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Abstract
If EMG decomposition is to be a useful tool for scientific investigation, it is essential to know that
the results are accurate. Because of background noise, waveform variability, motor-unit action
potential (MUAP) indistinguishability, and perplexing superpositions, accuracy assessment is not
straightforward. This paper presents a rigorous statistical method for assessing decomposition
accuracy based only on evidence from the signal itself. The method uses statistical decision theory
in a Bayesian framework to integrate all the shape- and firing-time-related information in the
signal to compute an objective a-posteriori measure of confidence in the accuracy of each
discharge in the decomposition. The assessment is based on the estimated statistical properties of
the MUAPs and noise and takes into account the relative likelihood of every other possible
decomposition. The method was tested on 3 pairs of real EMG signals containing 4–7 active
MUAP trains per signal that had been decomposed by a human expert. It rated 97% of the
identified MUAP discharges as accurate to within ±0.5 ms with a confidence level of 99%, and
detected 6 decomposition errors. Cross-checking between signal pairs verified all but 2 of these
assertions. These results demonstrate that the approach is reliable and practical for real EMG
signals.
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I. Introduction
The process of estimating the firing patterns of multiple simultaneously active motor units
(MUs) from an EMG signal is referred to as EMG decomposition. A number of automatic
and computer-aided methods have been developed [1]–[15]. EMG decomposition is used to
study the neural control of movement [16]–[25], diagnose neuromuscular disorders [26],
[27], and characterize MU architecture [28], [29].

EMG decomposition is possible in signals in which MUs have distinct motor-unit action
potentials (MUAPs) and regular firing patterns. However, because of background noise,
MUAP shape and firing variability, and obfuscation when MUAPs superimpose, the true
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composition of the signal is not always obvious. Therefore, in order to know whether the
results obtained by decomposition are scientifically valid, it is important to have a way to
assess their accuracy.

The accuracy that can be achieved in decomposing a particular signal depends both on the
characteristics of the signal and on the capability of the algorithm. If a signal is too complex,
or if the MUAPs are too similar, it might not be possible to determine the true composition
with complete certainty. Algorithmic performance can be tested using signals whose true
composition is already known [30]. However, there is no way to be sure that the same
performance seen with test signals can necessarily be expected for new signals with different
characteristics.

Assessment of decomposition accuracy for a signal whose true composition is not already
known must be based on evidence provided by the signal itself. Is the decomposition self
consistent? Is it physiologically plausible? Does it fully account for all the activity in the
signal? Many decomposition algorithms provide indices or graphical representations in this
regard to characterize the consistency of the MUAP waveforms, the regularity of the firing
patterns, and the fit between the estimated MUAP trains and the signal [1], [6], [9], [14],
[31]. These representations can provide convincing evidence that the decomposition is
plausible, but they do not constitute a rigorous proof that it is correct and complete.

In this paper we use statistical decision theory in a Bayesian framework to integrate all the
evidence provided by the signal into a rigorous statistical assessment of decomposition
accuracy. The approach involves computing the posterior probability that the given
decomposition is correct, based on the estimated statistical properties of the MUAPs and
noise and taking into account the relative likelihood of every other possible decomposition.
The analysis is tolerant of a certain amount of abnormal or anomalous activity, which often
occurs in real signals. If it is very unlikely that any other set of firing patterns could have
produced the signal, then the given decomposition can be accepted as correct with a high
degree of confidence. Otherwise it cannot. The final result of this aposteriori (AP) analysis
is an objective measure of confidence in the accuracy of each discharge in the
decomposition.

In this paper, we consider only single-channel, time-invariant signals of limited complexity,
which includes many signals recorded with millimeter-sized electrodes during low-force,
constant, isometric contractions. For signals with clearly distinguishable, regularly firing
MUAPs and few anomalies, the AP analysis can provide a statistically sound estimate of
decomposition accuracy. We refer to these as “good” signals—signals that an experienced
human operator would be able to decompose with a high degree of subjective confidence.
The AP analysis now provides a way to document that confidence objectively. Of equal
importance, if the MUAPs or firing patterns are ambiguous, the AP analysis will indicate
that ambiguity. The analysis thus serves a similar function for EMG decomposition that
confidence intervals and tests of statistical significance do for other measurements: to
provide a solid justification for further inferences where there is reasonable certainty and a
safeguard against faulty inferences where there is reasonable doubt.

