maximal mass deviation of precursor and fragment
masses was set to 20 ppm and 0.5 Da before internal mass recali-
bration by MaxQuant. A false discovery rate (FDR) of 0.01 was se-
lected for proteins and peptides and a posterior error probability
below or equal to 0.1 for each MS/MS spectrum was required. The
MaxQuant results were uploaded to the MaxQB database (21) for
further analysis.

Data Preprocessing

Data from the MaxQuant PhosphoSTY table were the data source
for identifying a predictive phosphosignature. Each entry in this table
describes one specific phosphosite along with information about its
localization, confidence, and regulation. The regulation of a phospho-
site is provided as ratio of the site’s abundance between each cell line
and the super-SILAC standard. MaxQuant already provides normal-
ized ratios, which were used in this study. There are two coefficients
that account for the reliability of identification and localization of a
phosphosites, i.e. localization probability and score difference. Sites
that satisfy the constraints localization probability � 0.75 and score
difference � 5 were considered to be sufficiently reliable (class I
sites). Furthermore, sites that are flagged as reverse or contaminant
hits were also excluded. All phosphosites that fulfill both requirements
(class I, no contaminant/reverse) were subjected to further analysis.
The identification and quantification data on the class I sites, as well
as the fragment spectra of the best localization evidence, are acces-
sible in supplemental Files 2–5.

Analysis of Differential Phosphorylation Sites

Significance Analysis—After preprocessing the data, a Wilcoxon
rank sum test was applied to find differentially abundant phosphory-
lation sites between sensitive and resistant cell lines. For this analysis
only phosphosites with values in at least two-thirds of the experi-
ments in each group were considered (i.e., at least 8 of 11 sensitive
and 6 of 8 resistant data points had to be present). Subsequently, the
p values reported by the Wilcoxon rank sum test were corrected for
multiple hypotheses testing by applying Benjamini-Hochberg FDR
correction (22).

Enrichment Analysis—To analyze whether proteins harboring dif-
ferentially abundant phosphorylation sites are enriched in certain GO
terms (23) or KEGG pathways (24), FatiScan enrichment analysis (25)
was applied. In brief, FatiScan performs a segmentation test, which
checks for asymmetrical distribution of biological labels (e.g., GO
terms, KEGG pathways) associated with proteins in a ranked list. For
this purpose, the phosphorylation sites were sorted according to their
q values, and the algorithm was set up to search for a possible
enrichment in the low q value area of this ranked list. The analysis was
performed via the Babelomics web interface (http://babelomics.
bioinfo.cipf.es/, version 4.2).

Detection of Significantly Different Subnetworks

To visualize and interpret the data in a network context, the Sub-
Extractor algorithm was applied (26). In brief, SubExtractor combines
phosphoproteomic data with protein-protein interaction data via a
Bayesian probabilistic model. Regulated subnetworks are found with
a genetic algorithm and subsequent significance evaluation based on
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the global rank test (27). The STRING database version 8.3 (28) was
used as source for protein-protein interactions. It was preprocessed
to contain only human interactions with a confidence score larger
than 0.9 without considering text mining evidences. The algorithm’s
parameters were set to � � 0.5 and � � 5.0, and subnetworks with an
FDR smaller than 0.1 were reported.

To calculate z scores required as input for the algorithm, pair-wise
phosphorylation abundance differences between sensitive and resist-
ant cell lines had to be computed first. Because the number of
experiments in the two groups are not balanced (11 and 8, respec-
tively), sampling with replacement was applied to the smaller group
(i.e., it was sampled 11 times from eight experiments while ensuring
that each experiment was chosen at least once). Subsequently, the
pair-wise differences could be computed along with the estimated
global standard deviation as suggested in Ref. 26, and finally the z
scores were calculated.

Identification and Evaluation of Phosphosignature

Cross-validation—The data set containing N � 19 objects was split
into two parts, one containing data of one cell line, and the other
containing the data of the remaining N � 1 cell lines. The larger part
was then used for training a predictor (training set) and the smaller
one for testing this predictor (test set). By alternating the cell lines that
made up the training set, each cell line was used once for testing.
Each of the N cross-validation steps included missing data imputa-
tion, feature selection, predictor training, and predictor testing.

A phosphosite was only considered as a potential feature if it had
training data values in at least two-thirds of the experiments in each
class (e.g., if the training set contained data from 10 sensitive and 8
insensitive cell lines, at least 7 and 6 training data points had to be
present, respectively). Because this criterion uses the class labels, the
features have to be filtered within the CV loop. It further means that
the filtered features may be different in each CV step.

Data Imputation—For each phosphosite and class, the mean and
standard deviation was computed, and the missing values were filled
by sampling from the resulting normal distribution. This procedure
was only applied to the training data, because the test data should be
handled as if the class association was unknown. Nevertheless, test
data can also contain missing values. If so, the mean of the corre-
sponding two group means was imputed, which is an unbiased way
of replacing the missing value that does not involve information about
the test sample’s class association. Geometrically speaking, the im-
puted test sample value is located exactly halfway between the two
class means, which should minimize its influence on the prediction
process.

Feature Selection—In this study, a simple Wilcoxon rank sum test
in combination with the ensemble feature selection method (29) was
used. As the Wilcoxon test often delivers identical p values because
of its rank-based nature, ties were broken by preferring features that
have a larger difference in their two classes’ medians. The core idea
of the ensemble method is that robust features should still rank
among the best if the data set is slightly modified. For this purpose,
different samplings of the training data were generated by drawing
(with replacement) 50 different bootstrap samples (i.e. if the training
set consists of 10 sensitive and 8 resistant cell lines, one randomly
draws 10 and 8 times with replacement from the respective set to get
one bootstrap sample). The Wilcoxon rank sum test is applied to each
sample, and thus a diverse set of feature rankings is generated. The
ranks of each feature were then averaged across all bootstrap runs
and sorted in ascending order according to this metaranking. Sub-
sequently, the k best features were used to train and test the predic-
tor. By varying K and assessing the prediction accuracy and area
under the receiver operator curve (AUROC), one can find the optimal
number of features.

Support Vector Machine Training—Once a set of features has been
selected, and the training and test data have been modified to include
only those features (i.e., “reduced” sets), a SVM with linear kernel (30)
can be trained. In addition to the kernel function, an SVM has a
parameter C that controls the trade-off between margin maximization
and training error minimization, if the hyper plane cannot perfectly
separate the two classes. The default value of C � 1 was used
throughout the analysis. First, the SVM was trained with the training
data. Subsequently, the class association of the test data was pre-
dicted with the trained SVM. The result of this prediction is the
probability of the test sample belonging to either of the two classes
(the closer the test data is to the decision boundary, the less confident
the prediction is). The class prediction with the larger probability was
then taken and compared with the actual class association. In this
way, correct predictions were counted across all cross-validation
steps.

Area under the Receiver Operating Characteristic Curve—To cal-
culate the AUROC, the separating hyperplane of a trained SVM was
shifted by introducing cost matrices. For example, by shifting the
hyperplane toward the group of sensitive training samples, it be-
comes more likely for a test sample to be classified as resistant.
Ultimately, this shifting leads to the extreme that every test sample is
classified as resistant, which means that all resistant test samples
have been classified correctly (true negative rate � 1 and false pos-
itive rate � 0, given that the resistant ones are the negatives) and all
sensitive test samples have been classified wrongly (true positive
rate � 0). The exact opposite is true if the separating hyperplane is
shifted toward the resistant group. Thus, by applying different cost
values, one can control the degree of shifting, calculate the respective
true positive rates and false positive rates, and compute the resulting
area under the curve by means of the trapezoidal rule (see supple-
mental materials for an example).

