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Animals living in groups collectively produce social structure. In this
context individuals make strategic decisions about when to coop-
erate and compete. This requires that individuals can perceive pat-
terns in collective dynamics, but how this pattern extraction occurs
is unclear. Our goal is to identify a model that extracts meaningful
social patterns from a behavioral time series while remaining cog-
nitively parsimonious by making the fewest demands on memory.
Using fine-grained conflict data from macaques, we show that
sparse coding, an important principle of neural compression, is an
effective method for compressing collective behavior. The sparse
code is shown to be efficient, predictive, and socially meaningful.
In our monkey society, the sparse code of conflict is composed of
related individuals, the policers, and the alpha female. Our results
suggest that sparse coding is a natural technique for pattern ex-
tractionwhen cognitive constraints and small sample sizes limit the
complexity of inferential models. Our approach highlights the need
for cognitive experiments addressing how individuals perceive
collective features of social organization.

cognition ∣ statistical inference ∣ collective computation ∣ social complexity ∣
social niche construction

Individuals in primate societies strategically join fights (1, 2),
form coalitions and alliances (3–5), predict conflict participants,

and mitigate escalating aggression (6–8). Consider the following
examples.

Pigtailed macaques (Macaca nemestrina) preferentially solicit
support from powerful individuals, suggesting they can predict
which individuals are most effective at providing support or
terminating conflict (9). Pigtailed macaques have been shown to
reconcile with individuals related to their opponents even when
these individuals are not involved or in proximity to the conflict
(10). This suggests that they recognize alliances and can make
predictions about subsets of individuals that are likely to support
one another during fights. Chimpanzee (Pan troglodytes) mothers
monitor the play bouts of their offspring. When there is a differ-
ence in age and size between play partners, older partners use
signals to appease the mother of the younger partner. This sug-
gests older partners predict that the mother will respond nega-
tively if the play bout is too rough (11).

These studies indicate that individuals are able to predict the
outcomes of behavioral interactions in a changing social environ-
ment and tune their behavior appropriately. Making predictions
about the social environment requires that individuals can extract
regularities in collective dynamics. Knowledge of these regulari-
ties allows individuals to tune decision-making strategies to avoid
costly fights, solicit additional support to improve their odds of
winning fights when they do occur, and reduce social tension that
increases the probability of conflict. The ability of individuals to
encode collective dynamics requires information about individual
identities, subgroups such as alliances and matrilines, and mem-
ory of past affiliative interactions and fights. The storage and re-
call of this information is necessarily limited because individuals
in social systems have finite computational resources including
limited memory and processing capacities. Hence we need to con-
sider the memory requirements of alternative decision-making
strategies and how these constraints affect the ability to predict
the future (out of sample data) (12–15).

One technique for efficiently representing data using only a
small number of components is sparse coding. Sparse coding seeks
to explain observed input as combinations of statistically indepen-
dent higher-order structures that encapsulate fine-grained correla-
tions in the system. Olshausen et al. (16, 17) found that sparse
coding of natural images produces wavelet-like oriented filters re-
sembling the receptive fields of simple cells in the visual cortex.
This work suggests that sparse coding is not only an efficient meth-
od for describing statistics of visual scenes but a good candidate
algorithm for how neurons in the visual system encode this infor-
mation.

We consider three alternative methods—a modified sparse
coding model, frequency model, and spin-glass model—for effi-
ciently representing regularities in a highly resolved conflict event
time series collected from a group of 84 pigtailed macaques
(Macaca nemestrina) housed at the Yerkes National Primate
Research Center in Lawrenceville, Georgia (SI Text).

Our goal is to determine which model is the best candidate for
describing how the monkeys in our study group might compress
the time series. We judge the performance of each method by its
ability to predict out-of-sample data (both fine-grained and collec-
tive features including individual frequency of participation in
fights and the distribution of fight sizes), its cognitive demands, and
its ability to identify socially meaningful individuals and subgroups.

We also consider what we call collective efficient coding, ask-
ing how much consensus (SI Text) there is across the local minima
produced by sparse coding, our best performing method. Our in-
terest is how much agreement there could be across individuals in
their representations of the data if they were using sparse coding
to compress the time series.