II. Overview
A. Notation

Waveforms are represented as continuous functions of time: s(t). Each waveform is defined
over a particular interval and is assumed to equal zero outside that interval. The interval is
indicated when the waveform is first introduced using the notation s(t0 : t1). In particular, the
equation s(t0 : t1) = f (t) means that s(t) = f (t) for t0 ≤ t < t1 and s(t) = 0 otherwise. Although

McGill and Marateb Page 2

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2012 September 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



equations involving waveforms are given in continuous time, it is assumed that
computations involving them are actually done in discrete time with sampling rate fs, that
sampling-theoretic interpolation is used for time shifts that are non-integer multiples of the
sampling interval 1/fs [32], and that the waveform energy ||s||2 is calculated as a sum of
squared sample values. The use of continuous-time notation merely simplifies the
presentation by hiding the bookkeeping details associated with discrete indexing. The
equations and pseudocode are not necessarily optimized for computational efficiency. In
general, variables associated with the given decomposition are marked with a tilde: ,

variables estimated by the algorithm are marked with a hat: , and the corresponding true
values are unmarked: tij.

B. Problem statement and assumptions
We are given an EMG signal s(0 : ls) and a set of estimated firing times :

(2.1)

where ls is the length of the signal,  is the jth estimated firing time of MU i, ñi is the
estimated number of firings of MU i, and ñu is the estimated number of active MUs. We
refer to such a set of firing times as an annotation of s(t).

We assume that  provides a reasonably accurate description of the true composition of s(t).
Specifically, we assume that the ñu MUs specified by  are all valid, and that therefore the
true composition of s(t) can be written as follows:

(2.2)

where tij, j = 1, …, ni are the true firing times of MU i, wij (−lw : lw) is the MUAP waveform
of the jth discharge of MU i, lw is the MUAP half width, which, for simplicity, we assume is
the same for all MUAPs and is known a-priori, z(0 : ls) is the background noise, and any
other MUAP trains that are present in s(t) but not included in  are treated as part of the
background noise.

The problem is to determine how accurately the firing times specified in  correspond to the
true firing times. The true firing times are not known, and will be treated, in a Bayesian
sense, as random variables. We assume that  is accurate enough to provide reasonably
accurate estimates of the statistical characteristics of the MUAP waveforms, firing behavior,
and noise.

C. Posterior probability

Our assessment of the accuracy of  will be based on the posterior probability . This
is the probability that the times in  are the true firing times, given all the evidence

contained in s(t). By Bayes’ rule,  can be written as follows:

(2.3)

where T is an arbitrary annotation, P(s|T) is the probability that if the MUs discharged as in
T they would have produced s(t), and P(T) is the probability that the MUs would have
discharged as in T in the first place [33]. The former factor depends on the statistical
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characteristics of the MUAP waveforms and background noise, and the latter on the
statistical characteristics of the MU firing behavior.

An essential component of (2.3) is the normalization, which involves summing over all
possible annotations T. This is challenging because of the large number of possible
annotations. One approach is to consider that each MU can either discharge or not discharge
in each discrete sampling interval [34]. This gives2ñulsfspossible annotations, where fs is the
sampling rate. This is too many possibilities to consider in a practical algorithm.

We take a more pragmatic approach and partition s(t) into active and inactive segments. An
active segment is a segment in which the signal rises significantly above the level of the
background noise. Based on our experience with “good” EMG signals that have been
adequately high-pass filtered, we assume that every true MU discharge results in an active
segment—in other words, that there is a negligible chance of two or more MUAPs
superimposing in a such a way that their sum cannot be distinguished from the background
noise. We further assume that the active segments are short enough, and the MU
interdischarge intervals long enough, that each active segment contains at most only one
discharge of any given MU. Under these assumptions, MU discharges only occur during the
active segments, and in a particular active segment each MU can either discharge or not
discharge. This gives a total of 2ñuna possible “segment-wise” annotations, where na is the
number of active segments. This number is still quite large, but, as we will show, the
problem can be factored in such a way that each annotation does not have to be considered
in its entirety.