Random Seeds—For the imputation of missing values, a random
number generator is needed to sample values from a normal distri-
bution. Different seeds of the random generator will produce different
imputation data. To avoid a bias of the data toward the seeding, the
entire cross-validation procedure was repeated five times using dif-
ferent random number generator seeds. The prediction accuracies,
AUROC values and global feature rankings for different numbers of
selected features (k) were averaged over the five CV runs and used for
the final selection of the phosphosignature.

Data Normalization—Among the fraction of nonphosphorylated
peptides, 15 peptides had values in at least two-thirds of the exper-
iments and a standard deviation of �0.1 (log 10 scale). Eight of them
were from ribosomal proteins, which are expected to be constantly
expressed. Thus, for each experiment the median of the correspond-
ing eight ratios was computed and used as an alternative normaliza-
tion approach (by subtracting the median from each phosphosite’s
non-MaxQuant-normalized logarithmic ratio).

Final Predictor Construction—When selecting the final set of phos-
phosites (phosphosignature) to be used for the prediction of future
samples, the optimal number of features was determined in a CV
loop. This is essentially the same as the inner loop in the quality
assessment process (see also supplemental Fig. S4).

Therefore, after running the cross-validation process five times with
different random number generator seeds, we obtained the following
results: a 200 � 5 prediction result matrix (200 being the rows, 5 being
the columns) containing the number of correct CV predictions for k �
1…200 selected features (i.e., k best ranking in each CV step) across
the five random seeds; a 200 � 5 AUROC matrix containing the
corresponding area under the ROC curve values; and a 25,020 �
19 � 5 rank matrix holding the rank of each feature in each CV step
across the five random seed runs (features that were not subjected to
imputation/feature selection because of too many missing values
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received the rank maxRank�1, where maxRank is the number of
features that were subjected to imputation/feature selection).

The primary criterion for selecting the best subset of features was
the number of correct predictions. For this purpose the values in the
prediction matrix and AUROC matrix were row-averaged, leading to a
vector of 200 average correct predictions and area under the curve
values. Within this vector the indices (numbers of features) that lead to
the best number of correct predictions were determined. Among
those, the one index that had the highest AUROC value was selected
as best performing feature number, which was 12.

Next, the final feature rank was determined by averaging first over
the third and subsequently over the second dimension of the rank
matrix. The resulting vector of length 25,020 containing the average
rank of each feature was sorted in ascending order, and the 12
top-ranked were selected. These were the phosphosites described in
Table II.

The 12 selected final features were then used to train the final
predictor. However, because these features also contained missing
values, imputation had to be performed first. The original sampling
should reflect the variance within each feature and class, which is
crucial for the quality of a feature. Because the best features had
already been selected at this stage, sampling can influence the fea-
ture weights in the final predictor only. We used the mean of each
feature and class for replacing missing values in the data set for the
final predictor. Alternatively, we could use the same sampling ap-
proach as above and then aggregate the resulting predictors by, for
example, averaging the classification score. The differences in these
two alternatives are only marginal (supplemental Fig. S8). Finally, a
SVM based on the predictive 12-site phosphosignature (again with
linear kernel and C � 1) was trained and can now be applied to the
classification of new samples.

Quantitative Western Blot Analysis

For protein detection in human lung cancer cell lines, exponentially
growing cells from 15-cm dishes were used. After cell lysis 80 �g of
total protein was separated on 4–12% Bis-Tris NuPAGE gels (Invit-
rogen) for the detection of integrin �4 or on 7.5% Tris-glycine gels
(Bio-Rad Mini PROTEAN) for the detection of tankyrase 1-binding
protein (TNKS1BP1). The proteins were transferred overnight to
0.2-�m nitrocellulose membranes and probed with the appropriate
antibodies in LI-COR Odyssey blocking buffer. All of the primary
antibodies were used in 1:1000 dilutions: anti-integrin �4 antibody
[M126] (ab29042; Abcam); anti-TNKS1BP1 (SAB4503414; Sigma-Al-
drich); and anti-actin (I-19) (sc-1616-R; Santa Cruz Biotechnology).
Actin served as a loading control. Following primary antibody incu-
bation, membranes were probed with IRDye 800CW-conjugated goat
anti-mouse IgG (H�L9 (LI-COR number 926-32210), dilution 1:15,000
for the detection of integrin �4; or IRDye 800 conjugated affinity-
purified anti-rabbit IgG, (611-732-127; Rockland), dilution 1:20,000,
for the detection of TNKS1BP1 and actin; or DyLight 800-conjugated
affinity-purified anti-rabbit IgG (H�L) (611-145-122; Rockland), dilu-
tion 1:50,000 for the detection of actin. The signals were detected at
800 nm using the LI-COR Odyssey infrared system.

RESULTS

Dasatinib Sensitivity Was Confirmed—Based on the half-
maximum growth inhibitory concentration (GI50) of dasatinib
reported previously (18), 13 sensitive and 13 resistant NSCLC
cell lines were preselected. For these 26 cell lines, we re-
peated viability assays to verify the reported GI50 values. We
chose the median GI50 as classification threshold, so that
depending on the GI50, the cell lines were assigned to sensi-

tive (GI50 � 1 �M) and resistant (GI50 � 1 �M) classes. For 19
of 26 cell lines, the assignment was consistent. For 7 cell
lines, the assignment based on the sensitivity determined
here differed from that reported previously (18). By using only
the cell lines for which the sensitivity could be reproduced in
two different labs, we maximize the reproducibility of the cell
line assignment and therewith the robustness of the predictive
signature. The other cell lines were therefore excluded from
the training set (see supplemental Table S1 for GI50 values).
The remaining 19 cell lines (11 sensitive and 8 resistant) were
used to identify a predictive phosphosignature. The peak
dasatinib plasma concentration (Cmax) obtained in a phase II
trial in patients with advanced NSCLC was 124 � 59 ng/ml
(16). The corresponding molarity is below the classification
threshold chosen above. However, only the GI50 values of
two cell lines, HCC4006 and H322M, are marginally higher
than the average peak plasma concentration.

PhosphoproteomicProfilingRevealsDifferentiallyPhosphor-
ylated Proteins—To quantitatively compare the cell lines to be
analyzed, we isotopically labeled sensitive and resistant
NSCLC cell lines using stable isotope labeling by amino acid
in cell culture (SILAC) (19). The sensitive cell lines were grown
in SILAC medium supplemented with the medium forms of
arginine and lysine (Arg6/Lys4), whereas the resistant cell lines
were grown in heavy medium (Arg10/Lys8; see supplemental
Table S2 for experimental pairing scheme). A Super-SILAC
reference (31) was generated by mixing protein lysates of 16
randomly selected cell lines in unlabeled (light, Arg0/Lys0)
medium. The Super-SILAC reference serves as a spike-in
standard, enabling accurate cross-sample comparison (see
supplemental Fig. S2). Equal protein amounts of the Super-
SILAC reference, a sensitive cell line, and a resistant cell line
were mixed and subsequently subjected to a global, quanti-
tative phosphoproteomics workflow using strong cation ex-
change chromatography and immobilized metal ion affinity
chromatography followed by LC-MS/MS analysis (see “Ex-
perimental Procedures” for details). In total, 37,747 phospho-
sites were identified in the 26 profiled cell lines. 88% of all
quantified phosphorylation sites had a cell line to Super-
SILAC ratio �4-fold, which allowed for accurate quantification
of phosphorylation changes between the analyzed cell lines.
From the 37,747 identified phosphorylation sites, 25,020 were
rated as class I sites, i.e., sites that could be identified with
high localization confidence (7). Only these sites were used in
the following analyses. The frequency distribution of the phos-
phorylated residues (serine, 83.2%; threonine, 15.3%; and
tyrosine, 1.5%) is similar to the frequency distribution ob-
served by Olsen et al. (7).

