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arterial wall ( 1 ). Statin treatment reduces LDL-cholesterol 
levels and is currently the most potent cholesterol-lowering 
therapy available ( 2 ). In the search for new therapeutic 
approaches, the reverse cholesterol transport (RCT) path-
way has gained much attention during the last decade ( 3, 4 ). 
RCT via the commonly known hepatobiliary route de-
scribes the transport of peripheral cholesterol back to the 
liver for biliary secretion. In this pathway, HDL and apoAI, 
the major apolipoprotein of HDL, play a profound role. 
ApoAI and HDL take up cellular cholesterol from periph-
eral tissues, including macrophages in the arterial wall, via 
the cholesterol transporters ABC A1 and G1, respectively 
( 3 ). In a scavenger receptor class BI (SR-BI)-dependent 
manner, HDL-cholesterol is delivered to the liver from 
where cholesterol can reenter the circulation via VLDL 
production or can be excreted via bile. 

 Recently, we reported on an additional nonhepatobiliary-
related route for RCT, the trans-intestinal cholesterol 
effl ux (TICE) pathway ( 5 ). This pathway describes the 
transport of cholesterol from blood to the intestinal lu-
men directly via enterocytes. TICE, which is predominantly 
exerted at the proximal part of small intestine, can con-
tribute up to 70% of the daily total body neutral sterol se-
cretion in mice. The activity of this pathway has been 
confi rmed by Temel et al. ( 6 ) who demonstrated in ele-
gant studies that acute biliary diversion does not infl uence 
intestinal cholesterol excretion signifi cantly. An important 
issue that remains to be resolved for TICE is the identifi ca-
tion of the donor particle that delivers the circulating cho-
lesterol to the enterocyte. The intestine assembles lipids 
absorbed from the gut into chylomicrons and secretes 
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37°C in a shaking-water bath under argon. Ethylmercurithiosalicy-
late (thimerosal; 20 mM) was added to   inhibit phospholipid trans-
fer and lecithin:cholesterol acyltransferase activity. Radiolabeled 
HDL was then isolated by density gradient ultracentrifugation. 

 Intestine perfusions, liver uptake, and plasma decay 
 Mice (2–4 months old, n = 5) were anesthetized by intraperito-

neal injection of a mixture of 7 ml fl uanisone (17.5 mg), fentanyl 
citrate (0.55 mg), and midazolam (8.75 mg) per kg body weight. 
Continous anesthesia was monitored by tail pinching. Radiola-
beled chylomicron-like particles (2 µCi [ 3 H]CO and 0.5 µCi [ 14 C]
cholesterol/mouse) or HDL (0.4 µCi [ 3 H]CO/mouse) were ad-
ministered by tail vein injection. Plasma samples were collected at 
the indicated time points after injection through tail-bleeding. 
After 1 h, bile was collected via bile cannulation for 15 min and 
the proximal small intestines (fi rst 10 cm) were perfused with a 
bile salt-phospholipid mixture that was composed of 10 mM tau-
rocholate and 2 mM phosphatidylcholine (PC) and at a fi xed fl ow 
rate of 3 ml/hr, as described previously ( 5 ). This mixture of 10 mM 
taurocholate and 2 mM PC was shown earlier to yield optimal 
rates of cholesterol secretion ( 5 ). At the end of the perfusion pe-
riod of 90 min, blood was collected by cardiac puncture. Liver was 
snap-frozen in liquid N 2.  The total amount of radioactivity in the 
plasma was calculated based on the estimated total plasma vol-
ume (4.5% of body weight) ( 16, 17 ). To determine liver uptake, 
the livers were weighed and tissue samples were dissolved in Solu-
ene-350 (PerkinElmer, Waltham, MA). To determine intestinal 
uptake, the perfused intestinal segments were harvested; the mu-
cosa was scraped, snap-frozen in liquid N 2 , and lipids were 
extracted according to Bligh and Dyer ( 18 ). For all samples radio-
activity was determined using a liquid scintillation counter. 

