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Abstract
Gene*environment interactions play critical roles in the emergence of autism and schizophrenia
pathophysiology. In both disorders, recent genetic association studies have provided evidence for
disease-linked variation in immune system genes and post-mortem gene expression studies have
shown extensive chronic immune abnormalities in brains of diseased subjects. Furthermore,
peripheral biomarker studies revealed that both innate and adaptive immune systems are
dysregulated. In both disorders symptoms of the disease correlate with the immune system
dysfunction; yet, in autism this process appears to be chronic and sustained, while in
schizophrenia it is exacerbated during acute episodes. Furthermore, since immune abnormalities
endure into adulthood and anti-inflammatory agents appear to be beneficial, it is likely that these
immune changes actively contribute to disease symptoms. Modeling these changes in animals
provided further evidence that prenatal maternal immune activation alters neurodevelopment and
leads to behavioral changes that are relevant for autism and schizophrenia. The converging
evidence strongly argues that neurodevelopmental immune insults and genetic background
critically interact and result in increased risk for either autism or schizophrenia. Further research in
these areas may improve prenatal health screening in genetically at-risk families and may also lead
to new preventive and/or therapeutic strategies.
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INTRODUCTION
Autism spectrum disorder (ASD) is characterized by symptoms in the domains of social
interaction, communication and restricted and repetitive interests and behaviors (Meyer et
al., 2011; Noterdaeme, 2011; Ratajczak, 2011). In contrast, clinical manifestations of
schizophrenia (SCZ) encompass positive symptoms, negative symptoms and cognitive
deficits (Frangou and Murray, 2000; Tandon et al., 2009). Despite distinct clinical
presentations, there are common pathophysiological underpinnings to both of these
disorders. ASD and SCZ arise as a result of strong genetic and environmental risk factors
that interact in complex ways to give rise to two distinct disease processes. Twin studies
have provided estimates of heritability in ASD and SCZ as high as 90% and 80%
respectively, suggesting that genetic differences play a pivotal role in the etiology of both
disorders (Tandon et al., 2008; Geschwind, 2009). However, a recent twin study specifically
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examined possible effects of the environment in ASD and concluded that about 58% of the
stated heritability could be attributed to environmental factors commonly affecting the twin
pairs (Hallmayer et al., 2011). Likewise, a meta-analysis of twin-studies in schizophrenia
found a strong environmental component (Sullivan et al., 2003). Furthermore, monozygotic
twins who shared a placenta (monochorionic) had significantly higher concordance for
schizophrenia than those with separate placentas (dichorionic), arguing that prenatal
environmental factors confer risk for neurodevelopmental disorders even when the genetic
makeup is identical (Davis et al., 1995).

It is clear that both genetics and environment contribute to the emergence of ASD and SCZ,
but how could environmental factors alter genetically-encoded programs and lead to
disease? “Environment” is most commonly referred to as a set of broad external influences
affecting various homeostatic mechanisms of an organism. Environmental factors exert their
influence directly by affecting specific cellular processes (e.g. toxins, short-term effects of
drugs) or indirectly by manipulating the expression of genes (e.g. hormones, long-term
effects of drugs, immune system activation and exercise (Russell, 2003)). These
environment-triggered gene expression changes can be either beneficial or detrimental in
disorders such as Alzheimer’s Disease (Lazarov et al., 2005; Radak et al., 2010),
Parkinson’s Disease (Zigmond et al., 2009) or traumatic brain injury (Devine and Zafonte,
2009). For example, environmental conditions like exercise have been shown to impact
biological systems through changes in the expression of various gene cascades (Mitchell et
al., 2012). However, environmental influences on gene expression in both ASD and SCZ
appear to be primarily detrimental and contribute to the disease process. So, what are the
major environmental factors in the emergence of ASD and SCZ and how might they
increase the risk for illness? Over 40 years ago, epidemiological studies identified maternal
infection during early pregnancy as a significant risk factor for ASD (Chess, 1971).
Likewise, an increased concordance rate of SCZ in monochorionic vs. dichorionic twins can
be explained by shared blood circulation and a shared placenta, which suggests that an
infection would affect both monchorionic twins similarly (Davis et al., 1995). In addition,
various studies identified that exposure to a wide variety of bacterial and viral agents
increases the risk for ASD and SCZ (Brown and Derkits, 2010; Ratajczak, 2011)(Brown/
Pardo this issue?), arguing that a general immune system activation, and not a specific
infectious agent is responsible for an increased risk in both diseases.