We first tried to identify proteins that are differentially phos-
phorylated between the sensitive and resistant cell lines. To
this end, the Wilcoxon rank sum test was applied to the set of
phosphosites with data values in at least two-thirds of the
experiments (leading to 4457 valid sites with �11% missing
values on average). Indeed, 58 phosphosites were signifi-
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cantly regulated between the group of 11 sensitive and 8
resistant cell lines at a FDR of 10% (Table I). The regulated
sites reside on 41 unique proteins. Most of the regulated sites
(53 or 91%) are phosphorylated more strongly in sensitive cell
lines. Only 5 (9%) sites are more strongly phosphorylated in
resistant cell lines. For three known dasatinib targets, Bcr-Abl,
EphA2, and Lyn (14, 15), we could detect phosphosites that
were quantified in two-thirds of the experiments. The phos-
phorylations of EphA2 and Lyn cannot differentiate between
the sensitive and resistant groups (supplemental Fig. S6).
Only the site Ser459 on the breakpoint cluster region protein
(Bcr) is differentially phosphorylated (see supplemental Table
S1 and Fig. S6).

We next investigated whether any KEGG pathway or Gene
Ontology term is enriched in the set of proteins with differen-
tial phosphosites. The list of proteins ordered by the Wilcoxon
rank sum test statistic of their most significant phosphosite
were analyzed with FatiScan (25). Only the KEGG pathway
“regulation of actin cytoskeleton” (hsa04810) is significantly
enriched at an FDR of 5%. Many of the significantly regulated
phosphosites are located on proteins involved in this path-
way. A similar analysis revealed that 40 terms of the biological
process and the molecular function gene ontologies are sig-
nificantly enriched (see supplemental Table S3). Many of them
relate to very generic and not surprising terms, like “kinase
activity” (GO:0016301) or “signal transduction” (GO:0007165).
However, a few of them are more specific, like “Ras protein
signal transduction” (GO:0007265) and “Rho protein signal
transduction” (GO:0007266) in the biological process ontol-
ogy and “cytoskeletal protein binding” (GO:0008092) and “ac-
tin binding” (GO:0003779) in the molecular function ontology.

As a next step, we applied the SubExtractor algorithm (26)
to the phosphoproteomic data. SubExtractor detects signifi-
cantly regulated subnetworks in the STRING protein-protein
interaction network (28). The tool combines local as well as
topological information, i.e., information about the regulation
of a certain node (represented by the protein’s strongest
regulated phosphorylation site) and information about the
connectivity with its neighbors. The largest subnetwork that
has been identified by SubExtractor (Fig. 1) clustered around
the EGF receptor, with most of the proteins again being more
strongly phosphorylated in the sensitive cells. The largest
subnetwork comprises many proteins involved in cell adhe-
sion and actin cytoskeleton organization, such as ajuba (JUB),
catenin �1 (CTNNA1) and �1 (CTNND1), ephrin type-A recep-
tor 2 (EPHA2), brain-specific angiogenesis inhibitor 1-associ-
ated protein 2 (BAIAP2), integrin �4 (ITGB4), and plectin
(PLEC1).

A Predictive Phosphosignature Was Identified—Following
the general workflow for detecting phosphosignatures (Fig. 2),
a predictive phosphosignature was identified, and its accu-
racy was estimated by cross-validation (CV) based on the cell
line data set (19 valid cell lines). Feature selection was applied
within each CV loop to reduce dimensionality of the data and

thus avoid overfitting the resulting predictor. We used a Wil-
coxon rank sum test combined with the ensemble method
(29) for selecting the phosphosites used for the signatures.
The number of phosphosites is optimized in an inner leave-
one-out cross-validation loop. The phosphosites were used to
train a support vector machine (SVM) with linear kernel, which
was chosen as the predictor because it offers state-of-the-art
prediction quality and has been successfully applied several
times to biological data (32–34). SVMs separate two classes
by a hyper plane, such that the margin between the classes
becomes as wide as possible (30).

The final phosphosignature comprises 12 phosphosites
(Table II) located on nine different proteins. The phosphory-
lation degrees of the 12 identified sites strongly separate the
class of sensitive and resistant cell lines (Fig. 3). All of them
are more strongly phosphorylated in the sensitive cell lines.
The five highest ranked phosphosites show �10-fold differ-
ences in their medians. The differences between the 25th and
75th percentiles are still �5-fold. Interestingly, four of the
highest ranked phosphosites are located on the same protein
integrin �4 (ITGB4 or CD104). The second highest ranked
phosphosite is located on the brain-specific angiogenesis
inhibitor 1-associated protein 2 (BAIAP2). Further, we identi-
fied phosphosites that are located on the G-protein-coupled
receptor family C group 5 member A (GPCRC5A), the inositol
1,4,5-triphosphate receptor type 3 (ITPR3), the 192-kDa
tankyrase-1-binding protein (TNKS1BP1), the Rho guanine
nucleotide exchange factor 18 (ARHGEF8), the RelA-associ-
ated inhibitor (IASPP), the autophagy-related protein 16–1
(APG16L), and the tumor protein D54 (TPD52L2).

Signature Is Sensitive and Specific—To determine the pre-
diction performance, leave-one-out cross-validation was ap-
plied. It has been shown that CV, including leave-one-out
cross-validation, estimates the true prediction performance
accurately and shows a low bias (35). Because not all phos-
phosites discriminate well between sensitive and resistant cell
lines, feature selection is applied in each CV step, which
selects a defined subset of predictive phosphosites. First the
features are ranked according to their discriminative power,
and then the optimal number of top-ranking features is deter-
mined by an inner parameter optimization cross-validation. In
this inner CV procedure, different numbers of top ranking
features (k � 1…200) are used, and their respective perfor-
mances are assessed. The smallest number of features lead-
ing to the best prediction quality in the inner CV loop is then
applied to the feature selection in the outer cross-validation
loop (see also supplemental Fig. S3). Subsequently, a SVM
predictor is trained on the reduced training data (reduced in
the sense of containing only features that passed the feature
selection criteria) and tested with the reduced test data. It is
important to note that the test sample is used neither for
optimizing the number of features nor for selecting the fea-
tures within cross-validation. Furthermore, the preprocessing
steps and classification workflow were fixed before acquiring
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TABLE I
Significantly different phosphorylation sites

Shown are sites that are differentially phosphorylated between sensitive and resistant cell lines.