We represent a segment-wise annotation by the set X = {x1,...,xna}, where

 denotes the MU combination that discharges in active segment

k, with xki = 1 if MU i discharges in the segment and 0 if it doesn’t. Analogous to ,
the posterior probability of the segment-wise annotation  that corresponds to  is

(2.4)

where P(s|X) and P(X) are the shape- and firing-time related probabilities analogous to P(s|

T ) and P(T). To compute  rigorously would still require consideration of all the
different possible firing times within each active segment. Again we take a pragmatic

approach. For computing  we assume that within each active segment the firing times
for a particular MUAP combination are those that give the best fit between the MUAPs and
the signal. Then we separately estimate how likely those times are to be correct.

By itself, the value of  does not convey what one generally thinks of as the accuracy
of the annotation. For example, if there is uncertainty about only one active segment, then

 could be close to 0.5, even though the rest of the annotation is highly confident. We
will therefore also use the AP framework to compute the marginal posterior probabilities of

the individual discharges, i.e., . This is the probability that the annotation of active
segment k is correct with respect to MU i, given all the evidence in the signal. It can be
thought of as a level of confidence in the accuracy of this particular annotation.
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III. Estimation of Statistical Parameters
We assume that the given annotation  is accurate enough to provide reliable estimates of
the statistical properties of the true MUAP waveforms, firing behavior, and background
noise. This is not unreasonable if s(t) is a “good” signal as described in the Introduction and
if  is the result of a reasonably competent decomposition. If  does not provide good
statistical estimates, then the mismatch between the signal and the statistical model will tend
to undermine confidence in , discouraging overestimation of its accuracy.

We assume that the statistical characteristics of the MUAPs and noise are time invariant and
follow known distributions. We typically analyze signals in 5 second intervals because this
is long enough to obtain reasonably accurate estimates of the statistical parameters, but short
enough that the parameters are not likely to change significantly during the interval. Since
any errors in  are likely to produce outlying sample values that could bias the estimates, we
use robust methods to exclude outliers.

A. Firing statistics
The intervals between the successive discharges of a steadily firing MU during a constant
force contraction have a stationary probability distribution that is very close to normal, with
a standard deviation between about 10 and 25% of the mean [35]. If the true distribution is
not exactly normal, the differences are not likely to be statistically distinguishable over
relatively short signals (≤ 5 s.). For the sake of simplicity we assume that the intervals are
independent both within and between trains. Therefore the probability density that
successive discharges of MU i occur at times t1 and t2 is approximated by

(3.1)

where ûIi and  are the estimated mean and variance. The probability density of the first
and last partial intervals at the beginning and end of the signal are given by hazard functions
[36]. For convenience we also use the notation pIi to refer to these intervals by defining

(3.2)

when t1 = 0 or t2 = ls.

For each MU i, ûIi and  are estimated as the mean and variance of the intervals
, with intervals lying outside 0.5 to 1.5 times the median value

excluded as likely outliers, based on the expected regularity of MUs in “good” signals.

B. MUAP waveforms
Under the assumption of stationarity, each MU has a mean MUAP waveform that does not
change throughout the signal. These mean waveforms are estimated as follows:

(3.3)

where lw is the MUAP half-width and med is the ensemble median.
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C. MUAP variability and background noise
In the AP analysis, we will assess the probability that a particular combination of MUAPs x
= [x1,...,xñu] produced a given active segment sk (t) in terms of the energy of the residual
signal:

(3.4)

where xi indicates the occurrence of MUAP i and ai indicates its offset within the segment.
The background noise contributes to the residual energy at each sampling interval. By the
central limit theorem, the net contribution is approximately normally distributed, with a
mean and variance proportional to the length of the segment. Each MUAP also contributes
to the residual energy due to its shape variability. We assume that this contribution also has
an approximately normal distribution, with a mean and variance that depend on the MUAP,
but not on the length of the segment. Thus the probability density of the residual noise is
approximated as

(3.5)

where

(3.6)

with μ̂z and  being the mean and variance of the energy of the background noise per unit

time, lk the length of the active segment, and μ̂Ei and  the mean and variance of the
residual energy contributed by MUAP i.

The parameters of the background noise are estimated by finding all the segments of the
signal that lie at least lw away from any estimated firing time  and then computing

(3.7)

where  is the energy of the kth such segment, lk is its length, segments with energy greater
than 3 times the median value are excluded, and it is assumed that there are enough
segments to obtain reliable estimates.