 TLC 
 To determine the distribution of  3 H and/or  14 C over free cho-

lesterol and cholesteryl esters in homogenized samples of snap-
frozen livers and plasma samples, lipids were extracted according 
to Bligh and Dyer ( 18 ). After reconstitution of lipid fi lms in chlo-
roform, free cholesterol and cholesteryl esters were separated by 
spotting the samples on silica gel 60 TLC plates (Merck, Darm-
stadt, Germany). Subsequently, the sterols were identifi ed by io-
dine staining and the distribution of radioactivity was quantitated 
using a liquid scintillation counter. 

 Cholesterol measurements 
 Biliary and perfusate cholesterol were measured by a fl uores-

cent method as described previously ( 19 ). Total cholesterol in 
plasma was determined using cholesterol RTU kit from Biomerieux 
(Marcy l’Etoile, France). 

 Statistical analysis 
 All results are presented as mean ± SD. Group means for TICE, as 

depicted in the fi gures, were calculated by averaging the outcomes 
of all mice that got the same treatment. The values for the individual 
mice, used for the calculation of the group mean, were obtained by 
averaging the data of the last three perfusion time points. Differ-
ences between different groups were determined by one-way 
ANOVA. Outcomes of  P  < 0.05 were considered to be signifi cant. 

 RESULTS 

 Cholesterol introduced via chylomicron-like emulsion 
particles is secreted via TICE 

 In our attempt to identify the cholesterol donor for 
TICE, we fi rst investigated the fate of [ 3 H]CO and [ 14 C]

these lipoprotein particles into lymph for distribution over 
the body ( 7 ). In addition, the intestine is an important 
contributor to circulating HDL levels ( 8 ). However, little is 
known about uptake of circulating lipoproteins by the intes-
tine from the basolateral side. Interestingly, the rate of TICE 
was two-fold higher in SR-BI-defi cient mice with increased 
HDL levels as related to an impaired delivery of HDL-
cholesterol to the liver ( 9 ). It is thus conceivable that HDL is 
utilized for RCT via the hepatobiliary route as well as TICE. 

 In this study, we investigated basolateral uptake of cho-
lesterol by the intestine and the potential role for HDL in 
TICE. We evaluated plasma kinetics, liver uptake, and bil-
iary and intestinal secretion of radiolabeled cholesterol, 
which was injected via chylomicron-like particles in mice 
with normal and disturbed HDL metabolism. Results re-
ported herein indicate that TICE is not mediated signifi -
cantly via HDL particles. 

 METHODS 

 Animals 
 Male wild-type (WT) mice (C57Bl/6Jico; Charles River, L’Arbresle 

Cedex, France) as well as the  Abca1  � / �    ( 10 ),  Sr-bI  � / �    ( 11 ), and 
 Abca1  � / �  ×Sr-bI  � / �    mice ( 12 ), together with their WT littermates, re-
ceived standard mouse chow diet [CRE(E), 3% (w/w) fat, no cho-
lesterol added; Special Diet Services, Witham, UK]. Food and water 
were supplied ad libitum. The mice were maintained on a 12 h 
light/12 h dark cycle. All experiments were performed according to 
the Directive 2101/63/EU of the European Parliament and ap-
proved by the local Ethical Committees for Animal Experiments 

 Preparation of chylomicron-like emulsion particles 
 Chylomicron-like emulsion particles were prepared as de-

scribed ( 13 ). Briefl y, a mixture of 100 mg of total lipid was dis-
persed in NaCl buffer of density 1.10 g/ml. The lipid mixture 
consisted of egg yolk phosphatidylcholine (Lipoid, Ludwig-
shafen, Germany), triolein, L- � -lysophosphatidylcholine, choles-
teryl oleate, and cholesterol (all from Sigma-Aldrich, The 
Netherlands) and at a weight ratio of 22.7: 70.0: 2.3: 3.0: 2.0. In 
addition, 50 µCi [ 14 C]cholesterol and/or 160 µCi [ 3 H]choles-
teryl oleate ([ 3 H]CO) (Amersham, The Netherlands) was added 
to the lipid mixture. The lipid mixture was sonicated using a 
Soniprep 150 (MSE Scientifi c Instruments, Crawley, UK) at 10 
µm output (30 min at 54°C) under a constant stream of argon. 
Emulsion particles with an average size of 80 nm were collected 
after ultracentrifugation by aspiration. 