Recent genomics, genetics, functional and animal model studies of ASD and SCZ strongly
support this interpretation. A meta-analysis of previous genome wide association study
(GWAS) datasets identified variants of genes involved in the immune response that are
significantly correlated with SCZ diagnosis (Ripke et al., 2011) and post-mortem expression
studies have found dysregulated immune system gene transcripts in brains of patients with
ASD (Lintas et al., 2012) and SCZ (Arion et al., 2007; Sequeira et al., 2012). Furthermore,
in the brain of subjects with ASD, Vargas et al. observed a strong activation of microglia
and astrocytes, as well as elevated cytokine levels, suggesting that ASD is characterized by a
persistent immune system activation (Vargas et al., 2005). Microglial activation has also
been suggested to play a role in SCZ, though the evidence remains to be comprehensively
assessed (Bernstein et al., 2009; Monji et al., 2011). In addition, studies of peripheral blood
revealed distinctly altered cytokine levels across both disorders (Chan et al., 2011; Onore et
al., 2012). Finally, maternal immune activation (MIA) studies in rodents have provided
evidence for anatomical, gene expression and behavioral changes related to ASD or SCZ
(Patterson, 2009; Boksa, 2010; Müller and Schwarz, 2010)(Boksa this issue?).

However, our understanding of immune system dysfunction in these two disorders remains
incomplete to date. Currently we have a very limited understanding of how immune system
dysfunction disrupts normal brain development and contributes to the emergence of a
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disease. More specifically, we do not know 1) how the genetic elements and the
environmental insults interact; 2) whether neuroimmune dysfunction is a primary or
adaptive part of the disease process; 3) how immune system disturbances change during the
course of each disease; and 4) whether immune system abnormalities are directly
responsible for the behavioral phenotypes seen in patients and whether they represent good
drug targets.

1. Genetic variation implicates immune system related genes
Genome wide association study (GWAS) is a DNA-based, hypothesis-free method which
analyzes genetic variation between individuals in a large population. It is primarily designed
to uncover genetic variation such as single-nucleotide polymorphisms (SNPs), micro-
deletions, or copy number variations (CNVs) that are associated with a particular trait,
condition, or disorder. With a large population and a good reference dataset, this technique
is very powerful for identifying alleles and genomic regions not previously associated with
illness (Raychaudhuri, 2011). However, this method is susceptible to type II errors (false
negatives) and rare alleles occurring only in a small part of the population can remain
undetected. In spectrum disorders like ASD and SCZ, this is compounded by considerable
genetic heterogeneity in the patient population. Furthermore, the functional impact of the
majority of identified SNPs has not been investigated comprehensively (especially non-
coding SNPs). Nevertheless, GWA studies can be very useful in providing leads for follow
up, hypothesis-driven studies with the primary goal of understanding the biological effects
by which gene expression disturbances alter the development of the brain. Such hypothesis-
based studies in turn have a higher analytical power and can readily analyze a particular
signal with a minimal need for statistical correction.

In SCZ patients, GWA studies have uncovered an association between the major
histocompatibility locus (MHC) and diagnosis. The MHC locus contains multiple conserved
genes that are involved in the innate, adaptive and autoimmune systems (Traherne, 2008).
Several patient populations of different geographical origins have been queried. Some
studies reported significant associations of SNPs within the MHC locus (Sullivan et al.,
2008; Need et al., 2009; Purcell et al., 2009; Shi et al., 2009; Stefansson et al., 2009; Yue et
al., 2011) while others failed to replicate these findings (O'Donovan et al., 2008; Shifman et
al., 2008; Walsh et al., 2008; Athanasiu et al., 2010; Ma et al., 2011; Yamada et al., 2011).
However when these studies were combined into a meta-analysis, 129 disease-related
polymorphisms were identified in the extended MHC locus (Ripke et al., 2011).
Furthermore, a hypothesis-driven candidate gene approach revealed that polymorphisms in
nuclear factor kappa B (NFκB) (Hashimoto et al., 2011), interleukin 2, 4 (Schwarz et al.,
2006), 3 (Chen et al., 2007), 6 and 10 (Bocchio Chiavetto et al., 2002; Paul-Samojedny et
al., 2010; Almoguera et al., 2011) were also linked to SCZ.