The dataset we analyze consists of a series of fights occurring
during approximately 150 h of observation over a four-month per-
iod; in these analyses we use data from 47 of the group’s 84
individuals (SI Text, Figs. S1 and S2). A fight includes any inter-
action in which one individual threatens or aggresses a second
individual. A fight can involve multiple individuals. Third parties
can become involved in pair-wise conflict through an aggressive,
affiliative, or passive intervention, through redirection, or when a
family member of a conflict participant attacks a fourth party.
Individuals may intervene to break up conflicts (7) and intervene
in support of one of the conflict participants. Such interventions
can reflect temporary coalitions or more long-term alliances
(reviewed in ref. 3). We ask if the time series can be efficiently
represented using only this “who-what” (14, 15, 18–20) informa-
tion. We treat each fight as an independent sample, removing
temporal biases by randomly drawing 500 of the 1,078 fights from
the time series to use as “in-sample” data and use the remaining
fights as “out-of-sample” data.
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We first test two maximum entropy models, which estimate the
probability distribution over possible fights as the distribution
with maximum uncertainty that fits chosen statistical features of
in-sample data (21). The simplest of the models is the frequency
model. It assumes that each individual has a fixed independent
probability to join any given fight, producing the maximum entro-
py distribution constrained to fit in-sample individual frequen-
cies. The negative log-likelihood of a fight x in the frequency
model is LfreqðxÞ ¼ ∑ihixi, where xi is a binary indicator of
whether individual i was involved in the given fight (see Materials
and Methods).

Secondly, the spin-glass model [Ising model (22)] describes the
distribution with maximum entropy that exactly reproduces both
individual frequencies and all pair-wise correlations in the in-
sample data (23). The spin-glass model has the form LSGðxÞ ¼
∑i;jxiJijxj. Given that some individuals appear infrequently,
estimating the frequency of pair co-occurrences will suffer from
small-number fluctuations. To avoid overfitting, we regularize the
spin-glass model by including only a subset of individuals in the
model (either those who appear in pairs with the largest covar-
iances or the most significant covariances—SI Text).

Thirdly, we propose sparse coding as an alternative model that
may be able to pick out important correlations of any order while
making more efficient use of memory. Sparse coding attempts to
represent a given set of fights using combinations of basis vectors
with the constraint of sparsity: Only a few basis vectors should be
used to reconstruct any given fight. Sparse basis vectors are found
by minimizing a cost function that makes a tradeoff between
accurate representation of the data (measured by the reconstruc-
tion error R2) and sparseness of the fit coefficients (measured by
a sparseness term λEs that penalizes large coefficients). In matrix
form, we define the best set of basis vectors B and coefficients A
for a given set of fights X as the one that minimizes

E ¼ R2 þ λEs ¼ ∑
i;j

jXij − tanhðBAÞijj2 þ λ∑
k;j

SðAkjjBjÞ; [1]

where i indexes individuals, j indexes fights, and k indexes basis
vectors. The tradeoff between accurate representation and
sparseness, and hence the amount of structure identified by the
model, is controlled by a single parameter, λ (see Materials and
Methods for more details). Fig. 1 depicts the representation of a
fight in terms of a sparse basis B. As groups of individuals are
correlated in their appearance in fights, sparse coding represents
fights in terms of those groups in order to use fewer large coeffi-
cients to represent each fight.

Results
Testing Model Predictions. We first evaluate these three models by
making a functionally important fine-grained prediction: Given a
subset of participants involved in a fight, which other individuals
are also likely to be involved? This test is accomplished by remov-
ing each participant in turn from each out-of-sample fight and
using the model to calculate the most likely individual to appear
in the fight given the other participants.

In Fig. 2A, we plot the proportion of correct predictions for
out-of-sample data for the three models, varying the sparseness
parameter λ in the case of sparse coding. The frequency model
performs worst and sparse coding becomes competitive with spin-
glass models for a range of λs. The fact that the spin-glass and
sparse coding models perform significantly better than the fre-
quency model demonstrates that there is indeed useful informa-
tion in participation correlations (we can quantify this information
for subsets of our data; SI Text and Fig. S3). Note that the max-
imum possible predictive success rate depends on how much
structure there is in the data, which is not computable without
knowledge of the full underlying fight probability distribution;
we can only test competing methods to obtain lower bounds.

In the sparse coding model, moving from small to large spar-
seness λ corresponds to changing from an exact overfit represen-
tation to fitting in-sample data decreasingly well using subgroups
of increasing size (see Fig. 2 B and C). If λ is too small, we find a
trivial basis consisting of vectors with single individuals, such that
any fight can be represented, but no interactions are encoded.
If λ is too large, the model is forced to use too few basis vectors.
For the remainder of the analysis, we choose λ ¼ 10−1∕2 ¼ 0.316
to maximize the predictive power, implicitly fitting the complexity
of the model to the data.