 Preparation radiolabeled HDL 
 Human HDL was isolated from blood of healthy subjects by dif-

ferential ultracentrifugation as described by Redgrave et al. 
( 14 ) and dialyzed against PBS with 1 mM EDTA. HDL (1.063 < d 
<1.21 g/ml) was labeled with [ 3 H]CO via exchange from donor 
particles as reported previously ( 15 ). Donor particles were formed 
by sonication of egg yolk phosphatidylcholine supplemented with 
50 µCi of [ 3 H]CO using the Soniprep 150 at 12 µm output (40 min 
at 52°C) under a constant stream of argon in a 0.1 M KCl, 10 mM 
Tris, 1 mM EDTA. 0.025% NaN 3  buffer, pH 8.0. Donor particles 
with a density of 1.03 g/ml were isolated after density gradient 
centrifugation. HDL was radiolabeled by incubation with donor 
particles (mass ratio of HDL protein/particle phospholipid = 8:1) 
in the presence of human lipoprotein-defi cient serum (1:1, v/v), 
as a source of cholesteryl ester transfer protein (CETP), for 8 h at 
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 To determine TICE and biliary cholesterol secretion, we 
performed intestine perfusions and bile cannulations, 
starting at 1 h after injection, for a period of 90 min.   Table 1   
shows that secretion of cholesterol via TICE was 2.5-fold 
higher than the biliary cholesterol secretion.  This fi nding 
confi rmed our earlier observation that TICE plays a very 
prominent role in fecal neutral sterol excretion in mice 
( 5, 20 ). A substantial amount of the intravenously injected 
radiolabeled cholesterol taken up by the liver is cleared via 
biliary cholesterol secretion. In addition, we also demon-
strate with our intestine perfusions that radiolabeled cho-
lesterol is secreted into the intestinal lumen ( Table 1 ). In 
all measured compartments, the activity ratio between  3 H 
and  14 C remained approximately 4:1 (data not shown). Al-
though these data confi rm direct secretion of cholesterol 
from blood into the intestinal lumen via TICE, they do not 
discriminate between different potential cholesterol donors 
and previous work already excluded direct uptake of our 
radiolabeled emulsion particles by the intestine ( 20 ). 

 Secretion of cholesterol from chylomicron-like emulsion 
particles via TICE is relatively unaffected in mice that 
lack HDL or HDL uptake 

 In a previous report, we showed that  Abca1  � / �    mice with 
almost no HDL levels show unaltered fecal neutral ste-
rol excretion compared with their WT littermates ( 24 ). 
To investigate whether TICE is also unaltered in the ab-
sence of HDL, we investigated the transport of radiola-
beled cholesterol from chylomicron-like emulsion particles 
into the intestinal lumen. To this end, we injected [ 3 H]
CO-labeled particles into  Abca1  � / �    mice and their WT lit-
termates. Clearance of  3 H-activity from plasma and hepatic 
uptake of  3 H-activity in  Abca1  � / �    mice was similar to that in 

cholesterol contained in chylomicron-like emulsion parti-
cles upon administration to WT mice by intravenous injec-
tion. Both [ 3 H]CO and [ 14 C]cholesterol were cleared 
rapidly from the circulation (t 1/2 = 6–7 min) ( Fig. 1A ).  In 
previous reports we have shown that, in rats and mice, the 
majority of the injected dose (>60%) is taken up by the 
liver within 30 min and that no direct uptake is observed 
by the intestine ( 13 ). After 2.5 h, 30% of the injected dose 
was still present in the liver, which was similar to our previ-
ous observation and earlier reports ( 14, 20 ). Interestingly, 
this was observed for both isotopes (Fig. 1B), suggesting 
that no exchange occurs of free cholesterol (and CO) 
from the emulsion particles to their environment in plasma 
before uptake by the liver. 