In contrast, GWA studies of ASD have not uncovered significant associations with genes
implicated in immune function (Ma et al., 2009; Wang et al., 2009; Weiss et al., 2009;
Anney et al., 2010). However, hypothesis-driven genetic assessments revealed that HLA A2
(MHC class I) and HLA DR4 (MHC class II) loci contained SNPs associated with ASD,
suggesting that genomic variation in the MHC region is also associated with ASD (Lee et
al., 2006; Torres et al., 2006; Guerini et al., 2009; Guerini et al., 2011). Therefore, genetic
variation in immune system genes must be further evaluated as a potential risk factor for
both ASD and SCZ.

Interestingly, GWA studies show overlapping risk genes associated with ASD/SCZ and
immune system diseases. The involvement of the MHC locus for example appears to be one
of the strongest findings in GWA studies of chronic inflammatory diseases (Wucherpfennig
and Sethi, 2011). Furthermore, variation in the HLA DRB1 locus is associated with

Michel et al. Page 3

Dev Neurobiol. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



rheumatoid arthritis, an autoimmune disease that appears to have reduced incidence in
patients with SCZ and an increased incidence in mothers of children with ASD (Crespi and
Thiselton, 2011). Finally, GWA studies also identified that certain neurexin alleles
predispose to developing autoimmune diseases such as rheumatoid arthritis, Crohn’s disease
and multiple sclerosis (Baranzini, 2009) and neurexin has also been identified as an ASD
and SCZ susceptibility gene (Gauthier et al., 2011).

Overall, GWA studies suggest that elements in critical immune response genes might
contribute to the emergence of disease pathophysiology in both ASD and SCZ. The exact
role(s) of these alleles will have to be addressed in future studies, especially considering that
genes found on the MHC locus have a variety of functions in the immune and nervous
systems.

2. Post-mortem gene expression changes
Genetic variations can directly give rise to gene expression changes, alter protein structure
and function, modulate gene expression in concert with environmental factors, or have no
effect. Gene expression changes that are found in postmortem brain tissue are the
cumulative products of genetics, cause of death, duration of illness, treatment, and other
biological events that are only peripherally associated with disease pathophysiology.
Nevertheless, a well-controlled post-mortem gene expression study can identify gene
expression changes and pathways that are specific to the disease.

In SCZ, transcriptome studies have uncovered immune system, synaptic, oligodendrocyte,
and energy metabolism related disturbances (Faludi and Mirnics, 2011). These changes are
likely to be related, although at the present time we have a limited understanding of how
these domains interact. Clearly, disruption of the immune system might result in altered
energy metabolism and synapse elimination, yet synaptic elimination or altered
oligodendrocyte function might also trigger immune/chaperone responses. Although we do
not fully understand the temporal sequence in which the transcriptome changes emerge,
postmortem tissue of subjects with SCZ or ASD shows strong neuroimmune transcriptome
dysregulation. In the brains of subjects with schizophrenia, Arion et al. and Saetre et al.
provided converging evidence for a robust immune transcript upregulation in the prefrontal
cortex consisting of SERPINA3, IFITM2 and IFITM3. Importantly, both studies observed
gene expression changes that were independent of the patients’ medication history (Arion et
al., 2007; Saetre et al., 2007). Similarly, Garbett et al. (Garbett et al., 2008) found several
immune related expression changes in Brodmann area (BA) 46 of patients, while Shao and
Vawter reported an increased expression of humoral immune response genes in the same
brain region (Shao and Vawter, 2008). However, Schmitt et al. observed a systemic
repression of immune transcripts in BA22 of the temporal lobe, suggesting that
neuroimmune disturbances might have a regional character in schizophrenia. This
potentially regional specificity was also supported by the comprehensive brain mapping
study of Katsel et al., who reported an interesting and very complex spatial pattern of
immune dysregulation across the brain regions (Katsel et al., 2005).