Uniprot
identification

code

Gene
name

Protein
name Site Modified

sequencea
Median

differenceb
q

valuec

A8K556 GPCR5A Retinoic acid-induced protein 3 Ser345 AHAWPpSPYKDYEVK 0.872 0.047
Q6ZSZ5 ARHGEF18 Rho guanine nucleotide exchange factor 18 Ser1101 pSLSPILPGR 0.419 0.047
Q13177 PAK2 Serine/threonine protein kinase PAK 2 Ser141 YLpSFTPPEKDGFPSGTPALNAK 0.315 0.047
Q15149-2 PLEC1 Plectin Ser42 pSGGGAGSNGSVLDPAER 0.334 0.047
Q9C0C2 TNKS1BP1 182-kDa tankyrase-1-binding protein Ser429 RFpSEGVLQSPSQDQEK 0.968 0.047
P16144-2 ITGB4 Integrin �4 Ser1424 DYNpSLTR 1.406 0.055
P16144-2 ITGB4 Integrin �4 Ser1387 MDFAFPGSTNpSLHR 0.992 0.055
Q6ZSZ5 ARHGEF18 Rho guanine nucleotide exchange factor 18 Ser1103 RSLpSPILPGR 0.345 0.055
Q3KQU3 MAP7D1 MAP7 domain-containing protein 1 Ser116 RSSQPpSPTAVPASDSPPTK 0.514 0.055
Q86SQ0 LL5B Pleckstrin homology-like domain family B member 2 Ser212 KMpSIQDSLALQPK 0.721 0.055
Q8IVF2 AHNAK2 Protein AHNAK2 Ser2657 FKMPpSFR 0.909 0.055
Q92614 KIAA0216 Myosin-XVIIIa Ser1970 LEGDpSDVDSELEDRVDGVK 0.657 0.055
Q9Y2U5 MAP3K2 Mitogen-activated protein kinase kinase kinase 2 Ser153 RLpSIIGPTSR 0.494 0.055
P49792 RGP3 E3 SUMO-protein ligase RanBP2 Thr799 pTPPRWAEDQNSLLK -0.261 0.055
B2R5W6 MAPRE3 Microtubule-associated protein RP/EB family member 3 Thr164 LIGTAVPQRTSPpTGPK 0.447 0.055
B8QGS6 PKP2 Plakophilin-2 Ser151 LEIpSPDSSPER 0.742 0.079
B4DIK2 NUP153 Nuclear pore complex protein Nup153 Ser338 RIPSIVSSPLNpSPLDR -0.317 0.079
Q13177 PAK2 Serine/threonine protein kinase PAK 2 Ser2 pSDNGELEDKPPAPPVR 0.234 0.079
O15231-3 ZNF185 Zinc finger protein 185 Ser469 RESCGpSSVLTDFEGK 1.662 0.080
O43399-2 TPD52L2 Tumor protein D54 Ser141 KLGDMRNpSATFK 0.563 0.080
Q14573 ITPR3 Inositol 1,4,5-trisphosphate receptor type 3 Ser916 pSIQGVGHMMSTMVLSR 0.782 0.080
Q676U5 APG16L Autophagy-related protein 16-1 Ser269 RLpSQPAGGLLDSITNIFGR 0.725 0.080
Q86SQ0 LL5B Pleckstrin homology-like domain family B member 2 Ser513 KDpSLPDADLASCGSLSQSSASFFTPR 0.606 0.080
B8QGS6 PKP2 Plakophilin-2 Ser154 RLEISPDpSpSPER 0.688 0.082
P16144-2 ITGB4 Integrin �4 Ser1445 DYSTLTpSVSSHDSR 1.473 0.082
P16144-2 ITGB4 Integrin �4 Ser1448 DYSTLTSVSpSHDSR 1.544 0.082
P16144-2 ITGB4 Integrin �4 Ser1069 LLELQEVDpSLLRGR 1.236 0.082
A6NDI6 FNBP1L Formin-binding protein 1-like Ser490 RHSpSDINHLVTQGR 0.239 0.082
A8K1D2 LASP1 LIM and SH3 domain protein 1 Ser146 MGPSGGEGMEPERRDpSQDGSSYR 0.366 0.082
A8K7M3 Sep 10 Septin-10 Ser451 KNpSNFL 1.015 0.082
A9UF02 BCR/ABL BCR/ABL fusion protein Ser459 HQDGLPYIDDpSPSSSPHLSSK 0.270 0.082
B3KSZ4 GATAD2B Transcriptional repressor p66-beta Ser129 LTPSPDIIVLpSDNEASSPR -0.181 0.082
D6W4Y8 ASAP2 Arf-GAP (SH3, ANK, PH) protein 2d Ser701 LLHEDLDEpSDDDMDEKLQPSPNR 0.430 0.082
O60303 KIAA0556 Uncharacterized protein KIAA0556 Ser691 KDpSLSQLEEYLR 0.618 0.082
Q52LW3 ARHGAP29 Rho GTPase-activating protein 29 Ser1019 IRPVpSLPVDR 1.340 0.082
Q8WUF5 IASPP RelA-associated inhibitor Ser102 SEpSAPTLHPpYSPLSPK 0.528 0.082
Q9UQB8-5 BAIAP2 Brain-specific angiogenesis inhibitor 1-associated protein 2 Ser509 pSMSSADVEVARF 1.197 0.082
P16144-2 ITGB4 Integrin �4 Thr1385 MDFAFPGSpTNSLHR 0.937 0.082
B8QGS6 PKP2 Plakophilin-2 Ser155 RLEISPDSpSPER 0.854 0.083
O15231-3 ZNF185 Zinc finger protein 185 Ser466 REpSCGSSVLTDFEGK 1.560 0.083
P23528 CFL Cofilin-1 Ser156 LGGpSAVISLEGKPL 0.445 0.083
Q13439 GOLGA4 Golgin subfamily A member 4 Ser78 VPpSVESLFRpSPIK 0.468 0.083
Q8N4C8 MINK Misshapen-like kinase 1 Ser699 pSNSAWQIYLQR 0.486 0.083
Q14573 ITPR3 Inositol 1,4,5-trisphosphate receptor type 3 Ser934 KQpSVFSAPSLSAGASAAEPLDR 0.788 0.086
Q9BY89 KIAA1671 Uncharacterized protein KIAA1671 Ser1800 KRQpSLYENQV 0.422 0.086
B8QGS6 PKP2 Plakophilin-2 Ser251 pSMGNLLEK 0.655 0.096
B2RBM8 ADNP Activity-dependent neuro-protector homeobox protein Ser769 KpSFLpTKYFNK 0.793 0.096
Q8NEY8 HSPC206 Periphilin-1 Ser133 DNTFFREpSPVGR -0.213 0.096
D3DXE9 BAZ1B Tyrosine-protein kinase BAZ1B Ser1468 LAEDEGDpSEPEAVGQSR -0.217 0.096
P28066 PSMA5 Proteasome subunit alpha type-5 Ser16 GVNTFpSPEGR 0.430 0.096
Q53EP0 FAD104 Fibronectin type III domain-containing protein 3B Ser208 LNpSPPSSIYK 0.391 0.096
Q6ZRV2 FAM83H Protein FAM83H Ser870 GpSPTSAYPER 1.049 0.096
Q6ZRV2 FAM83H Protein FAM83H Ser936 GpSLTLTISGESPK 1.026 0.096
Q6ZRV2 FAM83H Protein FAM83H Ser785 pSLESCLLDLR 0.795 0.096
Q86SQ0 LL5B Pleckstrin homology-like domain family B member 2 Ser415 KSpSISSISGR 0.631 0.096
Q86YV5 SGK223 Tyrosine-protein kinase SgK223 Ser696 SApSFAFEFPK 0.716 0.096
Q8TDM6 DLG5 Disks large homolog 5 Ser264 NLLQQpSWEDMKR 0.518 0.096
Q3KQU3 MAP7D1 MAP7 domain-containing protein 1 Thr118 RSSQPpSPpTAVPASDSPPTK 0.396 0.096