We next create generative versions of each model (see Materi-
als and Methods) and test the ability of each to match coarse-
grained statistics of the data to which they were not fit. First, we
test the distribution of fight sizes, shown in Fig. 3. Sparse coding
fits the fight size distribution better than the spin-glass model,
with a Kullback-Leibler divergence from the empirical distribu-
tion of 0.04 bits compared to the spin-glass model’s 0.21 bits. In
predicting other collective statistics (e.g. the average fight size
given the appearance of a particular individual), the spin-glass
and sparse models perform about equally well (SI Text, Tables S1
and S2 and Fig. S4). These results echo recent work asserting that
pair-wise interactions often contain most of the available multi-
information in natural datasets (22, 24), which can be explicitly
verified for subsets of our data (SI Text).

Estimating Cognitive Burden.Though the models are predictive and
hence useful for finding regularities in data, each has an asso-
ciated computational requirement. Quantifying this computa-
tional requirement is a first step toward determining if the mon-
keys have the necessary cognitive abilities to use these different
methods to find regularities in conflict. We focus here on the
amount of memory required, which we measure as the number
of bits needed to store each model’s parameterization of its
estimate of the fight probability distribution after it has been fit
to 500 in-sample fights. We test each model’s performance as we

Fig. 1. Representing a fight using a sparse basis. To represent a fight X0,
coefficients A0 define a sparse linear combination of basis vectors BA0 that
is passed through the nonlinear activation function tanh. Here λ has been
tuned to produce optimal out-of-sample predictions; note that this produces
sparse basis vectors that consist of small sets of individuals. Sparsity of the
data implies that if one knows B and only the few active elements of A0, one
can come close to reconstructing the entire fight. Furthermore, by remem-
bering B, the likelihood of future fights can be estimated by determining
the necessary magnitudes of coefficients A0: fights that can be represented
using fewer large coefficients are more likely. In this figure and in Fig. 5,
darker colors represent elements with larger magnitude (see Materials
and Methods).
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decrease the amount of memory required to use it by degrading
each model in one of three ways (see Fig. 4 and its caption).

We find that the performance of sparse coding is remarkably
robust to “forgetting” small basis elements. Retaining only the
30 largest elements does not significantly degrade performance
(Fig. S5). Similar efficient performance is also possible in the
spin-glass model but requires regularizing the model, refitting
using only data from a subset of individuals. In Fig. 4B, we find
that the optimal performance of sparse coding and regularized
spin-glass methods are remarkably similar under equal memory
constraints. This suggests that both models are making use of the
same underlying structure in the data, which we verify below.
Although it is impossible to prove any model is optimal, this result
also suggests that, given knowledge of 500 in-sample fights, the
best performance in reconstructing incomplete out-of-sample
fights requires an individual to remember on the order of
1,000 bits of information.

Exploring the Space of Sparse Solutions. A detail often overlooked
in sparse coding studies is that the sparse minimization problem
[Eq. 1] is nonconvex, with many local minima. It is unlikely that
an organism using sparse coding will be able to find the global
minimum. Still, our local minimization algorithm finds meta-
stable minima that have similar E and good performance. To ex-
plore variability in the set of metastable solutions, we performed
the minimization 500 times starting from different random initial
conditions (SI Text). Fig. 5 displays typical sparse bases, which
consist mostly of correlated subgroups of size 1 to 3. Because
sparsity favors basis vectors that make independent contributions,
this suggests that the predictable independent units of conflict are
typically individuals, pairs, and triplets.

Though there are many local minima, they share structure,
which can be seen in the high frequency of many correlated groups
(Fig. 5B, see also Figs. S6 and S7). On average, of the groups that
make up two different sparse bases, 43% appear in both.

Although the sparse coding algorithm has the freedom to
represent correlations among groups of individuals that cannot be
represented using pair-wise interactions (see Materials and Meth-
ods), the sparse structures in our dataset are mostly combinations
of the high-covariance pairs used in the regularized spin-glass mod-
el (Fig. 5C). Specifically, 94% of the nonsingleton groups appear-
ing in the 500 sparse bases are representable using pairs with
covariance larger than one standard deviation above the mean.

The sparse groups found in our analyses indicate that predict-
able conflict participants in this system include co-occurring
groups of related individuals (genetically related through the
mother), policers (7, 25) (SI Text) co-occurring with many types
of other individuals, the alpha female as a singleton and the alpha
female co-occurring with groups of related individuals. On aver-
age, these combinations make up 72� 8% of each basis’ groups, a
significantly larger fraction than for bases with the same group
sizes in which individuals have been randomly substituted accord-
ing to their frequency in fights (30� 13%; Fig. S8).