In summary, converging SCZ postmortem studies suggest that immune system activation is
a chronic, progressive process in a subpopulation of patients, and this appears to be a
residual expression signature of early immune system activation. Furthermore, immune
transcript induction is linked to other gene expression changes, particularly downregulation
of synaptic marker transcripts and energy metabolism related transcripts. Lastly, immune
system changes are complex and encompass both gene expression increases and decreases in
a region-specific pattern, with the hippocampus and prefrontal cortex showing the most
prominent neuroimmune transcript dysregulation.
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The immune system activation in ASD is equally complex. Transcriptome studies have
primarily revealed ASD-associated dysregulation of immune, synaptic and developmental
transcripts. The study of Garbett et al. provided evidence for a strong induction of both the
innate as well as adaptive immune systems (Garbett et al., 2008). Similarly, Voineagu et al.
report a strong induction of gene expression involved in the immune and inflammatory
response in the frontal and temporal cortices, but observed no significant correlation
between alleles associated with ASD in GWAS and immune gene mRNA levels. The
authors also found that regional specialization was significantly attenuated in subjects with
ASD (Voineagu et al., 2011). Finally, Ziats and Rennert used a publicly available gene-
expression atlas of 16 human brain regions ranging from 21 weeks of gestation to 40 years
of age, looked for highly expressed ASD risk-genes in the developing brain and used
pathway analysis to identify signaling hubs for risk gene convergence. They found that 219
previously identified putative ASD risk genes may converge on cytokine signaling
pathways, suggesting that an early immune activation might be a core feature of ASD
pathophysiology (Ziats and Rennert, 2011).

Combined, ASD transcriptome studies suggest that immune system induction is chronic,
complex, and probably not of genetic origin. Rather, it is likely to be a result of
environmental or adaptive processes arising from an early immune activation. Similar to
changes in SCZ, immune system activation in ASD is linked tightly with synaptic transcript
downregulation and encompasses innate as well as adaptive immune system transcripts.
There is a notable overlap of specific gene expression patterns between these two disorders,
including two interferon-inducible transcripts, IFITM2 and IFITM3 (Arion et al., 2007;
Saetre et al., 2007; Garbett et al., 2008; Voineagu et al., 2011). However, in contrast to SCZ,
immune system changes in ASD appear to be uniform across cortical regions. Importantly,
these studies support the possibility that prenatal immune activation might be a common
contributor to the emergence of ASD or SCZ. However since postmortem studies provide
only snapshots of the transcriptome, the temporal emergence of immune system changes
will have to be ascertained by other longitudinal methods.

3. Peripheral Biomarkers
Post-mortem transcriptome studies build a compelling case for neuroimmune disturbances in
ASD and SCZ patients, but are these changes associated with peripheral biomarkers of
inflammation that could potentially be used for aiding early diagnosis or monitoring
treatment effectiveness? Several studies are informative in this regard.

Early studies of peripheral immune markers have provided variable results, but a recent
meta-analysis by Miller and colleagues reported an increase in the inflammatory cytokines
IL-1β, IL-6 and TGFβ specifically during acute episodes of the illness (Miller et al., 2011).
This evidence suggests a state-specific induction of immune markers during active episodes
of SCZ, which has been corroborated by Takahashi et al. who found that recent onset or
active episodes result in the induction of inflammatory and immune related biological
processes (Takahashi et al., 2010). Additionally, Kurian et al. reported that high
hallucination and delusion scores correlate with interleukin-related expression in the serum
of patients (Kurian et al., 2011), while Drexhage and colleagues found a significant up-
regulation of IL 1β, IL-6 and TNFα in peripheral blood mononuclear cells in recent-onset
patients (Drexhage et al., 2010). Further support comes from a study by Song et al., which
confirmed increased TNFα and IL-1β mRNA and protein levels in unmedicated first
episode patients (Song et al., 2009). Thus, it appears that in patients with SCZ, the acute
phase of illness correlates with peripheral changes in both innate and adaptive immune
systems.
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In ASD, peripheral immune activation is equally complex and appears to involve both the
innate and adaptive immune systems. Furthermore, altered levels of peripheral immune
markers appear to indicate symptom severity. Multiple studies support this conclusion. First,
TNFα signaling-related expression changes were correlated with diagnosis and severity of
ASD (Hu et al., 2006; Hu et al., 2009). Similarly, levels of pro-inflammatory cytokines such
as IL-1β, IL-6 and IL-8 were increased in patients with ASD and correlated with a more
pronounced behavioral impairment (Ashwood et al., 2011). In addition, expression levels of
the anti-inflammatory cytokine TGFβ decreased as behavioral symptoms worsened
(Ashwood et al., 2008). Therefore, it appears that the balance of pro-inflammatory and anti-
inflammatory cytokines is altered in ASD and that cytokine levels correlate with severity of
symptoms including poor communication skills and impaired social behaviors.