The MUAP variability parameters are estimated by first computing the residual over the
entire signal based on :

(3.8)

McGill and Marateb Page 6

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2012 September 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Then for each MU i, all the residual segments of length 2lw that contain only a single
discharge of MU i and no discharges of any other MUs are found, and the parameters are
estimated as follows:

(3.9)

where  is the residual energy of the kth segment, segments with energy greater than 3
times the median value are excluded, each parameter is replaced by 0 if its formula yields a
negative value, and it is assumed that there are enough segments to obtain reliable estimates.

D. Anomalous events
Real EMG signals can contain extraneous events such as noise spikes, doublets, recruitment,
and de-recruitment that fall outside the expected behavior of the statistical model. Because it
is difficult to be certain about the true nature of such events, they will be classified as
anomalies and their interpretation left to the investigator. To this end we assume that there is
a small probability PA that a given active segment or a given inter-discharge interval
involves an anomalous event. PA can also be thought of as the limit beyond which it is safer
to assume that an event falls outside the statistical model rather than within it. Since it is
difficult to assign a meaningful value to PA a-priori, this value is left as a user-specifiable
parameter. Our experience shows that the precise value of PA is not critical for the confident
recognition of anomalous events in otherwise “good” signals.

If an active segment involves an anomalous event, we assume that the value of the residual
energy is unpredictable and can range as high as the energy of the largest MUAP. Thus the
probability density that the residual energy takes on any particular value is

(3.10)

Likewise, we assume that the length of an anomalous inter-discharge interval can range as
high as the length of the signal. The probability density that the interval takes on any
particular value is

(3.11)

IV. Computing the Posterior Probability
In this section we present an algorithm for computing the segment-wise posterior probability

 given by (2.4).

A. Segmentation
The threshold for an active segment is based on the size of the smallest MUAP specified in

. Any MUAPs smaller than this are treated as part of the background noise and not

included in the analysis. The times of activity are given by  , where

 , with the factor 0.6 chosen to allow for some degree of destructive
superposition. The signal is partitioned into active segments such that s(t) is in an active
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segment if mint′ ∈Ta|t − t′| ≤ lw.Let be the kth active segment, where  is
the midpoint and lk is the half length. Let na be the number of active segments.

B. Firing-related part
To simplify computing the firing-related part of the posterior probability, we approximate
the MU firing times by the times of the active segment in which they occur. Thus the
approximate firing times of MU i are given by

(4.1)

For convenience, we augment these times with  and  . These approximate
times are sufficiently accurate for computing the firing interval probabilities as long as the
intervals are relatively long compared to the active segment lengths. Under the assumption
that the firing intervals are independent within and between MUAP trains, the firing-
dependent terms in the AP probability (2.4) can be written as

(4.2)

where

(4.3)

Note that PA λI is the probability that the interval is anomalous.

C. Shape-related part
Since the shapes of the active segment are independent of one another, the shape-related
terms in the AP probability (2.4) can be written:

(4.4)

Let , where , represent the offsets of the MUAPs within
active segment k. In theory, P(sk|xk) involves a summation over all possible values of a. To
reduce the number of computations, we assume that P(sk|xk) can be approximated using the
MUAP alignments that provides the best fit to sk(t):

(4.5)

where

(4.6)

which can be computed using the algorithm in [37]. This approximation is generally
adequate to distinguish feasible MUAP combinations from ones that are negligibly likely.
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D. Normalization factor
If one thinks of each possible value of xk, i.e., each possible combination of MUAPs that
could discharge during active segment k, as a node, as in Fig. 1, then each segment-wise
annotation X corresponds to a path that connects to one node for each active segment. Each
path has an associated likelihood P(s|X)P(X) that corresponds to one term in the
denominator of (2.4).

For a given path X, let  denote the most recent discharge time of MU i up to and
including active segment k, i.e.,

(4.7)

with  if x1i = ··· = xki = 0. We define the set of the indices of the most recent
discharge times of all the MUs at active segment k as the state of path X at active segment

, where  for all i. We note that the sum of the likelihoods of
all the paths that have the same state q at active segment k can be factored into the product
of two terms:

(4.8)

where Qk (q) involves a summation over all the possible ways to arrive at the state and 
involves a summation over all possible ways to leave it.