Discussion
Sparse coding provides a cognitively parsimonious model for
compressing strategic correlations found in a conflict time series,
effectively detecting only the most important correlations and
thereby providing good performance under memory constraints.
Sparse groups can capture regularities as well as a spin-glass
model that fits all individual frequencies and important pair-wise
correlations. Sparse bases provide an intuitive way to express reg-
ularities using less memory. Varying the amount of compression
with a single parameter (in our case, the sparseness penalty) is
a practical means of model selection, exploring the tradeoff
between over- and under-fitting data.

Fig. 2. (A) Predictive power versus sparseness. The best predictions of out-of-
sample participant identities happens at an intermediate value of λ. Sparse
coding performs significantly better than the frequency model and as well as
pair-wise methods. The regularized spin-glass model is limited to include only
26 individuals (SI Text). (B) Average group size (the average number of large
elements in each basis vector containing at least one large element, consid-
ering the n ¼ 47 largest elements) versus sparseness. For increasing sparse-
ness, individuals are collected into fewer groups with larger group size.
(C) The two terms in E as a function of λ. As λ increases, we first have overfit
representations (small R2) that are not sparse (large Es), and then vice versa.
Over the range of λ that resolves the peak in predictive power, the sizes of R2

and Es relative to their sum (triangles) and to their maximum values (circles)
vary appreciably. Error bars and dotted lines indicate +/- one standard devia-
tion over 100 instances: 10 random selections of in-sample/out-of-sample
data times 10 random initial conditions for sparse minimization.

Fig. 3. Fight size distribution for the three generative models. The sparse
coding model performs best with the smallest Kullback-Leibler divergence
DKL from the true distribution. Here we use 105 fight samples from eachmod-
el where fights with one or zero participants have been omitted. Shaded
areas connect error bars indicating bootstrapped 95% confidence intervals.
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Performance for the compression schemes we test saturates at
about 1,000 bits of memory, a small fraction of the total informa-
tion in the 500 fights to which they have access (500 × 47 ¼
23;500 bits). The saturation point roughly corresponds to the
quantity others have called predictive information (26), the
amount of information contained in past data that is useful for pre-
dicting the future. We stress that this quantity is defined with re-
spect to our dataset and the number of fights observed during the
study period. Important questions for future work include how this
quantity scales with the number of observed fights, the size of the
study group, fight frequency, and fight composition uniqueness.*

The results reported in this paper raise several interesting cog-
nitive issues. The time series is serving as a “social scene” roughly
analogous to the visual scenes used in neural sparse coding stu-
dies. Hence we are treating the conflict dataset as though it is
static and instantaneously available in its complete form to our
study subjects. If we are interested in extracting its regularities
purely from the perspective of an experimenter, this makes sense.
However, we are also interested in whether the monkeys in our

system might use sparse coding to identify predictable partici-
pants in conflict. An important issue is then the character of
the sample they are using to perform the compression. In parti-
cular, because the sample is accumulating over time, the monkeys
will have to repeatedly update the output of the optimization.
How might this occur?

Assuming the monkeys are compressing the time series each
individual will be performing the computation independently.
This means it is likely that that each monkey will find a different
basis (see Fig. S6). An important question is how much consensus
there is across these bases. If the monkeys are using the bases to
make predictions about who will be involved in a fight, the more
consensus the more orderly and useful the predictions are likely
to be (27). Each monkey may have access to a different sample of
fights and to samples of different sizes. This additional heteroge-
neity is likely to reduce consensus.

A critical question for students of social evolution is how in-
dividuals use knowledge of collective dynamics to make strategic
decisions. Although we do not yet know whether the animals are
using any of the models we have explored in this paper, our re-
sults clearly illustrate that useful regularities exist in the time ser-
ies and, furthermore, different algorithms that can be employed
to extract these regularities make different cognitive demands on
decoders. Now needed are studies explicitly addressing individual
perception of collective dynamics. Important issues include how
many bits of memory for “who and what” primates (14, 20, 28)
and other organisms can store, how the capacity to encode col-
lective dynamics relates to primate general intelligence (29), and
the implications of this capacity for behavioral and social com-
plexity (27, 30).

