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Background: The triggering receptor expressed on myeloid cell (TREM)-mediated signaling is essential for
osteoclastogenesis.
Results: The alternative transcripts of triggering receptor expressed on myeloid cell-like transcript-1 (TLT-1s) inhibits oste-
oclast formation by counteracting the TREM-2 signaling pathway.
Conclusion: TLT-1s is a negative regulator of osteoclastogenesis, by constitutively associating with SHP-1 and SHIP-1 phos-
phatases, abrogating the TREM-2 signaling upon RANKL stimulation.
Significance:We discovered that an alternative transcript of TLT-1, namely TLT-1s, negatively regulates osteoclastogenesis.

Triggering receptor expressed on myeloid cells (TREM)-like
transcript-1 (TLT-1) is an immunoreceptor tyrosine-based
inhibitory motif (ITIM)-baring TREM family protein. In this
study, we identified an alternative transcript form of TLT-1,
namely TLT-1s, which has very short extracellular immuno-
globulin domain consisting of only 202 amino acids. TLT-1swas
mainly expressed in macrophages and osteoclast precursor
cells. Upon receptor activator of nuclear factor-�B ligand stim-
ulation, TLT-1s mRNA and protein levels were gradually
decreased in BMMs. We also showed the TLT-1s is localized to
the cytoplasmicmembrane in osteoclast precursor cells. TLT-1s
silencing strongly enhanced the formation and resorption activ-
ity of osteoclast. In addition, forced expression of TLT-1s
showed reduced formation of osteoclast. Because ITIM-baring
proteins inhibit immunoreceptor tyrosine-based activation
motif (ITAM)-mediated receptor signaling, we tested whether
TLT-1s physically interacted with TREM-2, the ITAM-associ-
ated co-stimulatory receptor essential for osteoclast differenti-
ation. We showed that TLT-1s is associated with TREM-2 in
osteoclast precursor cells. TLT-1s is also associated with tyro-
sine Srchomology 2domain-containingphosphatase-1 andSH2
domain-containing inositol phosphatase-1 and recruited them
to the TREM2-ITAM signaling complex. In addition, knock-
down of TLT-1s markedly elevated the intracellular calcium
concentration and oscillation in osteoclast precursor cells. In
addition, calcium-mediated induction of nuclear factor of acti-
vated T cells was also increased by TLT-1s silencing. Further-
more, TREM-2-mediated Akt activation and proliferation of
osteoclast precursor cells were also enhanced in TLT-1s

silenced cells. In this paper, we found the noble ITIM-baring
inhibitory membrane protein; TLT-1s, which regulates ITAM-
mediated signaling on osteoclastogenesis.

Triggering receptor expressed onmyeloid cells (TREM)2 is a
member of the activating immunoreceptor expressed on
monocytes, macrophages, microglia, and neutrophils (1–3). To
date, 3 activating TREM genes have been identified, clustered
on human chromosome 6 and mouse chromosome 17 (4).
TREM is characterized by a single V-set immunoglobulin
domain, short cytoplasmic domain, and transmembrane
domain capable of interaction with an immunoreceptor tyro-
sine-based activation motif (ITAM)-baring protein, DNAX
activating protein of 12 (DAP12) (5). In addition to 3 activating
TREM receptors, the TREMgene cluster includes an inhibitory
receptor, TREM-like transcript-1 (TLT-1). Unlike other
TREMs, TLT-1 contains an immunoreceptor tyrosine-based
inhibitory motif (ITIM) in its cytoplasmic domain capable of
recruiting protein-tyrosine phosphatases (6). TLT-1 expression
has been reported in �-granules of platelets and megakaryo-
cytes, regulating platelet activation and inflammation (7).
TLT-1 null mice exhibit deficiency in platelet aggregation and
are susceptible to lipopolysaccharide-induced septic shock (8).
Recently, two splice variants of TLT-1 with short cytoplasmic
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domains were reported (9), suggesting that isoforms of TLT-1
may have different cellular functions.
Osteoclasts are bone-resorbing cells differentiated from