The values of Qk can be computed iteratively in the following way. At active segment k − 1,
each element of q can have the possible values 0, …, k − 1. At active segment k, each MU i
can either discharge, in which case qki = k, or not discharge, in which case qki = qk−1i. Thus
the values of Qk can be computed as follows:

(4.9)

The normalization factor D is given by a sum over all the states at the last active segment:

(4.10)
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Note that D can also be computed by starting at the end of the signal and working backwards
to the beginning. In this case the path state equals the set of nearest discharge times
occurring at or after . The computation involves a set of factors similar to the Qs, but
representing backward sums from the end of the path. Let us call these factors Rk (q).

E. Pruning
The time needed to compute the normalization factor grows exponentially with the number
of MUs. This time can be reduced significantly by pruning nodes and paths that have only a
negligible probability of being correct. In computing the shape-related probabilities, if a
lower bound on the residual energy can be determined for a particular MUAP combination
x:

(4.11)

and if , then P(sk|x) can be approximated by PA λE without having to compute
the minimum residual energy itself. We do not yet have an efficient way to compute this
bound.

In computing the factors Qk (q), it is only necessary to keep track of those states q that make
a non-negligible contribution to the overall likelihood. Unfortunately, a state with a
relatively small Qk may turn out to be on a path that has a high overall likelihood, but this
may not be known until much later along the path. We only keep track of states for which
Qk (q) > (PA λE)2 max q′Qk (q′), but there are probably better criteria. The effect of
pruning can be checked by comparing the normalization factors computed in the forward
and reverse directions. If they are not equal, then some paths with appreciable likelihood
must have been pruned. If they are equal, then the pruning was almost certainly benign.

V. Firing Time Accuracy
In determining the shape-related part of the AP probability we assumed that the offsets of
the MUAPs within each active segment were those that gave the best fit. In this section we
consider the accuracy of that assumption.

For a given active segment sk and a given set of MUs x that includes MU i, the probability
density of the offset of MUAP i is

(5.1)

where δ is the Dirac delta function. Note that since pEx is nonlinear, the peaks of p(a) can be
much narrower than one sampling interval of s(t). The level of certainty about the accuracy
of a particular value ã can be expressed in terms of the likelihood that the true value is
within a particular interval ±θt ofã. This probability can be written as:

(5.2)

where

(5.3)
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with lk being the segment half-width. Calculating this probability involves summation over
all possible offsets of all the MUAPs. Instead, we compute a lower bound (see Fig. 2). First
we approximate p(a) heuristically by the conditional probability given that all the other
MUAPs are at their optimal offsets:

(5.4)

where

(5.5)

For a particular value of a, f (a) can be computed using the algorithm in [37].

The highest peak in p̂ (a) occurs at a = âi, where

(5.6)

In the vicinity of âi, f (a) can be approximated by

(5.7)

where

(5.8)

and fs is the sampling rate of s(t). I1 must include at least the mass from this main peak, so

(5.9)

which can be computed numerically. The smallest value of f (a) outside the region of
interest is given by

(5.10)

where

(5.11)

The value of f3 can be found using the algorithm in [37] by presetting the binary array that
keeps track of which alignments have already been tried to prevent consideration of
alignments in the vicinity of [ã − θt,ã + θt]. Since f2 is the smallest value outside the region
of interest,
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(5.12)

Therefore, the final bound, written in terms of firing times rather than offsets, and explicitly
stating the conditioning terms, is

(5.13)

VI. Measures of Accuracy
A. Posterior accuracy of a discharge

The AP framework makes it possible to compute the posterior probabilities of individual
discharges. Specifically, the joint posterior probability that MU i discharged in sk and that
the estimated discharge time  was within ±θt of the true firing time ti is given by

(6.1)

P(xk = x|s) is the posterior probability that MUAP combination x fired during segment k
given all the evidence in the signal. It can be computed as follows:

(6.2)

where Qk (q) and Rk (q′) are the forward and backward factors of the AP normalization and

 if xik, qi, and  all equal k or all do not equal k and is 0 otherwise. J selects
only those states q and q′ that occur on paths that pass through node xk = x. The posterior
probability that MUAP i discharged in active segment k without regard to the precise firing
time is given by:

(6.3)

B. Rating individual discharges
The accuracy of each discharge in  can be summarized using the rating system shown in
Table I. Here  is the annotation of active segment k with respect to MU i according to ,
and P(xki = 1|s) is the posterior probability that MU i discharged during the segment given
all the information in the signal. The four corner ratings (Likely True Positive, etc)
correspond to the basic contingencies of binary decision theory (True Positive, etc., see
[30]), except that, since the true annotation is not known, “true” and “false” can only be
understood in a probabilistic sense.