Materials and Methods
Data Collection. The data were collected over approximately 150 h during
a four-month period from a large group of captive pigtailed macaques
(Macaca nemestrina) socially housed at the Yerkes National Primate Research
Center in Lawrenceville, Georgia. Our analyses focus on 47 socially mature
individuals of 84 individuals in total. The analyses take as input a conflict
event time series collected by J. C. Flack using an all-occurrence sampling pro-
cedure. A conflict or fight in this study includes any interaction in which one
individual threatens or aggresses a second individual. A conflict was consid-
ered terminated if no aggression or withdrawal response (fleeing, crouching,
screaming, running away, submission signals) was exhibited by any of the
conflict participants for 2 min from the last such event. A fight can involve
multiple individuals. Third parties can become involved in pair-wise conflict
through intervention or redirection or when a family member of a conflict
participant attacks a fourth party. Fights in this dataset ranged in size from 1
to 30 individuals, counting only the socially mature animals (excluding one
animal who died during data collection; see SI Text). Full details on the
data collection protocol, operational definitions, and study system details
are provided in SI Text.

The data collection protocol was approved by the Emory University Insti-
tutional Animal Care and Use Committee and all data were collected in
accordance with its guidelines for the ethical treatment of nonhuman study
subjects.

The dataset includes 1,078 fights with one or more mature individuals. In-
sample data consists of a random sampling of 500 fights, leaving the remain-
ing 578 fights as out-of-sample data. Although other analyses indicate that
the conflict patterns in the data set are roughly stationary, this sampling
procedure buffers against temporal biases that might confound prediction
of the out-of-sample data if we divided the data temporally. Performance
values in Figs. 2 and 4 and Figs. S3B, S5 and S9 represent averages over
10 different choices of in-sample data; in the case of sparse coding, we also
use 10 realizations of random starting bases for each set of in-sample data.

Models and Computational Methods. The frequency model is analytically fit to
the individual in-sample frequencies f i by setting

hi ¼ − lnðf i∕ð1 − f iÞÞ: [2]

There is no closed-form solution for Jij of the spin-glass model in terms
of the observed frequencies and covariances; we must instead numerically
vary Jij to produce the observed frequencies and covariances. Instead of

Fig. 4. Predictive power versus entropy of memory storage. (A) Smaller en-
tropy is achieved in each model in three different ways: (dotted lines) by
quantizing each model’s parameters (the elements of hi , Jij (j ≥ i), and Bij ,
for frequency, spin-glass, and sparse coding, respectively), mapping them to
a restricted set of allowed values to simulate diminished precision; (dashed
lines) by regularizing and refitting the model (in the case of spin-glass, redu-
cing the size of the model by limiting it to fit only individuals who appear in
high-covariance pairs, and in the case of sparse coding, increasing λ to reduce
the number of basis vectors); (solid lines) by zeroing the smallest stored ele-
ments. Sparse coding is quite robust to zeroing elements, performing as well
as spin-glass when it is regularized and refitted. Shaded regions connect error
bars that represent +/- one standard deviation in both entropy and perfor-
mance. (B) The Pareto front for each model, defined as the maximum aver-
age performance achievable using less than a given amount of memory
(including trials not depicted in A; SI Text). Shaded regions represent +/- one
standard deviation in performance for the best average performer.

*In particular, saturation with respect to the number of observed fights is connected with
the timescale over which conflict strategies evolve.
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performing brute-force Monte Carlo sampling and gradient descent, we
make use of a faster method known as minimum probability flow, which
is known to efficiently solve spin-glass problems of our type (31).

The sparse coding model is defined by Eq. 1, where X is the ℓ × m matrix
ofm fights, each having dimension equal to the number of individuals ℓ; B is
the ℓ × N matrix of N basis vectors; and A is the N × m matrix of reconstruc-
tion coefficients. We use a “square” basis, withN ¼ ℓ; this is the smallest basis
that is guaranteed to be able to perfectly fit any data when λ ¼ 0. In the
goodness of fit (R2) term, we make one change to the usual sparse coding
setup, using the saturating function tanh to map large values of the real-
valued linear combination BA to 1. This allows for the combination of basis
vectors with some overlappingmembers, effectively making the combination
of basis vectors an OR function.

The sparseness function SðaÞ is chosen to be an even function that grows
monotonically (typically sublinearly) as jaj increases; we use SðaÞ ¼ lnð1þ a2Þ.
The multiplication of Akj in the sparseness term by jBj ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i;kB

2
i;k

q
effectively

removes the degree of freedom corresponding to the overall size of basis
elements, disallowing trivially small sparseness coming from large basis ele-
ments. This form also effectively imposes sparseness on the basis vectors, be-
cause the sparseness penalty term can be independently decreased by
zeroing unused basis vectors.