 To analyze the distribution of both the  3 H and the  14 C 
radiolabel between its free and esterifi ed form in the liver, 
TLC was performed on extracted lipids of liver homoge-
nates (Fig. 1C). Although the introduced [ 14 C]cholesterol 
remained largely in the free form, the majority of intro-
duced [ 3 H]cholesteryl oleate was hydrolyzed and also pres-
ent as free cholesterol. In plasma of these mice, cholesteryl 
esters made up about 75% of the total circulating choles-
terol. Analysis of plasma 2.5 h after injection showed that 
the  3 H activity in the circulation (9.1 ± 1.5% of the injected 
dose) was evenly distributed over free and esterifi ed choles-
terol (Fig. 1D). A similar distribution was found for plasma 
 14 C activity (9.7 ± 1.6% of injected dose). These data illus-
trate the reutilization of the radiolabeled cholesterol after 
specifi c uptake by the liver as demonstrated before ( 21–23 ). 
In addition, lipoprotein analysis of these plasma samples by 
fast protein liquid chromatography   demonstrated that, like 
the total plasma cholesterol, both radiolabels were mostly 
associated with the HDL fraction (Fig. 1E). 

  Fig.   1.  Plasma decay, liver uptake, and distribution of radiolabeled cholesterol from chylomicron-like emulsion particles in WT mice. 
After tail vein injection of emulsion particles containing [ 14 C]cholesterol and [ 3 H]CO into WT mice (n = 5), plasma samples were obtained 
at the indicated times and plasma decay was determined (A). After intestine perfusions, the remaining activity of both radiolabels in the 
liver was determined as % of injected dose (B). Liver samples were analyzed for distribution of  14 C and  3 H over free (FC) and esterifi ed 
cholesterol (CE) via TLC (C). Lipoproteins in pooled plasma samples obtained at 2.5 h after injection were separated by FPLC and in the 
obtained fractions both total plasma cholesterol and radioactivity were determined (D). Free cholesterol and cholesteryl esters in plasma 
were separated by TLC and  14 C and  3 H radioactivity was measured in the different fractions (E). Values are means ± SD.   
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the increased TICE is mirrored by increased fl ux of  3 H-
cholesterol from chylomicron-like emulsion particles to 
the intestinal lumen,  Sr-b1  � / �    mice and their wild-type lit-
termates were injected with [ 3 H]CO-labeled particles. As 
shown in Fig. 2A (right panel), the label was cleared rap-
idly from the circulation and there was no difference 
between WT and knockout mice. Interestingly, specifi c ac-
tivity of cholesterol was unaltered both in bile and intesti-
nal perfusate derived from Sr-b1  � / �   mice (Fig. 3). 

 Cholesterol introduced via HDL is not secreted via TICE 
 The results with  Abca1  � / �    and  Sr-b1  � / �    single knockout 

mice are clearly not conclusive with respect to the role of 
HDL as a cholesterol donor for TICE. We therefore tested 
the role of HDL directly in  Abca1  and  Sr-b1  double-
defi cient mice that lack HDL and are also defective in clear-
ing HDL-cholesterol via the liver ( 12 ). To test whether or 
not HDL can function as a cholesterol donor for TICE, we 
introduced [ 3 H]CO incorporated into HDL. As anticipated, 
the clearance of [ 3 H]CO containing HDL from the circu-
lation was attenuated in  Abca1  � / �   × Sr-b1  � / �    mice ( Fig. 4A ).  
In addition, the lowered hepatic uptake of [ 3 H]CO is 
refl ected by the reduced specifi c activity of cholesterol 

WT littermates ( Fig. 2A , B; left panels).  Interestingly, 
despite the absence of HDL, specifi c activity of biliary cho-
lesterol secretion was not signifi cantly altered ( Fig. 3A ; left 
panel), in line with the unaltered biliary cholesterol secre-
tion previously reported by our group ( 24 ).  

 Intestine perfusions performed on the  Abca1  � / �    mice 
showed that TICE was not signifi cantly changed. As moni-
tored by the appearance of unlabeled cholesterol in the 
perfusate samples, the rate of TICE in mice lacking HDL 
was 1.4 ± 0.5 nmol/min.100g body weight   compared with 
1.9 ± 0.6 nmol/min.100g body weight in their WT lit-
termates. Furthermore, despite the absence of HDL in 
 Abca1  � / �    mice, transintestinal secretion of radiolabeled 
cholesterol introduced via chylomicron-like emulsion par-
ticles was still 60% compared with WT littermates (Fig. 3B; 
left panel). Mice with a disrupted  Sr-b1  gene show elevated 
HDL and have increased TICE ( 9 ). To investigate whether 

 TABLE 1. Secretion of radiolabeled cholesterol from chylomicron-like emulsion particles into intestine via TICE vs hepatobiliary pathway 