The Likely True Positive rating can be subdivided according to the level of certainty and the
precision of the firing-time estimate as in Table II. For example, an LTP (0.1 ms) rating
means that there is at least a 99% chance that MU i discharged within ± 0.1 ms of the time
listed in . In other words, one can be 99% confident that this annotation is correct at this
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level of precision. A precision of ±0.5 ms has been suggested as adequate for accurate
calculations of instantaneous firing rates [30]. A precision of ±0.1 ms represents a higher
firing-time accuracy that is often achievable for MUAPs with high signal-to-noise ratios. A
precision of ±5 ms represents a lower accuracy that is achieved when a MUAP is suspected
to occur within a particular active segment, but the precise firing time within the segment
cannot be determined because of anomalous or residual noise. Different precisions could
also be chosen.

The LTN and LFP ratings indicate probable annotation errors. The Uncertain ratings
correspond to situations in which it is not possible to be certain from the information
available in the signal whether the annotation is correct or not.

C. Summarizing the results
The accuracy of the entire estimated firing pattern of MU i can be summarized in terms of
the percentage of discharges that are accurate at a certain level of confidence:

(6.4)

where nLTP* is the number of estimated discharges that are rated likely true positives at a
given level of confidence and precision and the denominator estimates the total number of
true discharges. This index would be reported by stating, for example, that X% of the
estimated discharge times of MU i are accurate to within ± 0.1 ms at a confidence level of
99%.

D. Unexplained activity
Another measure that reflects on the accuracy of an annotation is the amount of activity that
it fails to explain. The total number of events that cannot be explained in terms of the model
assumptions can be estimated by

(6.5)

If this number is small, it means that the annotation plausibly explains all the activity in the
signal, except, perhaps, for a few anomalous events. In this case there is no reason to doubt
the credibility of the accuracy assessment. On the other hand, a large number points to a
serious discrepancy between the signal and the model assumptions and is reason to doubt the
credibility of the assessment.

This number is also useful for judging whether or not the given annotation includes all the
active MUs in the signal. If  is small, then one can be confident that all the MUAP trains
in the signal with amplitudes > θs were included in the annotation. Otherwise, some MUAP
trains may have been left out.

VII. Experimental Results
A. Methods

We have implemented a proof-of-concept version of the AP algorithm in Matlab and tested
it on three pairs of “good” EMG signals collected during different experiments in our
laboratory. The two signals in each pair were recorded from nearby sites in the same muscle,
making it possible to crosscheck the decomposition results [38], [39]. The signals were
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recorded using monopolar needle or fine-wire electrodes (1 mm exposed conductor) during
20-second-long, low-force, isometric contractions at a sampling rate of 10 kHz. The signals
are summarized in Table III, and segments of the two signals from pair 1 are shown in Fig.
3(a). The analysis software and signals are available at www.emglab.net.

Each signal was digitally high-pass filtered at 1 kHz and independently decomposed using
the EMGlab program with manual editing [9]. For each MU that was detected in common in
both signals of a pair, every discharge was classified as to whether the two annotations
agreed (after mean offset correction) to within ± 0.5 ms, ±5 ms, or did not agree.

Each annotation was also divided into four 5-s intervals, and each of these was analyzed
using the AP algorithm, with parameters lw = 2.5 ms and PA = 0.001.

B. Results
The annotations for one interval of signals 1.1 and 1.2 are shown in Fig. 3(b), with the
estimated firing times from decomposition 1.1 plotted upward from the solid horizontal lines
and the those from decomposition 1.2 plotted downward. MUs 1–4 were detected in both
signals, and the two annotations agreed about every discharge time to within ± 0.5 ms,
confirming that these times were very probably correct.

The results of the AP analyses are indicated by the lengths of the line segments, as described
in the figure caption. Every estimated firing time in annotation 1.1 was rated LTP (0.1 ms).
In signal 1.2, several discharges of the smaller MUAPs received LTP (0.5 ms) or LTP (5
ms) ratings.

