
Integrative systems biology: an attempt to describe a simple
weed

Louisa M Liberman1, Rosangela Sozzani1, and Philip N Benfey
Department of Biology and Duke Center for Systems Biology, Duke University, Durham, NC, USA

Abstract
Genome-scale studies hold great promise for revealing novel plant biology. Because of the
complexity of these techniques, numerous considerations need to be made before embarking on a
study. Here we focus on the Arabidopsis model system because of the wealth of available
genome-scale data. Many approaches are available that provide genome-scale information
regarding the state of a given organism (e.g. genomics, epigenomics, transcriptomics, proteomics,
metabolomics interactomics, ionomics, phenomics, etc.). Integration of all of these types of data
will be necessary for a comprehensive description of Arabidopsis. In this review we propose that
‘triangulation’ among transcriptomics, proteomics and metabolomics is a meaningful approach for
beginning this integrative analysis and uncovering a systems level perspective of Arabidopsis
biology.

Introduction
The completion of the Arabidopsis genome sequence facilitated extraordinary progress
toward understanding plant biology. In particular, complete genomic sequence data drove
the development of genome-wide transcriptional approaches, such as microarrays. Genome-
scale studies (hereafter -omics) include, but are not limited to, analysis of RNAs, proteins,
and metabolites. Significant progress has been made annotating and determining the
function of many Arabidopsis genes. However, a plant is not just the sum of its genes, but a
complex system where gene product interactions result in emergent properties. Therefore,
with the ultimate intention of studying the biology of the whole organism, it is important to
frame the next long-term goals for plant scientists.

We propose that a key long-term goal is the integration of different genome-scale
approaches. The first steps in this direction have already occurred although the tools for the
integration, visualization, and modeling of -omics data are still at a relatively early stage
[(for reviews, see 1,2)]. In this review, we focus on gene expression, protein and metabolite
profiling data, briefly introducing each of the individual approaches, and then highlighting
recent efforts to integrate these -omics (Figure 1).
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Omics technology development: transcriptomics, proteomics and
metabolomics
Transcriptomics

The completion of the Arabidopsis genome sequence has facilitated whole genome
transcriptomic (gene expression) studies. The development of microarray technology
enabled the simultaneous examination of thousands of genes; thus providing a
comprehensive view of gene activity. Microarray gene expression data now cover organs,
tissues, cell-types and developmental events, as well as responses to a variety of
environmental perturbations [3–5,6••,7,8]. For profiling transcripts in model organisms with
well-annotated genomes such as Arabidopsis, microarrays have played an invaluable role in
our understanding of plant gene expression. Despite the power of microarrays, they are
limited to providing relative abundance information about identified genes and gene models.
Therefore, deep sequencing of transcripts (RNA-seq) provides an alternative to microarray
technology [9,10]. Additionally, because RNA-seq does not depend on genome annotation,
RNA-seq has emerged as the method of choice for transcriptional profiling in nonmodel
organisms. RNA-seq approaches aim to detect diverse RNA molecules, including mRNA,
noncoding RNA and small RNAs [11,12]. The unparalleled ability of RNA-seq to provide
sequence information at single basepair-resolution enables the identification of novel genes,
alternative-splicing, single nucleotide polymorphisms, and transcript abundance upon DNA
methylation-state modification [13,14•,15]. Recently RNA-seq in specific cell types and
developmental regions of the Arabidopsis root detected over 60 novel miRNAs [16••]. As a
new technology, there are unique challenges that come with analyzing RNA-seq data
including developing methods, algorithms and pipelines (e.g. library preparation procedures,
RNA quantification, isoform detection and quantification, etc.). Despite these challenges,
and because of the improved throughput and lower cost, RNA-seq has already shed light on
the complexity and regulation of the plant transcriptome.

Proteomics
The Arabidopsis genome sequence enabled the prediction of genes and the proteins they
encode. Comprehensive proteomic analysis seeks to determine the localization, quantity and
post-translational modifications of all proteins in an organism. This information is
complementary to transcriptomic analyses as it provides the functional readout of gene
expression profiles. However, proteomic analysis has been more challenging than
transcriptomic analysis for a number of reasons described below.

