Skip to main content
. 2012 Sep 6;8(9):e1002655. doi: 10.1371/journal.pcbi.1002655

Figure 13. Modes of neural activity with cortical beta rhythm states.

Figure 13

(A) Modulation of broadband amplitude by underlying rhythm can be thought of as population-averaged spike-field interaction. (B) “Released cortex” demonstrates a small amount of broadband power coupling to underlying rhythm phase, and the underlying spiking from pyramidal neurons is high in rate and only weakly coupled to the underlying rhythm phase. (C) “Suppressed cortex” demonstrates less broadband power but with higher modulation by the underlying rhythm, while underlying single unit spiking is low in rate but tightly coupled to the rhythm phase. (D) A simplified heuristic for how rhythms might influence cortical computation: During active computation, pyramidal neurons (PN) engage in asynchronous activity, where mutual excitation has a sophisticated spatio-temporal pattern. Averaged across the population, the ECoG signal shows broadband increase, with negligible beta. (E) During resting state, cortical neurons, via synchronized interneuron (IN) input, are entrained with the beta rhythm, which also involves extracortical circuits symbolized by the input from a synchronizing neuron in the thalamus (TN). The modulation of local activity with rhythms is revealed in the ECoG by significant broadband modulation with the phase of low frequency rhythms. (Note: D–E modified from [30], with permission).