monocyte/macrophage lineage cells in the presence of receptor
activator of nuclear factor-�B ligand (RANKL) and macro-
phage-colony stimulating factor (M-CSF) (9, 10). RANKL acti-
vates signaling pathways involving the induction of the nuclear
factor of activated T cells (NFATc1) upstream of osteoclasto-
genic genes such as tartrate-resistant acid phosphatase (TRAP)
and cathepsin K. In addition to RANKL, co-stimulatory recep-
tors such as TREM-2 and osteoclast-associated receptor pro-
vide calcium signals required for the optimal NFATc1 activa-
tion (11). The ITAM bearing proteins DAP12 and FcR� recruit
SYK kinase that activates calcium signaling through phospho-
lipase C� (PLC�) (11–13). On the other hand, phosphatases
such as tyrosine Src homology 2 (SH2) domain-containing
phosphatase-1 (SHP-1) and SH2 domain-containing inositol
phosphatase-1 (SHIP-1) binds to ITIMs to negate the ITAM-
mediated signaling (14, 15). During osteoclast differentiation,
LILRB and PIR-B down-regulates the osteoclastogenesis by
recruiting SHP-1 via their ITIMs (16). In the present report, we
discovered an alternative transcript form of TLT-1, namely
TLT-1s, which has a very short extracellular Ig domain. Here
we show that TLT-1s is a negative regulator of osteoclastogen-
esis, by constitutively associatingwith SHP-1 and SHIP-1 phos-
phatases, abrogating the TREM-2 signaling upon RANKL
stimulation.

EXPERIMENTAL PROCEDURES

Reagents and Antibodies—Anti-TLT-1 antibody was from
Novous Biologicals (Littleton, CO). Anti-NFATc1, TREM-2,
and osteoclast-associated receptor antibodies were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA). All other
antibodies were purchased from Cell Signaling Technology
(Beverly, MA). Human soluble RANKL and M-CSF were from
PeproTech (Rocky Hill, NJ). Lipofectamine 2000 was pur-
chased from Invitrogen. Anti-actin antibody and all other
chemicals were purchased from Sigma.
Bone Marrow-derived Macrophage Culture and Osteoclast

Differentiation—Bone marrow-derived macrophages (BMMs)
were generated as described previously (15, 16). In brief, iso-
lated bone marrow cells from mouse femurs were cultured
overnight in �-modified essential medium containing 10% FBS
on culture dishes.Nonadherent cells were further cultured for 3
days in the presence of 5 ng/ml of M-CSF to generate BMMs.
Osteoclasts were obtained by culturing cells in �-MEM con-
taining 10% FBS, 30 ng/ml ofM-CSF, and 200 ng/ml of RANKL
for 3 days.
Preparation of Platelet—To harvest platelets, mice were

anesthetized with isoflurane and 500 �l of blood was collected
into a tube containing 3.8% sodium citrate (1/9, v/v) by cardiac
puncture. Platelet-rich plasma was obtained by centrifugation
at 200� g for 7min.The plasma andbuffy coatwere transferred
to a fresh tube. Platelet was isolated by centrifugation at 850 �
g for 7 min.
In Vitro Resorption Pit Formation Assay—BMMs were cul-

tured on dentin slices for 5 days in the presence of RANKL and
M-CSF. After removing the cells by sonication, dentin slices

were stained with hematoxylin and observed under a light
microscope. The bone resorption area was measured with
image analysis software (Image Pro-Plus, Media Cybernetics).
Gene Knock-down by Small Interfering RNAOligonucleotides—

The 22-nucleotide small interfering RNA (siRNA) duplexes for
TLT-1s and negative control were purchased from Invitrogen.
The TLT-1s target sequence was 5�-ACATGTGGAATGTC-
CGAGGGTAGT-3�. BMMS were transfected with siRNA oli-
gonucleotides using Lipofectamine 2000 following the manu-
facturer’s instructions.
Retroviral Transduction—Mouse TLT-1s was cloned into

pMX-IRES vector. Retroviral particles were packaged by trans-
fecting Plat-E cells with DNA plasmids using Lipofectamine
2000 according to themanufacturer’s instructions. After a 48-h
culture in DMEM supplemented with 10% FBS, viral superna-
tants were collected and filtered through a 0.45-�m syringe
filter. BMMs were infected with viral supernatants in the pres-
ence of Polybrene (10 �g/ml) and M-CSF for 12 h.
5�-Rapid Amplification of cDNA Ends (5�-RACE)—Total

RNA was isolated from mouse bone marrow-derived macro-
phages using the PARISTM Kit (Ambion, TX). The 5�-RACE
was performed using the System for Rapid Amplification of
cDNA Ends, version 2 (Invitrogen).
Reverse Transcriptase-Polymerase Chain Reaction Analy-

sis—Total RNA prepared using TRIzol (Invitrogen) were
reverse transcribed using SuperScript II reverse transcriptase
(Invitrogen). One �l of cDNA synthesized from 1 �g of total
RNA was amplified with the specific primers.
Western Blotting—Cells were washed with ice-cold PBS,

