Skip to main content
. 2012 Sep 6;8(9):e1002655. doi: 10.1371/journal.pcbi.1002655

Figure 4. Relation between broadband power and phase of ECoG rhythms (subject 4).

Figure 4

(A) ECoG potential (in D) was measured from a pre-central motor cortex site (green dot). (B) Periodic flexion of index finger (green) and other fingers (gray). The entire movement and rest periods are all examined. (C) Fluctuations in broadband power (projection of the 1st PSC, here shown smoothed), extracted from ECoG potential. (D) The raw ECoG potential. (E) Example low frequency rhythm obtained by convolving ECoG with a 3 Hz wavelet (inset). The resulting time-series is color coded for instantaneous phase (relative to positivity peak of the potential). (F) Log values of the time-dependent broadband have a normal distribution. (G) The timeseries of the log of the broadband, color coded by the coincident phase of the low frequency 3 Hz rhythm. (H) The log-broadband signal is aligned with the phase of the low frequency rhythm (as color-coded). (I) The average of the log-broadband amplitude is obtained for phase bins. Error bars denote 3 times the standard error of the mean (3*SEM) for each phase bin. This can be appreciated in one dimension as the “3 Hz coupling row” in G. (J) The “Phase coupling palette” obtained by repeating the process detailed in E–I at each frequency from 1–50 Hz., showing modulation of broadband power with the full range of frequencies.