TICE Hepatobiliary Pathway

nmol cholesterol/min.100g body weight 3.0 ± 1.1 1.2 ± 0.4

Isotope  3 H  14 C  3 H  14 C
Specifi c activity (dpm/nmol cholesterol  ) 126 ± 32 22 ± 6 3167 ± 883 701 ± 200

  Fig.   3.  Biliary cholesterol secretion and TICE of radiolabeled 
cholesterol from chylomicron-like emulsion particles in  Abca1  � / �   
and Sr-b1  � / �    mice. One hour after injection of emulsion particles 
containing [ 3 H]CO, bile cannulations (A) and intestine perfusions 
were performed (B). Cholesterol and  3 H radioactivity were mea-
sured in the collected bile samples and perfusate. Specifi c radioac-
tivities for cholesterol are expressed as dpm/nmol cholesterol. 
Values are means ± SD. * indicates a signifi cant difference between 
knockout mouse model and WT littermates ( P  < 0.05).   

  Fig.   2.  Plasma decay and liver uptake of radiolabeled cholesterol 
from chylomicron-like emulsion particles in  Abca1  � / �    and  Sr-b1  � / �    
mice. After tail vein injection of emulsion particles containing [ 3 H]
CO into Abca1  � / �   (left panel; open squares) and Sr-b1  � / �   (right 
panel; open squares) mice and their WT littermates (solid squares)
(n = 5), plasma samples were obtained at the indicated times and 
plasma decay was determined (A). 2.5 h after injection, the per-
centage of the injected dose of  3 H-cholesterol present in the liver 
was determined (B). Values are means ± SD.   
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to the lipoprotein cholesterol profi le of the mouse. A pre-
vious report from Post et al. ( 23 ) demonstrated this reuti-
lization of cholesterol from chylomicron-like particles 
after uptake by the liver and ruled out direct transfer of 
radiolabeled cholesterol to HDL in plasma. 

 Because HDL plays an important role in RCT via the 
hepatobiliary route and contains the majority of circulat-
ing lipoprotein cholesterol in mice, we considered HDL a 
likely candidate to directly supply the intestine with 
cholesterol for TICE. Consistent with this hypothesis, in 
 Sr-b1  � / �    mice that are characterized by elevated HDL-
cholesterol levels, we found a two-fold increase in TICE 
( 9 ); however, as demonstrated in the present study (Fig. 
3B), specifi c activity in the perfusate was unaltered, which 
may be due to the increased pool of free cholesterol in the 
plasma ( 11 ). We now show also that in  Abca1  � / �    mice with-
out detectable HDL-cholesterol, TICE is not altered 
compared with their WT littermates. In fact, we still de-
tected a signifi cant secretion of radiolabeled cholesterol 
from injected chylomicron-like emulsion particles via 
TICE. The specifi c activity of the cholesterol secreted via 
TICE in  Abca1  � / �    mice was approximately 60% of that 
found in their WT littermates. It cannot be excluded that 
the lack of TICE phenotype in  Abca1  � / �    mice is due to 
compensatory mechanisms inducing peripheral choles-
terol effl ux in an HDL independent manner. In addition, 
possible decreased pheripheral cholesterol fl ux could be 
compensated for by increased cholesterol de novo synthe-
sis in the intestine. HDL as a critical cholesterol donor for 
TICE was further refuted after we introduced [ 3 H]CO-la-
beled HDL into mice. As expected, clearance of HDL via 
the liver was impaired in  Abca1  � / �  ×Sr-b1  � / �    mice due to 
 Sr-b1  defi ciency ( 11 ). Importantly, no uptake of HDL by 
the intestine was observed and hardly any radiolabeled 
cholesterol could be detected in the perfused intestinal 
lumen. Interestingly, no uptake and secretion of HDL-
derived cholesterol could be detected in the WT litter-
mates. These data suggest not only that TICE is not 
mediated via HDL, but also that little or no uptake of HDL 
by the intestine takes place, confi rming earlier studies by 
Briand et al. ( 29 ). If HDL at a physiologic concentration is 