a Sequence of the peptide on which the phosphosite was detected; p indicates that the subsequent amino acid was phosphorylated.
b Median difference of log10 ratios between sensitive and resistant classes.
c FDR-corrected Wilcoxon rank sum p value.
d Full name: Arf-GAP with SH3 domain, ANK repeat, and PH domain-containing protein 2.
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the NSCLC data. Otherwise, the prediction accuracy would
be overestimated.

Missing data are a common phenomenon in shotgun pro-
teomics. Although the quantitative information (i.e., SILAC
peaks) of a peptide may be present in the MS spectrum, at
least one of the SILAC peaks has to be selected for fragmen-
tation. In this case, the resulting fragment spectrum is used to
identify the corresponding peptide. Because the selection of
peptides for fragmentation is data-dependent, a certain pep-
tide may be selected in some MS runs but not in others.
Therefore, a missing value does not necessarily mean that the
corresponding phosphopeptide was not present. This is par-
ticularly true when applying the Super-SILAC approach like in
this study.

Because many machine learning techniques (SVMs among
them) cannot handle missing values, they were replaced by
estimated values that were randomly sampled from the re-
spective empirical distribution. As a consequence, the entire
assessment was carried out five times with different seeds for
the random number generator used for imputation, leading to
five distinct prediction results. The five results were strikingly

similar as can be expected from a robust set of features, i.e.,
four times only one cell line was misclassified (HCC78), and
once two were falsely classified (HCC78 and HCC827), which
leads to a prediction accuracy of 94% and an area under the
receiver operating characteristic curve (AUROC) of 0.92 (Fig.
4A). Each circle in Fig. 4A shows the averaged predicted
outcome of this cell line when all other cell lines were used as
training data. A sensitive cell line is predicted correctly if the
SVM predictor assigns a negative value, and a resistant cell
line is predicted correctly if the SVM predictor assigns a
positive value. The larger the distance to the separating hy-
perplane (i.e., the distance from 0 in the plot), the more
confident the prediction is. It can be clearly seen that 18 of 19
cell lines were predicted correctly by cross-validation.

For the final predictor, the workflow was carried out with
only one CV loop, corresponding to the inner loop during the
prediction quality assessment (see supplemental Fig. S4).
This resulted in identifying a predictive phosphosignature
containing the 12 phosphosites. Interestingly, the average
number of selected features within the inner parameter opti-
mization loop during the prediction quality assessment was

FIG. 1. Protein-protein interaction subnetwork showing differential phosphorylation in sensitive and resistant cells. The subnetworks
were identified using the SubExtractor algorithm. Only the largest network is shown. Red nodes are more strongly phosphorylated, and blue
nodes are more weakly phosphorylated in sensitive than in resistant cells.
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also �12, which further supported the robustness of the
selected set of phosphosites. The sites are listed in Table II
sorted by their global feature ranks and depicted as a heat
map in Fig. 5 (see also supplemental Table S4 for more details
and supplemental Table S5 for observed ratios). With an
increasing number of features the prediction accuracy also
increased, until it saturated at 12 features (see supplemental
Fig. S5). Additional features did not improve the prediction
accuracy.

These results show that a predictive phosphosignature can
be identified from phosphoproteomics data. However, the
question remains regarding whether the identified signature is
specific to dasatinib or whether it also works for other sub-
stances not related to dasatinib. As a first step to answer this
question, we applied the prediction quality assessment work-
flow to randomized class labels. Strikingly, the prediction
accuracy was only 51% (AUROC � 0.53), which is almost
exactly what one would expect if predicting the classes by
chance. Thus, a predictive signature cannot be found for
arbitrary class associations. As a next step, we investigated
whether the classification scores of the final predictor corre-
late with the cell doubling times of untreated cell lines. The
classification score corresponds to the distance from the SVM
classification hyperplane and can be interpreted as the con-
fidence in correct classification. In particular, the score is
negative (positive) if the sample is predicted as being sensitive
(resistant). The cell doubling times range from 25 to 55 h
(supplemental Table S1). A Pearson correlation coefficient of

�0.08 (p value 0.79) indicates that the doubling times are not
associated with the classification. In contrast, the correlation
between classification scores and GI50 values of dasatinib is
significant (0.81, p � 2.6E-6). Finally, we sought to show
whether the dasatinib signature is predictive for other sub-
stances. The small molecule sorafenib (Nexavar�; Bayer) is a
multikinase inhibitor targeting the Raf/Mek/Erk and the vas-
cular endothelial growth factor receptor pathway. The corre-
lation between the doubling times and GI50 values of
sorafenib (18) is �0.05 (p value 0.83). Taking these results
together, we could demonstrate that the identified phospho-
signature is specific for predicting response to treatment with
dasatinib.

The Phosphosignature Is Robust—A good feature and con-
sequently a good set of features should be robust to small
variations in the data. Only when slight changes in the data
composition still lead to correct predictions is the biomarker
reliably applicable to samples not used for training. Therefore,
robustness already plays a crucial role in the process of
feature selection. First, a robust feature is chosen frequently
by the feature selection method across all of the cross-vali-
dation steps. Second, within each cross-validation step, slight
variations in the training data should also result in the con-
stant selection of robust features.

To identify such robust phosphosites, we applied the Wil-
coxon rank sum test in combination with the ensemble feature
selection method (29) to get a feature ranking in each CV step.
The average of these ranks across all CV iterations for the

FIG. 2. The general workflow of phosphobiomarker classification. First, a predictive phosphosignature is identified based on phospho-
profiles of sensitive and resistant cell lines using the cross-validation approach (described in detail in the text). Once this signature has been
identified, it can be applied to new samples to predict the response of the donor to the respective drug.
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signature’s 12 features along with the number of times each of
them was ranked under the first 12 positions are listed in
Table II. The best features turned out to be very stable, e.g.,
the top four have an average rank smaller than 6 and were
among the 12 best more than 90% of all iterations. The
importance of these features is also indicated by their high
weight in the SVM. Overall, 7 features are among the 12 best
in more than two-thirds of the iterations, and only 2 in less
than one-third.

To ensure that the SILAC labeling procedure of cell lines
has no effect on the results, label switch experiments were
performed, where originally medium-labeled cell lines
were now labeled with heavy amino acids and vice versa. The
classification results of the final predictor applied to these
experiments are depicted in Fig. 4B. For two of the three
label-switched samples, the prediction is virtually identical to
the original data (Fig. 4B, circles and crosses at positions 11
and 14). In the case of the position 4 (H322M), the difference
is somewhat larger, but the corresponding label switch ex-
periment is still classified correctly.