In summary, serum biomarker studies of ASD and SCZ suggest several similarities between
these two disorders. In both ASD and SCZ, immune dysfunction is systemic and not
confined to the CNS. It is also important to note that both innate and adaptive immune
markers show altered levels and that peripheral cytokine levels appear to correlate with
disease symptomatology in both disorders (acute phase in schizophrenia and symptom
severity in ASD).

If immune disturbances contribute to the manifestations of ASD/SCZ, can their treatment
alleviate disease symptoms? Interestingly, it appears that antipsychotic medication
counteracts the peripheral immune response in SCZ patients. For example, a four-week long
treatment with risperidone reduced serum levels of IL-1β mRNA and protein which were
correlated with a reduction of symptom severity (Song et al., 2009). It has been proposed
recently that immune system regulation may be part of symptom alleviation (see also
(Drzyzga et al., 2006; Strous and Shoenfeld, 2006; Miller et al., 2011)). Consequently
several recent studies investigated whether direct treatment of immune dysfunction leads to
an improvement of symptoms. These efforts revealed that anti-inflammatory therapy with
aspirin (Laan et al., 2010) or a COX2 inhibitor (Müller et al., 2002; Müller et al., 2010)
improved treatment response in SCZ patients with elevated levels of peripheral
inflammatory markers or acute symptoms. In ASD, treatment with anti-inflammatory drugs
moderately alleviated a subset of ASD symptoms (Rossignol, 2009). Furthermore, a recent
study reported that fever reduces symptom severity in autistic children (Curran et al., 2007).
The mechanisms underlying this effect are unclear, but one can speculate that altering
cytokine balance might benefit brain function in these patients.

However, the central question of any biomarker study is: “can a set of peripheral molecules
be predictive of diagnosis, descriptive of the progression of disease, or effective in
monitoring treatment efficacy?” A reliable clinical test must be both specific (identify only
subjects with the condition) and sensitive (identify all subjects with the condition). As a
result, the utility of peripheral immune system biomarker-based diagnosis for ASD or SCZ
is highly unlikely, since any disease-associated change is potentially masked by immune
system responses to a host of internal (e.g. food, physical activity, sleep) and external (e.g.
contact with chemicals or infectious agents) stimuli. In addition, the expression of peripheral
immune system genes is primarily controlled by local events, not CNS triggered processes.
Furthermore, the high incidence of co-morbid conditions in psychiatric patients makes it
challenging to attribute immune marker changes to the primary disease, especially
considering that some immune markers appear to lack disease-specificity across the various
psychiatric disorders (Abdallah et al., 2011). However, while peripheral immune system
markers alone are unlikely to be good diagnostic tools, integrated “-omics” based tests have
a better chance of achieving the required diagnostic sensitivity and specificity.
Continuously-monitored, integrative personal “-omics profiles” show promise in
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distinguishing healthy versus disease states, although this approach is not ready to be
adopted in clinical practice at the current time (Chen et al., 2012).