The overall results are summarized in Table IV. The total number of annotated discharges of
all the common MUs was 4678. Of these, 4658 matched the corresponding annotation of the
paired signal to within ±0.5 ms. An additional 12 matched to within ±5 ms, and 8 discharges
did not match. Upon manual re-inspection, the 8 unmatched discharges were found to be due
to 4 decomposition errors involving small or similarly shaped MUAPs. These errors were
not corrected prior to AP analysis.

The AP analysis rated 4521 of the annotations as likely correct to within ±0.5 ms, and 125 as
likely correct to within ±5 ms. All but 4 of these assertions were confirmed as correct by the
cross-checking results. The other 4 corresponded to the decomposition errors, and would
have been confirmed if the errors had been corrected. The AP analysis rated 29 annotations
as uncertain, and detected 72 uncertain negative events (i.e., possible missed discharges).
These all involved very small MUAPs or noise glitches. It also correctly detected 2 false
positives and 2 false negatives that resulted from the decomposition errors. Thus the AP
analysis detected and correctly assessed all 4 of the decomposition errors.

One LFP and one LFN rating listed in Table IV were contradicted by the cross-checking
results and so must be counted as type I errors. They occurred in a single situation that
involved two adjacent active segments that both had anomalous noise glitches. The AP
analysis incorrectly placed one MU discharge in one segment rather than the other. This was
the only case in which confident assertions of the AP analysis were found to be in error.

In summary, the results show that for the “good” signals tested here, the accuracy
assessments provided by AP analysis were largely consistent with those of an experienced
human operator and comparable to those obtained by cross-checking against a second
channel. The analysis was cautious when it came to small MUAPs and noise glitches, but
this conservatism resulted in a very low rate of type I errors: 0.04% (2 of 4650). Even
though these were admittedly fairly simple signals, it has not previously been possible to
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“prove” the accuracy of decompositions of even simple signals like these in a statistically
rigorous way.

VIII. Discussion
Reliable assessment of the accuracy of scientific measurements is essential for judging
whether they are trustworthy and thus whether inferences drawn from them are based on
objective reality or only wishful thinking. In the case of EMG decomposition, accuracy
assessment is difficult because of the complicated nature of the EMG signal. Many
decomposition methods provide numerical or graphical indications of the self-consistency of
their results, for example in terms of the regularity of the estimated firing patterns [1], [6],
[9], [14], [31]. This type of assessment can provide a convincing demonstration that the
results are physiological plausible, but it does not prove that they are correct or complete,
and so is less than fully satisfactory for investigations of motor unit firing behavior, in which
complete and accurate firing patterns are required.

In a correct decomposition, the estimated MUAP trains not only match the shape of the
signal, but they also exhibit regular firing patterns, similar to the way that the pieces of a
correctly assembled jigsaw puzzle not only fit together but also contribute to a coherent
picture. The interlocking shape and firing-time information in the EMG signal can be
conveniently combined using a Bayesian framework (Fig. 1). In this paper we have shown
that this framework can be used to determine not only the relative likelihood of one
decomposition with respect to another, but also its absolute likelihood with respect to all
possible others. This absolute likelihood—the posterior probability—can be interpreted as a
level of confidence in the accuracy of the decomposition given all the information available
in the signal. We used a dynamic programming approach to normalize the posterior
probability, although other approaches such as Markov chain Monte Carlo methods [40]
might also be possible.

The posterior probability serves two important purposes. First, it provides an objective
confirmation of accuracy where accuracy is warranted. In the most clear-cut cases, it shows
that a decomposition accounts for the shape of the signal to a degree consistent with the
estimated levels of MUAP variability and background noise, that the estimated firing
patterns possess a consistent degree of regularity, and that it is very unlikely that the MUs
could have produced the signal by firing in any other way. In such cases the decomposition
results can be accepted with a high degree of confidence as an accurate representation of the
true MU firing behavior.

Just as importantly, the posterior probability also points out cases in which there is reason to
doubt decomposition accuracy. These are cases for which there are more than one plausible
explanation and it is not possible, based only on the evidence contained in the signal, to be
certain which is correct. Uncertainty can arise because of excessive noise, signal complexity,
intra-MUAP shape variability, firing variability, inter-MUAP shape similarity, or deviation
from the model assumptions. In such cases one cannot be sure that the decomposition results
are accurate.