A potential advantage of sparse coding beyond its ability to encapsulate
fine-grained correlations is its ability to represent higher-order interactions
that are not representable using pair-wise models. For instance, while the
spin-glass model can represent a correlated triplet (one that appears more
or less often than predicted by the independent frequency model), it must
do so using nonzero interactions among pairs within the triplet. Sparse cod-
ing can represent such a triplet interaction without interactions among the

pairs. Though sparse coding has this ability, we do not find strong evidence
for such irreducible higher-order correlations in our dataset (see Results).

For minimization in the sparse coding model, we use the Newton conju-
gate gradient method (scipy.optimize.fmin_ncg), making use of
analytic formulae for the Jacobian and Hessian of E to expedite the search.
For the initial basis, we use a matrix with elements chosen from a uniform
distribution between −1 and 1, which is then transformed to an orthonormal
basis using the Gram-Schmidt procedure. Because we use a square basis,
we can then define the initial coefficients as the unique set that perfectly
reconstructs the data. We stop minimization when the average relative error
falls below 10−6.

Finally, to evaluate the likelihood of a fight given a remembered fit basis
B, we treat E as an energy, such that the negative log-likelihood function
becomes

LsparseðxÞ ¼ min
A

½EðA; B; xÞ∕T�; [3]

where the scaling factor T is a “temperature” that can be set to 1 for eval-
uating relative likelihoods but must be fit to data to create a generative
model.

While we do not constrain the sign of basis elements, the significant
contributors within any given basis vector nearly always have the same sign†.
Every basis vector represented in Figs. 1 and 5 has this property, and this
allows us to represent each basis vector by the magnitudes of its elements

Fig. 5. (A) Ten example sparse bases, each a local minimum of the sparseness problem [Eq. 1]. We represent each basis by its 30 largest elements (the approx-
imate number at which the predictive power saturates; see Fig. S5A). Darker colors indicate larger magnitude, and each individual is represented by a two-
letter name abbreviation. Sparse groups effectively identify sets of individuals that are likely to be involved in the same fight. Most sparse groups can be
explained as combinations of genetically related individuals (indicated by thick black rectangles), policers (Eo, Qs, Fo) co-occurring with many types of other
individuals, and the alpha female (Fp) occurring as a singleton or with groups of related individuals (see text). (B) The top 20 groups ranked by frequency in
sparse bases, where a group is defined as the unordered set of individuals appearing in a basis vector. (C) A network representing the twenty pairs of individuals
with largest absolute covariance. Many sparse groups consist of connected components of this small network. In the covariance network, darker colors indicate
higher frequency in fights.

†Analyzing the 30 largest elements in each basis, there was a single exception in the 500
bases we tested. This basis vector consisted of two individuals (Eo and Qs) with opposite
sign and roughly equal magnitude.
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without loss of generality. The fact that large contributors of opposite sign
are very rare agrees qualitatively with previous work that found many more
excitatory interactions (in which the appearance of an individual in a fight
makes another individual more likely to join) than inhibitory interactions (in
which it makes the other individual less likely to join) (2). Similarly, none of
the largest covariances shown in Fig. 5C is negative. Bases are normalized
such that ∑ B2

ij ¼ 1.

Generative Models.We test generative models that sample from the probabil-
ity densities PðxÞ ¼ expð−LðxÞÞ defined by the frequency, (full) spin-glass, and
sparse coding models. We do not use regularized spin-glass models to test
generative model statistics because they omit some individuals, confounding
the analysis of coarse grained statistics that include all individuals. To gener-
ate fights, we use metropolis Monte Carlo sampling. Note that, to calculate
L for the sparse coding model, we need a value for the “temperature” para-
meter T, which effectively sets the probability that an individual will appear
at random instead of as part of a sparse basis vector (or that an individual
who is part of a basis vector will randomly fail to appear). We set T by match-
ing the average E of generated fights to that found in fitting in-sample data

(using a Brent root finding algorithm). For the basis chosen to generate
sparse coding data, we find T ¼ 0.3018. For testing each coarse-grained sta-
tistic, we use 105 samples generated from each model fit to a single random
choice of in-sample data.

See SI Text for full details on figures in the main text, spin-glass regulariza-
tion, the space of metastable sparse bases, information measures on subsets of
the data, model performance as a function of fight size (Fig. S9), and determin-
ing whether sparse groups are socially meaningful.
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