As generally practiced, proteomics first detects peptides and then assigns them to a gene
model [(see 17)]. When dealing with complex samples, protein representation can be biased,
with an overrepresentation of large or abundant proteins compared to small proteins [18••].
Additionally, information about protein accumulation and posttranslational modifications
are required to fully understand a plant as a whole. One could envision that the in vivo
protein concentrations could be measured by targeting specific cell-types and tissues. The
Arabidopsis root offers an ideal system for proteomic analysis at cellular resolution
comparable to what has been achieved for transcriptional analysis. Technological advances
should improve detection and identification issues, enabling complete proteome analysis in
the future.

There are multiple approaches for proteomic profiling [(for a review, see 20)]. The
traditional approaches are gel-based such as SDS-PAGE, which is useful for protein
‘fingerprinting’ of complex extracts for protein quantities and post-translational
modifications [19,21]. Advances in mass spectrometry (MS) measurements have enabled
protein quantification from complex samples. Shotgun proteomics, which combines liquid
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chromatography and MS, has emerged as a promising method for comprehensive
proteomics [22,23]. MS-based proteomic studies in plants have focused on identification of
proteins in various organelles (e.g. plastids and mitochondria) in an effort to reduce protein
complexity [20,24–27]. Quantitative proteomics encompassing whole plants requires
analysis of complex samples containing many unique protein species. A recent proteome
survey in Arabidopsis identified almost 50% of predicted protein-coding genes by tandem
MS [18••]. This group found over 50 novel or alternative gene models highlighting the utility
of this approach to identify known and novel genes through high throughput proteomic
methods.

A protein-interaction map, using a yeast-2-hybrid system, was generated for Arabidopsis
providing interaction information for ~8000 protein coding genes [28]. This map has already
been used to gain insight into the response of plants to pathogen attack [29•]. These studies
demonstrate the utility of these large-scale projects. As detection techniques improve, more
proteins and protein complexes will be profiled enhancing our knowledge of protein
localization, abundance and interactions.

Metabolomics
The objective of metabolomics is to identify and quantify all metabolites in plants.
Metabolomics is challenging in part because of the vast range of compounds found in plants;
a single accession of Arabidopsis contains more than 5000 metabolites [30]. Because a
major effort is needed for unequivocal identification of metabolites and no single approach
can detect all compounds, combinations of different and complementary extraction and
detection techniques are necessary to increase the coverage of a metabolome [31–33].
Keeping in mind that we would like to detect the complete repertoire of metabolites in a cell
and understand how different metabolic pathways are coordinated across the entire
organism, state-of-the-art metabolomic techniques are necessary. Metabolic profiles of
different organs, tissues and even cell-types will provide greater insight into plant
complexity. Arabidopsis, and especially the Arabidopsis root, provides an excellent system
to start such metabolomic studies.

To cover the vast range of the metabolome, one of the most promising approaches is the
combination of gas chromatography (GC — for primary metabolites), liquid
chromatography (LC — for secondary metabolites) or capillary electrophoresis (CE — for
ionic metabolites) with MS or metabolic fingerprinting using nuclear magnetic resonance
(NMR) [34–38]. Metabolic fingerprinting techniques using NMR or Fourier transform-
infrared spectroscopy (FT-IR) can also be used to investigate the dynamics of a metabolic
network. If the primary goal is to have a better efficiency in sample separation, two-
dimensional GC can then be combined with fast acquisition of rate mass spectroscopy (GC
× GC–TOF-MS) [39].

The combination of these techniques has generated a vast amount of metabolomics data,
which must be properly annotated and tracked to yield fruitful results. Although integration
of data from multiple research groups has been difficult, efforts to construct common data
repositories [40–42] and data analysis software are ongoing [1,43].

Data integration from molecular information: the gene–protein–metabolite
relationship
Transcriptomics–proteomics

As gene expression profiling and proteomic methods improve, data can be combined to
achieve a better understanding of Arabidopsis as a system. One important aspect of future
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investigation will involve the identification of variably spliced transcripts and the discrete
proteins they encode. Before next generation sequencing analysis, estimates of alternatively
spliced genes based on EST analysis ranged from 22 to 30% [44–47]. More recent
information using RNA-seq predicts that 42% of Arabidopsis genes with introns are
alternatively spliced [14•]. Questions remain regarding the functional significance of these
isoforms (e.g. what percentage are expressed as proteins?). These questions will soon be
addressable by examining the full proteome and comparing it to next-generation gene
expression data.