Because phosphosites in this study are detected in a global
and unbiased way, we applied global normalization strategy
during the discovery phase. However, when the phosphosig-
nature is applied in the clinic, a method that specifically meas-
ures the phosphosites of the signature in a robust and cheap

way is more likely to be used (see the supplemental materials
for how SVM predictor can be adapted to use data from other
methods). Such targeted methods could be either based on
phospho-specific antibodies (e.g., immunohistochemistry or
ELISA based assays) or targeted mass spectrometry methods
such as multiple reaction monitoring (36, 37). Because a
global normalization strategy is not applicable to targeted
methods, it is necessary to develop an alternative. We fo-
cused on nonphosphorylated peptides that showed a very
low variance across the regulation data of all cell lines regard-
less of whether the cell line was sensitive or resistant. Al-
though the phosphoproteomic workflow is designed to spe-
cifically enrich for phosphorylated peptides, a significant
fraction of nonphosphorylated peptides is still present. In this
study, a normalization factor based on a set of nonphosphor-
ylated ribosomal proteins exhibiting low variance across all
cell lines proved useful (see supplemental Table S6 for nor-
malization data). The classification results of the ribosomal
protein normalized data are depicted in Fig. 4C, which shows
that the prediction quality is essentially as good as for the
globally normalized data the predictor was trained on.

The Phosphosignature Was Validated in Breast Cancer
Cells—To test whether the phosphosignature is also applica-
ble to other cancer types, we selected three sensitive and
three resistant breast cancer cell lines. Again, the GI50 values

TABLE II
Phosphorylation sites of the final phosphosignature

Uniprot
identification

code

Gene/protein
name Site Modified

sequencea
Average

rankb
Median

differencec
Rank
�12d

SV
weighte

P16144-2 ITGB4 Ser1448 DYSTLTSVSpSHDSR 2.716 1.544 18 �0.386
Integrin �4

Q9UQB8-5 BAIAP2 Ser509 pSMSSADVEVARF 3.611 1.197 18 �0.311
Brain-specific angiogenesis inhibitor 1-associated protein 2

P16144-2 ITGB4 Ser1387 MDFAFPGSTNpSLHR 4.337 0.992 19 �0.155
Integrin �4

P16144-2 ITGB4 Thr1385 MDFAFPGSpTNSLHR 5.716 0.937 18 �0.275
Integrin �4

P16144-2 ITGB4 Ser1069 LLELQEVDpSLLRGR 7.937 1.236 13 �0.076
Integrin �4

A8K556 GPCR5A Ser345 AHAWPpSPYKDYEVK 9.632 0.872 16 �0.174
Retinoic acid-induced protein 3

Q14573 ITPR3 Ser916 pSIQGVGHMMSTMVLSR 14.168 0.782 8 �0.205
Inositol 1,4,5-trisphosphate receptor type 3

Q9C0C2 TNKS1BP1 Ser429 RFpSEGVLQSPSQDQEK 15.032 0.968 1 �0.159
182-kDa tankyrase-1-binding protein

Q6ZSZ5 ARHGEF18 Ser1101 pSLSPILPGR 16.874 0.419 0 �0.188
Rho guanine nucleotide

Q8WUF5 IASPP Ser102 SEpSAPTLHPYSPLSPK 17.516 0.528 7 �0.145
RelA-associated inhibitor exchange factor 18

Q676U5 APG16L Ser269 RLpSQPAGGLLDSITNIFGR 18.19 0.725 13 �0.24
Autophagy-related protein 16–1

O43399-2 TPD52L2 Ser141 KLGDMRNpSATFK 18.274 0.563 8 �0.155
Tumor protein D54

a Sequence of the peptide on which the phosphosite was detected; p indicates that the subsequent amino acid was phosphorylated.
b The average rank of the feature across all cross-validation steps.
c Median difference of log10 ratios between sensitive and resistant classes.
d The number of times the feature was among the 12 best across all CV steps.
e The importance of the feature in the SVM predictor (the larger the absolute weight, the more important).
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were also determined in-house and compared with the pre-
viously reported values (5). This time, all of the data were
consistent (supplemental Table S1), and the six breast cancer
cell lines were subjected to our global phosphoproteomics
workflow (see supplemental Table S5 for data).

Subsequently, the cell lines were classified with the SVM
predictor trained on the set of NCSLC cell lines. Strikingly, five
of the six breast cancer cell lines could be classified correctly
(Fig. 4D); only one resistant sample was wrongly predicted to
be sensitive (MDA-MB-468). These findings indicate that the
proposed phosphosignature is also predictive for dasatinib
sensitivity in other cancer types.

Integrin �4 Expression Can Be Used as Surrogate Marker—
Four of the highest ranked predictive phosphosites reside on
the protein Integrin �4 (ITGB4; supplemental Table S2). Be-
cause we did enrich for phosphorylated peptides and did not
measure the abundance of the nonphosphorylated peptides
or the total protein, it is principally impossible to distinguish
between differences in the phosphorylation degree and dif-
ferences in the expression of the corresponding protein. How-
ever, in case of ITGB4, it is likely that the differences in the
phosphorylation of the four sites are caused by differences in
the abundance of the protein itself. To prove that the expres-
sion of this protein is indeed different in the two classes of the
NSCLC cell lines, we performed quantitative Western blots
using antibodies against the total protein of ITGB4 and 182-
kDa tankyrase-1-binding protein (TNKS1BP1). We selected
TNKS1BP1 as one of the eight proteins for which only one
phosphosite was identified as predictive feature. While

TNKS1BP1 is present in almost all cell lines and its expression
shows no correlation with the sensitivity of the cell line to
dasatinib, ITGB4 can be detected in eight sensitive cell lines
but in only two resistant cell lines (Fig. 6A). This is confirmed
by quantitative analysis of three replicate experiments (Fig. 6,
B and C). The background-corrected signals of ITGB4 corre-
late with the phosphorylation degree measured by mass
spectrometry (Pearson correlation 0.88, p � 2 � 10�6). The
signals of most resistant cell lines are low, whereas strong
signals can be determined in the sensitive cell lines. This
clearly shows that expression of ITGB4 is also predictive and
that it can be used as surrogate marker instead of its phos-
phorylation. Indeed, if choosing the average of the median
signals in each group as classification threshold, all resistant
and eight sensitive cell lines would be correctly classified,
whereas three sensitive cell lines would be falsely classified as
resistant. Nevertheless, the prediction accuracy of ITGB4 ex-
pression (84%) is not as high as the accuracy of the full
phosphosignature (94%). In contrast, the signals for total
TNKS1BP1 do not correlate with sensitivity, although its
phosphorylation is predictive.