The AP assessment is based on fairly minimal assumptions about the EMG signal and the
given decomposition: the signal should not be too complex, its statistical parameters should
not change with time, and the given decomposition should provide reasonably accurate
estimates of those parameters. The latter assumption introduces an unfortunate circularity,
since the estimated parameters are then used to assess the decomposition from which they
were estimated. This should not lead to erroneous overestimation of accuracy, however. If
the given decomposition is fairly accurate to begin with, the assumption is not unreasonable.
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If the given decomposition is not accurate, this will result in an overestimation of the signal
variability, and this, in turn, will tend to blur the distinction in relative likelihood between
different possible annotations and hence to reduce confidence that any one particular
annotation is correct.

To streamline the computations, some conditional probabilities that involve complicated
multi-dimensional integrals are approximated by their most likely values (e.g., (4.5)). These
approximations preserve the approximate relative likelihoods of the alternative conditions.
Within the context of the current problem, and given the robust way that the information
from different sources is integrated within the Bayesian framework, these approximations do
not impair the ability to reach a confident assessment.

In using the AP assessment, it must be kept in mind that the most any statistical measure can
do is report the degree to which the data matches the stated assumptions. The responsibility
for making sure that the assumptions are appropriate and for providing the final
physiological interpretation of the results must always lie with the investigator.

A proof-of-concept implementation of the AP algorithm written in Matlab is available as an
extension for the EMGlab decomposition program at www.emglab.net. It is able to assess
the decomposition accuracy of 5-second-long, low-complexity signals containing up to 6
MUAP trains in a matter of minutes. Code optimization and more efficient pruning
strategies can be expected to reduce this time, making it practical to analyze signals with at
least 8 to 10 MUAP trains. As signal complexity increases, however, so too does the
possibility that parts of the signal may fail to have a single unambiguous explanation.
Beyond a certain level of signal complexity (which will depend on the strength of the
contraction and the selectivity of the electrode) it will probably not be possible theoretically
to demonstrate decomposition accuracy in a convincing way based only on evidence
provided by the signal itself.
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Fig. 1.
Schematic representation of the factors involved in the calculation of the normalization
factor. The signal s(t) is segmented into active segments sk(t). For each active segment there
are 2nu possible MUAP combinations xk (sets of circles, each set here showing the 4
possible combinations of 2 different MUAPs). A segment-wise annotation X (heavy line) is
equivalent to a path through this trellis and corresponds to a specific firing pattern T. The
likelihood of the annotation is the product of shape-dependent factors associated with each
active segment and firing-time-dependent factors associated with the firing pattern.
Computing the normalization factor requires summing the likelihoods of all possible paths.
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Fig. 2.
Quantities involved in the bound on the firing-time accuracy.
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Fig. 3.
(a) Annotated segments of EMG signals from set 1. The MUAPs of the common MUs are
offset in the two signals because of conduction delay between the two electrodes. (b)
Estimated MU firing times for the first 5 seconds of signals 1.1 and 1.2. The times for signal
1.1 are plotted upward from the solid lines and those from signal 1.2 are plotted downward
(after correction for the mean inter-signal offsets). The length of each line segment indicates
the AP accuracy rating: full length = LTP (0.1 ms), 3/4 length = LTP (0.5 ms), etc.
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TABLE I

Accuracy Rating for Annotation of MUi in Active Segment k

AP Probability P(xki = 1|s)

Annotation x
∼

ki

1 0

≥ 0.95 LTP: Likely True Positive LFN: Likely False Negative

≥ 0.05 UP: Uncertain Positive UN: Uncertain Negative

< 0.05 LFP: Likely False Positive LTN: Likely True Negative
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TABLE II

Ratings for Likely True Positives

AP Prob Precision (θt) Rating

≥ 0.99 ± 0.1 ms LTP (0.1 ms)

≥ 0.99 ± 0.5 ms LTP (0.5 ms)

≥ 0.99 ± 5.0 ms LTP (5 ms)

≥ 0.95 ± 5.0 ms LTP (95%)
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TABLE IV

Summary of results

Cross-check

AP Analysis

LTP** LTP* UP LFP

agree ±0.5 ms 4516 119 22 1

agree ±5 ms 1 6 5 0

disagree 4 0 2 2

UN LFN

not seen 72 3

LTP** = LTP (0.1 or 0.5 ms), LTP* = LTP (5 ms or 95%)
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