Overall, both post-mortem and peripheral blood studies in ASD have consistently identified
immune abnormalities in a wide age-range of patients, suggesting a chronic immune
activation which increases with the severity of symptoms. Indeed, the clinical profile of
ASD patients is characterized by a relative continuity of symptoms as opposed to the
episodic character of active psychosis in SCZ. In contrast to ASD, it appears that SCZ is
characterized by peripheral inflammatory markers that are more robust during acute
episodes. This suggests a chronic inflammatory profile in SCZ which exacerbates during
active disease periods. Thus, external stimuli precipitating psychotic episodes in SCZ (e.g.
stress) might act upon chronic immune abnormalities leading to a flaring up of inflammatory
processes. Such an inflammatory response could lead to a progressive exacerbation of
chronic immune abnormalities, which may underlie the detrimental effect of untreated
psychotic episodes as well as the beneficial effect of prompt and continued use of
medication (Frangou and Murray, 2000). However, the overall postmortem and biomarker
data suggest that chronic immune transcript dysregulation might be characteristic of a
patient subpopulation and this subpopulation remains poorly defined to date. Further studies
will have to refine the relationship between the neuroimmune disturbances and disease
symptoms. In the future, meta-analysis of postmortem gene expression data from patients at
different stages of illness (duration of illness and symptom severity) may provide more
information about the trajectory of transcriptome dysfunction.

4. Modeling immune disturbances
The data from Voineagu et al. suggest that post-mortem immune system transcript changes
in ASD may not be caused by genetic variation (Voineagu et al., 2011). Furthermore,
epidemiological studies suggest that a wide variety of bacterial and viral agents increase the
risk for ASD and SCZ (Brown and Derkits, 2010; Ratajczak, 2011)(Brown/Pardo this
issue?) and cytokine levels are reportedly increased in pregnant mothers whose children
later develop ASD and SCZ (Brown et al., 2004; Goines et al., 2011). This raises two critical
questions: what effect does maternal immune activation (MIA) have on the developing fetus
and can such changes be investigated using animal models?

Animal studies addressing these questions revealed several ASD and SCZ related features.
Following MIA, cytokine levels were elevated in the maternal serum as well as the fetal
brain (Golan et al., 2005; Meyer et al., 2006) and offspring exhibited morphological brain
abnormalities that mimicked those seen in ASD and SCZ (Boksa, 2010; Kneeland and
Fatemi, 2012). Additionally, complex transcript changes were observed in the fetal brain
with changes following maternal viral infection known to play a role in the pathophysiology
of ASD and SCZ (Fatemi et al., 2009; Fatemi et al., 2009; Kneeland and Fatemi, 2012).
Moreover, converging evidence showed that behavioral changes in the MIA-exposed
offspring were reminiscent of ASD and SCZ (Boksa, 2010; Meyer, 2011)(Boksa this
issue?), and that some of these behavioral deficits were ameliorated after exposure to
antipsychotic drugs (Piontkewitz et al., 2009; Meyer et al., 2010; Piontkewitz et al., 2011).
These studies provide compelling evidence that MIA-exposed offspring in animal models
exhibit several critical features that are also observed in patients with ASD or SCZ,
suggesting that maternal immune activation plays a role in the pathogenesis of these
disorders.

However, these studies also revealed that the infectious agents are not acting directly on the
fetal brain, but rather through an activation of immune cascades. Early evidence showed that
fetal brains exhibited no detectable levels of viral genes after maternal viral exposure (Shi et
al., 2005). This finding was extended to show that exposure to an analogue of bacterial
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infection (lipopolysaccharide - LPS) led to elevation of cytokine levels in the fetal brain and
maternal circulation, but did not result in altered cytokine mRNA synthesis in the fetal brain,
suggesting a maternal and not fetal immune response (Oskvig et al., 2012). Furthermore,
maternal exposure to IL-6 alone led to behavioral and transcript changes comparable to
those seen after exposure to the non-infective viral mimetic poly(I:C) (Smith et al., 2007;
Garbett et al., 2012). Bringing these findings together, viral infection, poly(I:C) and IL-6 not
only resulted in similar patterns of transcript changes in the fetal brain (Garbett et al., 2012),
but behavioral and transcriptome changes were blocked by administration of IL-6
neutralizing antibodies following poly(I:C) exposure (Smith et al., 2007). Therefore, these
results provide evidence that various infections cause a systemic maternal immune
activation which affects the fetus via circulating cytokines, IL-6 in particular. Therefore, the
IL-6 pathway might represent a promising target for preventing the detrimental effects of
MIA on the developing brain.