scraped with a rubber policeman, and lysed in RIPA buffer (50
mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Nonidet P-40, 0.5%
sodium deoxycholate, 0.1% SDS, 0.5 mM PMSF, 1 �g/ml of
aprotinin, 1 �g/ml of leupeptin, and 1 �g/ml of pepstatin).
After protein quantification with a protein assay kit (Bio-Rad),
whole cell extracts were separated on polyacrylamide gels and
transferred onto nitrocellulose membranes. After blocking for
1 h with 5% skim milk in Tris-buffered saline containing 0.1%
Tween 20, membranes were incubated overnight at 4 °C with
primary antibodies in TBST containing 2% skim milk. Mem-
branes were washed, incubated with secondary antibodies con-
jugated with horseradish peroxidase, and developed using an
enhanced chemiluminescence system.
TRAP Staining—Cells were fixed in 3.7% formaldehyde solu-

tion and permeabilized with 0.1% Triton X-100. After washing
with PBS, cells were stained using the LeukocyteAcid Phospha-
tase Assay Kit (Sigma) following the manufacturer’s instruc-
tion. TRAP-positive multinuclear osteoclasts containing three
or more nuclei were counted under a light microscope and
photographed.
Measurement of Intracellular Calcium Concentration and

Oscillations—For measurement of total intracellular calcium
concentration, cells were loaded with Fluo-4 NW dye (Molec-
ular Probes, Eugene, OR) at 37 °C for 30 min followed by an
additional incubation for 30 min at room temperature. The
calcium-dependent fluorescence was measured in a CytoFluor
plate reader (Applied Biosystems, Foster City, CA) with a 485/
535 nm excitation/emission filter pair. Calcium oscillations
were measured as described previously (17).
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BrdU Incorporation Assay—Bromodeoxyuridine (BrdU)
incorporation into cells wasmeasured using the BrdUCell Pro-
liferation Assay (Calbiochem, San Diego, CA) following the
manufacturer’s instruction.
Cell Viability Assay—Cell viability was measured using the

CCK-8 assay (Dogindo Laboratories) according to the manu-
facturer’s protocol. Cells were incubated with the CCK-8 rea-
gent for 1 h and optical density was determined at 450 nm.
Statistics—To determine the significance of results, Stu-

dent’s t test was used. Differences with p � 0.05 were regarded
as significant.

RESULTS

Cloning andCharacterization of the Alternative Transcript of
Mouse TLT-1—To discover new molecules that regulate oste-
oclast differentiation, we monitored gene expression profiles
during osteoclast differentiation of human peripheral blood
mononuclear cells (18). Microarray analysis revealed that the
TLT-1 mRNA level negatively correlated with osteoclastogen-
esis. Interestingly, RT-PCR amplification in mouse BMMs
failed to gain the full-lengthTLT-1mRNA, resulting in only the
C-terminal 400 base pairs of TLT-1. Both in BMMs and oste-
oclasts, the N-terminal region of TLT-1 could not be amplified
using primer sets designed with the known TLT-1 sequences.
So, we hypothesized that transcript variants of TLT-1 with
alternative N-terminal sequences existed in osteoclast precur-
sors. To test this, a 5�-RACE was carried out in BMMs. Indeed,
a cDNA clone, designated as TLT-1s, containing a 5�-untrans-
lated region (UTR) distinct from that of TLT-1 was identified.
Comparison of the TLT-1s 5�-UTR sequence with the mouse
TLT-1 gene (GenBankTM accession number AY078502)
revealed that the TLT-1s 5�-UTR was derived from intron 2 of
the TLT-1 gene (Fig. 1A). Exons 1 and 2 were totally missing in
TLT-1s, starting with the intervening 16-bp sequence of intron
2 immediately before exon 3 of TLT-1. As a result, full-length
TLT-1 consists of 322 amino acids, TLT-1s was predicted to
have only 202 amino acidsmostly lacking theN-terminal extra-
cellular Ig domain of TLT-1. To gain further insights into the
nature of TLT-1s, the tissue expression pattern was investi-
gated by RT-PCR using specific primer sets. Strong TLT-1
mRNA expression was detected in bone, spleen, and to a lesser
extent in heart (Fig. 1B). Notably, only TLT-1s was expressed in
BMMs, although both TLT-1 and TLT-1s were detected in
bone. Comparison of mRNA expression in whole bonemarrow
cells (WBMs), BMMs (Mac), and platelets (Plat) revealed that
TLT-1s was expressed exclusively only in BMMs (Fig. 1C). On
the other hand, TLT-1 expressed in WBMs seemed to disap-
pear during the M-CSF-derived differentiation into macro-
phages. Western blotting using an antibody detecting a com-
mon C-terminal region confirmed that the 37-kDa TLT-1 was
detected in WBMs and platelets, whereas 27-kDa TLT-1s was
exclusively detected in BMMs (Fig. 1D).
Expression of TLT-1s during RANKL-mediated Osteo-

clastogenesis—Because TLT-1s highly expressed in macro-
phages, the expression ofTLT-1s duringRANKL-induced oste-
oclastogenesiswas investigated. TLT-1smRNA levels gradually
decreased during the 24-h treatment of RANKL (Fig. 2A). Full-
length TLT-1 was not detected in BMMs before and after