Integrin �4 Is Expressed in Subpopulation of Lung and
Breast Cancer Tissues—We demonstrated that the signature
consisting of 12 phosphorylation sites and the expression of
ITGB4 is predictive in NSCLC and breast cancer cell lines. To
explore whether ITGB4 is also expressed in cancer tissues,
we examined immunohistochemistry images of several can-
cer tissue slices. The Human Protein Atlas (38) systematically
analyses the human proteome in cell lines, normal tissues,

FIG. 3. Final phosphosignature con-
sisting of 12 phosphosites. Each pair
of boxes corresponds to one phospho-
site. The left box represents the sensitive
cell lines, and the right box represents
the resistant cell lines. On each box, the
central mark is the median, the edges of
the box are the 25th and 75th percen-
tiles. The whiskers extend to the most
extreme data points not considered out-
liers, and outliers are marked individually
with crosses.
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and cancer tissues using antibodies. In particular, it contains
a number of immunohistochemistry images of cancer tissues
stained with an antibody (CAB005258) against total protein of
ITGB4. Five lung cancer samples (42%) are negative, whereas
seven samples show weak to strong expression of ITGB4
(supplemental Fig. S7A). Similarly, six breast cancer samples
(50%) are negative, whereas six samples show weak expres-
sion (supplemental Fig. S7B). In summary, we could show that
the expression of ITGB4 can be used as surrogate marker for
its phosphorylation. The marker is measurable by immunohis-
tochemistry in clinical tissue samples, and it is present in a
subpopulation of �50% of the investigated cancer tissues.

DISCUSSION

This study shows that the identification of response predic-
tion markers from global and unbiased quantitative phospho-
proteomics experiments in a preclinical setting is possible.
Detection of a few ten thousands of phosphorylation sites
across a panel of cancer cell lines is feasible. The use of a

pool of cell lines as a common reference enabled the accurate
quantification of the detected sites. The accuracy and repro-
ducibility of the phosphoproteomic workflow was demon-
strated in label switch experiments. Measuring protein phos-
phorylation levels allowed us to monitor overactivation and
repression of disease-specific signaling pathways. Because
kinase inhibitors, such as small molecules and monoclonal
antibodies interfere with signal transduction pathways, we
hypothesized that determining the basal activity of these
pathways will allow predicting a response to therapy with
such an inhibitor.

We identified 58 phosphosites that are differentially abun-
dant between sensitive and resistant cell lines. Enrichment
analysis of gene ontology terms and KEGG pathways as well
as subnetwork analysis shows that many of the differentially
phosphorylated proteins are involved in cell adhesion and
cytoskeleton organization, where most phosphorylations are
higher in the sensitive group. Interestingly, it has been shown
that dasatinib inhibits migration and invasion of various solid

FIG. 4. Classification results represented by distance to the separating hyperplanes of the respective SVMs. The cell lines in A, B, and
C are: 1, LouNH91; 2, H1648; 3, HCC827; 4, H322M; 5, H2030; 6, HCC2279; 7, HCC366; 8, HCC4006; 9, H1666; 10, PC9; 11, H2009; 12, H460;
13, Calu6; 14, H2077; 15, H1395; 16, H2172; 17, HCC78; 18, H157; and 19, H520. The cell lines in D are: 1, BT-20; 2, MDA-MB-231; 3,
HCC1937; 4, MDA-MB-468; 5, BT-549; and 6, MCF7. Sensitive cell lines (left half) are predicted correctly if they get assigned a negative value;
resistant ones (right half) are correct if they are assigned a positive value. A, the results of the prediction quality assessment. B, prediction
results of the final predictor when applied to the same date as used for training (circles) along with the results for the label switch experiments
(crosses). C, prediction results of the final predictor when applied to the same data as used for training (circles), along with the results for the
same data when normalized by the selected set of ribosomal proteins (dots). D, prediction results of the final predictor when applied to the
breast cancer samples.
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tumors through inhibition of the Src kinase (39–41), which is
one of the main targets of dasatinib (14, 15). We thus hypoth-
esize that cells, in which pathways related to cell adhesion
and cytoskeleton organization are overactivated, respond to a
treatment with dasatinib. Src is a nonreceptor tyrosine-protein
kinase. That none of the differentially phosphorylated residues
is a tyrosine, does not contradict the hypothesis, because we
studied the basal phosphoproteome of untreated cells. Pro-
teins that are causal for resistance to Src inhibition may be
located downstream or upstream of the direct Src kinase
substrates in the signaling cascades.

We showed that a phosphosignature consisting of only 12
phosphorylation sites is sufficient to predict the response
from the basal phosphoproteome of a cultured cell. The pre-
dictor model was based on a support vector machine with
linear kernel. We validated the accuracy of the prediction in a
leave-one-out cross-validation procedure. 18 of 19 cell lines
could be classified correctly. The obtained prediction accu-
racy was 94%, and the area under the curve was 92%.

The 12 phosphorylation sites were located on 9 different
proteins (see Table II and Fig. 5). Four of the phosphorylation
sites are located on integrin �4 (ITGB4 or CD104). In general,
integrins mediate cell-matrix or cell-cell adhesion and are
involved in transducing signals to regulate transcription and
cell growth. The subunit �4 associates with �6, and the re-
sulting integrin �6�4 is a receptor for the laminin family of
extracellular matrix proteins. Integrin �4 is linked to various
signaling pathways such as the MAPK, phosphatidylinositol
3-kinase-Akt, and Src-Fak pathways (42–44). Furthermore,
expression of �6�4 is associated with poor patient prognosis
in various cancers (45–47). According to the PhosphoSite
database (48) the sites Ser1457 and Ser1518 were detected in

previous mass spectrometry-based proteomics experiments,
but to our knowledge the functions for none of the four sites
have been described so far. All four sites are phosphorylated
more strongly in sensitive cells than in resistant cells.

In addition to the integrin �4 phosphorylations, the signa-
ture comprised eight additional phosphosites on eight other
proteins. Like integrin �4, the brain-specific angiogenesis in-
hibitor 1-associated protein 2 (BAIAP2) and the Rho guanine
nucleotide exchange factor 18 (ARHGEF18) are involved in
regulating the actin cytoskeleton. BAIAP2 (also called insulin
receptor substrate p53, IRSp53) serves as an adaptor linking
a Ras-related protein Rac1 with a Wiskott-Aldrich syndrome
protein family member 2 (WAVE2). The recruitment of WAVE2
induces Cdc42 and the formation of filopodia (49, 50).
ARGHEF18 acts as guanine nucleotide exchange factor for
the GTPases RhoA and Rac1 (51, 52). Activation of RhoA
induces actin stress fibers and cell rounding.

The RelA-associated inhibitor (PPP1R13L, also called inhib-
itor of ASPP protein, IASPP) and the G-protein-coupled re-
ceptor family C group 5 member A (GPRC5A, also called
retinoic acid-induced protein 3, RAI3) are functionally con-
nected to the tumor suppressor p53. PPP1R13L binds to p53
and inhibits its activation by ASPP1 and ASPP2 (53). On the
other hand, p53 was demonstrated to bind to the promoter of
GPRC5A and thereby negatively regulates its expression (54).

The tumor suppressor p53 is associated with at least two
signature proteins. At the same time, p53 is inactivated by
mutations in a large proportion of tumor cell lines. We there-
fore investigated whether p53 status alone is predictive of a
response to dasatinib. According to the IARC TP53 database
(55), six of seven sensitive and three of five nonsensitive cell
lines have a mutation in the p53 protein (seven cell lines were

FIG. 5. Heat map of the final 12 se-
lected phosphorylation sites. Rows are
the 19 cell lines that were used to iden-
tify the phosphosignature (the upper 11
are sensitive, and the lower 8 are resist-
ant), and columns are the phosphosites
ordered by their importance ranks (left is
the best). Red indicates up-regulation,
blue indicates down-regulation, and gray
indicates no regulation. Missing values
are colored white.
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not listed; see also supplemental Table S1). Because the
functional effect is not known for all mutations, we assumed
that any mutation, apart from neutral or silent mutations, is
functionally relevant. The null hypothesis that sensitivity to

treatment with dasatinib does not differ between p53-mutated
and p53 wild type cell lines cannot be rejected (Fisher’s exact
test p value is 0.52). Therefore, the mutation status of p53 is
not a good predictor of dasatinib sensitivity.