secreted into bile (Fig. 4B). However, biliary cholesterol 
secretion was unaltered in the  Abca1  � / �   × Sr-b1  � / �    mice 
( 12 ). Whereas  Sr-b1  � / �    mice were characterized by an ele-
vated cholesterol secretion by the intestine ( 9 ), the rate of 
TICE (in nmol/min.100g body weight) in the double 
knockout mice was similar compared with their WT litter-
mates (Fig. 4C). Interestingly, HDL-derived cholesterol 
was hardly secreted by the intestine in both  Abca1  � / �   × Sr-
b1  � / �    and WT mice, indicating that HDL is not taken up 
by the intestine and, concomitantly, hardly any radiola-
beled cholesterol incorporated in the injected HDL could 
be secreted via TICE (Fig. 4D). 

 DISCUSSION 

 The existence of TICE has been demonstrated in vari-
ous studies in mouse models ( 5, 25 ) and earlier results in-
dicate that this pathway is also present humans ( 26 ). The 
contribution of direct cholesterol secretion via the intes-
tine to fecal sterol excretion is a novel concept that can 
advance the development of cholesterol-lowering thera-
pies. However, the mechanism of TICE remains to be elu-
cidated. An important question that needs to be answered 
is which donor particle delivers the cholesterol for secre-
tion via TICE. In the RCT pathway via the hepatobiliary 
route, HDL plays an important role ( 27 ). In this report, we 
provide important evidence that HDL does not contribute 
signifi cantly to TICE. 

 Our results from intestine perfusions show that upon 
injection of chylomicron-like emulsion particles, as a 
model of endogenously circulating triglyceride-rich lipo-
proteins ( 17 ), the incorporated radiolabeled cholesterol 
can be secreted directly into the intestinal lumen indepen-
dent of the biliary route. It was shown previously that these 
chylomicron-like emulsion particles acquire lipoproteins 
in the circulation and are rapidly taken up rapid by the 
liver ( 13, 20 ) via apoE-selective receptors. Confi rming the 
landmark study of Robins and Fasulo ( 28 ), that part of 
the in the liver-liberated cholesterol is preferentially secreted 
into bile and part of is resecreted into the circulation and 
is distributed over the lipoproteins including HDL, similar 

  Fig.   4.  Plasma decay, biliary cholesterol secretion, and TICE of radiolabeled cholesterol from HDL in 
 Abca1  � / �   × Sr-b1  � / �    mice. After injection of [ 3 H]CO-labeled HDL into  Abca1  � / �  ×Sr-b1  � / �    mice and their WT lit-
termates (n = 4), plasma samples were obtained at indicated time points and plasma decay was determined (A). 
At 1 h after injection, bile cannulations and intestine perfusions were performed to determine biliary choles-
terol secretion (B) and TICE (C, D). Both total cholesterol and  3 H activity were measured in bile, plasma, 
perfused intestine, and perfusate and the specifi c radioactivities are expressed as dpm/nmol cholesterol. 
Values are means ± SD. * indicates a signifi cant difference between  Abca  � / �    and WT littermates ( P  < 0.05).   
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preferentially takes the hepatobiliary route but when abro-
gated, the cholesterol can be resecreted from the liver and 
be excreted via TICE. 

 Limitations of this study 
 The integrative physiological approach used in this 

study does not allow a detailed probe into the mechanism 
by which cholesterol is donated to the enterocyte. We have 
attempted to set up a transcellular cholesterol transport 
study in cultured CaCo2 cells but failed to visualize a TICE-
like transport (data not shown). The results reported here 
cannot be directly transplanted to the human situation. 
Mice lack CETP and have a much lower biliary cholesterol 
relative to bile salt secretion compared with humans (33  ). 
Lack of CETP can be overcome by carrying out future 
studies in CETP transgenic mice. Humanization of biliary 
lipid secretion is more diffi cult to realize. 

 Despite these limitations, we feel this data allows for the 
conclusion that direct secretion of cholesterol from blood 
through the intestine into the intestinal lumen of mice oc-
curs independently of HDL and bile. However, the iden-
tity of the cholesterol donor responsible for delivery of 
cholesterol to the intestine for secretion via TICE remains 
to be elucidated. With the intestine being an accessible 
target, the identifi cation of this step in the mechanism of 
TICE would benefi t the development of novel and less in-
vasive cholesterol-lowering therapies.  
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