The induction of acute phase immune response proteins is well-documented, but it is still
mostly unclear how an immune system induction can impact the developing brain. Recent
animal studies have also been instructive in this regard, providing evidence that the immune
system interacts with neurodevelopmental mechanisms. Firstly, neurogenesis was found to
be compromised in IL-6 knockout mice (Bowen et al., 2011). Furthermore, modulation of
the pro-inflammatory cytokine TNFα altered the stabilization and pruning of synapses (Lee
et al., 2010) and was shown to play a role in synaptic plasticity and synaptic pruning
(Beattie et al., 2002; Stellwagen and Malenka, 2006). Additionally, IL1β was found to
modify synaptic strength in GABAergic circuits (Serantes et al., 2006) and the MHC locus
was found to play a critical role in activity dependent neuronal path-finding and stabilization
of active connections (Shatz, 2009)(Shatz this issue?). Finally, microglial activation was
critical for the genesis, migration and selective stabilization of new neurons (Chung and
Barres, 2011; Ekdahl, 2012), synaptic pruning (Paolicelli et al., 2011) and neuronal
plasticity (Ben Achour and Pascual, 2010). This data provides convincing evidence that an
altered immune function not only impacts neurogenesis but also leads to critical
modifications in brain connectivity. Interestingly, the disease process in SCZ is
characterized by overpruning of synapses (Faludi and Mirnics, 2011), while in ASD, a lack
of appropriate pruning and/or a premature stabilization of synapses could lead to an excess
of synaptic connections, ultimately resulting in the emergence of hyper-reactive and hyper-
plastic neuronal circuits (Markram et al., 2007) and altered cortical minicolumns
(Buxhoeveden et al., 2006; Casanova et al., 2006). This strongly argues that the
gene*environment interaction in the human brain has a different outcome in SCZ as opposed
to ASD. It is also important to note that the nature of the transcript changes, cytokine
measures and structural abnormalities following MIA depended on the developmental stage
of the fetus at the time of exposure, providing evidence that the exact timing of MIA can
lead to distinct pathophysiological complications in animal models (Meyer et al., 2007;
Fatemi et al., 2012; Kneeland and Fatemi, 2012). However, it should be pointed out that not
every child of a bacterially or virally infected mother develops a neuropsychiatric condition
(Selten et al., 2010; Brown, 2011). It is therefore likely that the effects of MIA depend on
the strength of infection and/or gene*environment interaction, as well as developmental
timing of the insult. Animal studies strongly support this view as MIA exposure of Nurr1
and DISC1 transgenic mouse models exacerbated anatomical and behavioral phenotypes.
Furthermore, it is intriguing that these mice also exhibited an altered cytokine balance
without MIA exposure, suggesting that certain mutations by themselves can also affect the
immune system, possibly rendering the organism more sensitive to an immune insult
(Abazyan et al., 2010; Vuillermot et al., 2012).

In summary, animal studies of MIA are essential for deciphering the ways the immune
system alters brain structure, connectivity and function (Deverman and Patterson, 2009).
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Integrating these data with human clinical and postmortem observations will be critical to
understand the gene*environment interactions that give rise to ASD and SCZ
pathophysiology. Clearly, genes are multifunctional and any classification of them into
‘synaptic’, ‘immune’ or ‘glial’ categories is highly artificial. Implementing interactome-
based assessment such as weighted gene co-expression network analysis (WGCNA)
(Mirnics, 2008; Oldham et al., 2008) will be the only way to understand the functional
relationship between gene networks and how their disturbances can drive disease pathology.

CONCLUSION
Immune dysfunction is an integral part of ASD and SCZ pathophysiology. Epidemiological
studies, GWAS, postmortem brain studies, peripheral biomarkers and MIA all provide
converging evidence for a profound impact of immune system disturbances on
neurodevelopment which are directly relevant for ASD/SCZ etiology. Furthermore, the
enduring presence of immune disturbances in the brain during adult life argues that these
changes are active contributors to the disease process. Yet ample unanswered questions
remain. It is not known if the risk for developing disease requires multiple genetic/
environmental hits or a specific combination of genetic*environmental hits. Furthermore, it
remains to be established whether these changes are primary aspects of each disorder or
whether they are adaptive/maladaptive mechanisms in response to a separate primary insult.
Regardless of the origin of these changes, it is important that anti-inflammatory agents
appear to be beneficial in both patient populations. Further research in these areas may
improve prenatal health screening in genetically at-risk families and may also lead to new
preventive and therapeutic strategies.
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