Several groups have used gene expression and proteomic data together to gain information
unattainable from either approach on its own. Integrative transcriptomic and proteomic
studies have been performed for organelles, cell-types and organs in Arabidopsis, including
chloroplasts [24,48], pollen [49], guard cells [50], and trichomes [51]. The most
comprehensive proteomic study in Arabidopsis to date integrated the proteome findings with
gene expression data to reveal potential biomarkers for roots, flowers, leaves, seeds, siliques
and cell culture [18••]. Colocalization of transcripts and proteins reduces the likelihood that
either occurred by contamination or chance. Comparing gene expression levels and protein
abundance is challenging due to differing mRNA and protein stability [52]. Nevertheless, a
few studies including some in plants have shown a small yet significant positive correlation
between mRNA and protein abundances [18••,24]. Studies of individual cell-types are now
possible which will provide more refined information regarding the colocalization of
transcripts and proteins. Proteomic data can also be used to inform genome annotation and
characterize post-translational modification as has been demonstrated in a number of recent
studies [18••,53,54]. These studies revealed both missing and improperly annotated genes,
highlighting the advantage of using proteomics for gene annotation.

Transcriptomics–metabolomics
Identification of specific compounds from experimental data (i.e. MS and NMR spectra) is a
noteworthy, challenging task. Correlating mass peaks with transcripts could be a powerful
strategy for identifying metabolites in complex extracts. Gene-to-metabolite associations
have now been characterized for stress responses, plant defense and hormone-induced
responses [55,56,57•,58,59]. Early integration of transcriptomics and metabolomics studies
looked at the global and dynamic response during sulfur and nitrogen depletion at the
system-level [60–63]. Detailed analyses resulting from this type of integration have
identified several genes including those involved in glucosinolate biosynthesis, anthocyanin
biosynthesis, chain elongation enzymes and glucosinolate transport [64–66]. Recently,
large-scale dynamic transcriptomic and metabolomic studies have been undertaken to gain a
comprehensive understanding of how biological systems respond to other stresses such asm
elevated CO2 and salinity [67]. Additionally, integration of transcriptomic and metabolomic
data from multiple related species and/or genotypes has been useful for identifying genes
and processes underlying complex traits [68].

Integrated transcriptomic and metabolomic analyses have been successfully combined with
reductionist approaches to investigate regulatory mechanisms involved in gene expression
and metabolites. Specifically, the altered expression of the transcription factors that regulate
anthocyanin biosynthesis [64] allowed the identification of genes involved in later steps of
this metabolic process [69,70]. Additionally, ectopic expression of a transcription factor that
regulates the cold response also showed metabolomic changes [56]. Moreover, mutations in
the abscisic acid (ABA) biosynthesis pathway together with the integrated analysis of the
transcriptome and metabolome demonstrated that ABA can reconfigure metabolite levels as
a response to dehydration stress [59].

Liberman et al. Page 4

Curr Opin Plant Biol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The hypothesis that a correlation exists between gene expression and metabolite
accumulation patterns has proved valid when trying to identify the function of genes [71].
Therefore, to facilitate the integration of gene expression data in the context of a functional/
metabolic pathway, software packages such as MapMan, PageMan and MetGenMAp were
developed [72–74]. These programs have been successfully used to identify genes and
metabolic pathways involved in response to nitrogen deficiency, diurnal cycles, and more
recently, seed dormancy and germination [63,75–77]. This ‘guilt-by-association’ approach
was used to predict the function of genes coregulated under given conditions and identify
genes involved in metabolite biosynthesis and transcriptional regulators of many different
pathways [78,79]. Taken together, these results suggest that co-occurrence of transcripts and
metabolites is a powerful approach for deciphering gene function.

Conclusion and future prospectives
As the studies that are highlighted here demonstrate, the integration of multiple genomic-
scale studies can reveal novel biology. A comprehensive systems-level understanding of
Arabidopsis will require -omics methods to be integrated and combined [80,81]. In the near
future, each of these -omics approaches will be used in an integrative fashion to inform and
validate the findings of other genome-scale projects. Proteomics has been used to predict
metabolic activity in the roots and shoots of Arabidopsis demonstrating the interconnectivity
of these -omics efforts [82]. These studies explore the relationship between genomic
information and the products directly and indirectly encoded by the genome, which will lead
to novel testable hypotheses regarding the connection between genotype and phenotype.
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Figure 1.
The biology of the whole organism: integration of different -omics. A simplified schematic
representation of -omics. Transcriptomics, proteomics and metabolomics are measured
comprehensively by genome-scale methods. The integration of these -omics (as shown by
the intersecting Venn-diagram) provides insight into systems-level understanding of
Arabidopsis.
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