FIG. 6. Western blots of ITGB 4 and
TNKS1BP1 in NSCLC cell lines. A,
Western blot images for one replicate.
The top panel shows Western blots for
ITGB4, and the bottom panel shows
Western blots for TNKS1BP1. The sen-
sitivity to dasatinib treatment is noted
by � above the cell line labels. B, quan-
titative readout for ITGB4 in resistant
(left) and sensitive (right) cell lines. The
error bars represent the standard error
across three replicates. The horizontal
line represents the average of the class
medians. C, quantitative readout for
TNKS1BP1.
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Although, based on the current literature, a direct link can-
not be made between the other four proteins inositol 1,4,5-
triphosphate receptor type 3 (ITPR3), 182-kDa tankyrase-1-
binding protein (TNKS1BP1), autophagy-related protein 16–1
(APG16L), tumor protein D54 (TPD52L2), and the main dasat-
inib targets, the fact that their phosphorylation correlates with
the treatment response supports their use in the predictive
model.

From the discussion above it is clear that many of the signa-
ture proteins are related to each other. Indeed, when mapping
the nine proteins to the STRING protein-protein interaction net-
work (28), we revealed one network involving six signature pro-
teins and few additional proteins (Fig. 7). Phosphorylation sites
for most of the proteins in this network are less abundant in the
resistant cell lines than in the sensitive cell lines.

The difference in phosphorylation of a specific site between
two cell lines may be due to a difference in either expression
of the corresponding protein, the degree of phosphorylation
of this site, or a combination of both. The phosphoproteomic
data do not allow distinguishing between the three possibili-
ties. However, as long as the abundance of a certain phos-
phorylated peptide consistently differs between sensitive and
resistant cell lines, the cause for its difference is not important
for its use as a predictive biomarker. In case of ITGB4, we
could indeed show that its protein expression is also predic-
tive. Contrary, the protein expression of TNKS1BP1 does not
differentiate between sensitive and resistant cell lines.

The study also showed that the predictor identified from a
panel of NSCLC cell lines can be used in other cancer cell
lines. Five of six breast cancer cell lines were correctly pre-
dicted (prediction accuracy 83%). Only one resistant cell line
(MDA-MB-468) was predicted to be sensitive.

A few markers for dasatinib have been suggested in the
literature or are already applied in the clinic. For example,
Huang et al. (5) identified a predictive six-gene model from
gene expression profiles. Obviously, the phosphorylation
grade may be largely independent of the mRNA expression
level. Nevertheless, we investigated whether the phosphory-
lation sites on the corresponding proteins are also predictive.
We detected phosphorylation sites on five of the six proteins:
EPHA2, CAV1, CAV2, ANXA1, and PTRF. Although the phos-
phorylation tends to be high in sensitive cell lines and low in
resistant cell lines, the relationship is not as sound as for the
markers identified in this study. All of the sites are not signif-
icantly different between the two classes. As an example,
supplemental Fig. S6 shows three sites on the Ephrin type-A
receptor (EPHA2). Additionally the tyrosine phosphorylations
p-Src(Y418), p-BCR-ABL(Y412), p-Crkl(Y207), p-Pax(Y31),
and p-Fak(Y576) have been described as pharmacodynamic
markers for dasatinib in mouse experiments and in clinical
trials (57–59). These markers are modulated after treatment
with dasatinib, and their basal levels do not necessarily dif-
ferentiate between sensitive and resistant subjects. Neverthe-
less, we were interested in their behavior across the untreated
cell lines. We could detect the phosphorylation site Tyr418 of
Src in five cell lines but could not identify any relationship to
the sensitivity of these cell lines. The site ABL(Y412) on the
fusion protein BCR-ABL was not detected. However, a differ-
ent site BCR(S459) was detected in almost all cell lines and is
significantly modulated between the sensitive and resistant
group (supplemental Table S1 and Fig. S6).

We demonstrated our method for the identification of a
predictive phosphosignature in a set of NSCLC and breast
cancer cell lines. The application to cultured cells has a num-
ber of advantages: the cell population is very homogenous;
sample amounts from cell lines are not limited; experiments
are easily reproducible; and the drug’s efficacy can be exper-
imentally determined. However, whether the signature or
parts of the signature are also predictive in clinical samples

FIG. 7. Protein-protein interaction network that shows the rela-
tionship between six of nine predictive signature proteins
(marked with green border). The network was obtained using
STRING.
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has to be shown in future studies with clinical samples. In-
stead of applying shotgun phosphoproteomics, it is possible
to apply targeted detection methods, such as immunological
methods or the mass spectrometry-based multiple reaction
monitoring method (60). These methods allow the quantifica-
tion of marker phosphosites of relatively low sample amounts
and can be applied to large number of samples. Because
fresh frozen tissues are rare, the translation of our results to
the clinic requires the analysis of formalin-fixed and paraffin-
embedded tissues. It has been assumed that the cross-linking
of proteins prevents a proteomic analysis. Recently, it could
be shown that proteins can be effectively extracted from
formalin-fixed and paraffin-embedded samples and that the
proteins and phosphorylations are quantitatively preserved
compared with fresh frozen tissues (56, 61, 62).

As an alternative, we demonstrated that the expression of
ITGB4 can be used as surrogate marker for its phosphoryla-
tion. The marker is measurable by immunohistochemistry in
clinical tissue samples, and it is present in a subpopulation of
�50% of the investigated cancer tissues.

In this study, the phosphorylation data were globally nor-
malized, assuming that the overall phosphoproteome is fairly
well conserved between the different cell lines. However, this
strategy is no longer applicable to targeted detection of the
selected phosphosites, because all measured phosphosites
will be regulated. We proposed an alternative normalization
strategy using the expression of eight nonregulated ribosomal
proteins. It could be demonstrated that the prediction of
sensitivity using the phosphosignature is stable for the appli-
cation of the alternative normalization strategy.

In summary, the identified phosphosignature consisting of
12 phosphorylation sites is highly predictive for the sensitivity
to treatment with dasatinib in NSCLC cell lines as well as
breast cancer cell lines. The results suggest that the phos-
phorylations of integrin �4 as well as eight further proteins are
candidate biomarkers for predicting response in solid tumors
to dasatinib and potentially to other Src family kinase inhibi-
tors. That many of the signature proteins have related func-
tion and are connected in a protein-protein interaction net-
work further supports the generalizability of the predictive
signature.

In this study we proposed a general method for identifying
response prediction biomarkers based on a phosphorylation
signature. The method is hypothesis-free insofar as the inves-
tigated phosphorylation sites do not have to be preselected,
and no assumptions about the mechanism of action of the
therapeutic drug have to be made. The basis of the method is
the global quantitative phosphoproteomic analysis of base-line
samples. Although we demonstrated that the method permits
identifying a highly predictive phosphorylation signature for re-
sponse to dasatinib treatment in NSCLC cell lines, it can be
assumed that the method can also be applied to other drugs,
particularly other kinase inhibitors, and to other tumor types.
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