RANKL stimulation. TLT-1s expression was also down-regu-
lated by RANKL in RAW 264.7 mouse macrophage cell lines
(data not shown). Western blotting corroborated the decrease
in TLT-1s expression during RANKL-dependent osteoclasto-
genesis (Fig. 2B). It was previously shown that TLT-1 moved to
cytoplasmic membranes upon stimulation in platelets (9). The
examination of subcellular localization of TLT-1s by confocal
microscopy in Fig. 2C revealed thatTLT-1swas dispersed in the
cytoplasm in BMMs and localized in the plasma membrane
region in pre-osteoclasts. TLT-1s was hardly detectable in the
mature osteoclast.
Suppression of RANKL-mediated Osteoclastogenesis and

Bone Resorption by TLT-1s—To determine the role of TLT-1s
during osteoclast differentiation, TLT-1s knockdown was per-
formed using siRNA oligonucleotides specific for TLT-1s that
efficiently reduced theTLT-1smRNA levels in BMMs (Fig. 3A).
The knockdown of TLT-1s significantly increased the number
ofmultinuclear osteoclasts upon RANKL stimulation of BMMs

FIGURE 1. TLT-1s is an alternative transcript of TLT-1 in macrophages.
A, schematic representation of TLT-1 and TLT-1s genes. The TLT-1 gene con-
sists of 6 exons and 5 introns. Boxes represent individual exons. The primers
used to amplify TLT-1 (P1 and P3) and TLT-1s (P2 and P3) were indicated by
arrows. B, the expression of TLT-1 and TLT-1s in mouse tissues was assessed by
RT-PCR. C, mouse BMMs were differentiated from WBM by incubation with 10
ng/ml of M-CSF for 3 days. The expression of TLT-1 and TLT-1s was detected
by RT-PCR in WBMs, BMMs (Mac), and platelet (Plat). D, the protein levels of
TLT-1 and TLT-1s were measured by Western blotting using an antibody
against the C terminus of TLT-1.
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(Fig. 3B, left panel). Similarly, the silencing of TLT-1s in BMMs
significantly enhanced osteoclastogenesis in BMM-osteoblast
co-culture experiments (Fig. 3B, right panel). In accordance
with enhanced osteoclast differentiation, TLT-1 knockdown
markedly elevated NFATc1 expression in RANKL-stimulated
BMMs (Fig. 3C). In addition, the bone resorption activity of
osteoclasts cultured on dentin slices was also significantly
increased by TLT-1s knockdown (Fig. 3D). To further clarify
the role of TLT-1s on osteoclastogenesis, TLT-1s was ectopi-
cally expressed in BMMs by retrovirus-mediated gene transfer
(Fig. 4A). As expected, the overexpression of TLT-1s signifi-
cantly reduced the number of osteoclasts compared with con-
trol (Fig. 4B). We also showed the inhibitory effect of TLT-1 on
osteoclastogenesis in the RAW 265.7 macrophage cell line
(supplemental Fig. S1). These inhibitory effects of TLT-1s on

osteoclast differentiation were eliminated by the addition of
TLT-1s-siRNA oligonucleotides (Fig. 4, C and D), suggesting
the specific role of TLT-1s in osteoclastogenesis.
Recruitment of SHIP and SHP-1 to TREM-2 by TLT-1s—Co-

stimulatory receptor signaling is critical for RANKL-mediated
calcium oscillations and NFATc1 induction during osteoclas-
togenesis. Because TLT-1s contain ITIM, we asked whether
TLT-1s inhibited osteoclast differentiation by affecting

FIGURE 2. The TLT-1s expression was reduced by RANKL. A, BMMs were
stimulated with 200 ng/ml of RANKL for the indicated times. The mRNA levels
of TLT-1 and TLT-1s were determined by RT-PCR. B, BMMs were stimulated
with 200 ng/ml of RANKL for the indicated days. The protein level of TLT-1s
was determined by Western blotting using an antibody against the C termi-
nus of TLT-1. NFATc1 expression was used as a marker for osteoclast differen-
tiation. C, BMMs were cultured with 200 ng/ml of RANKL for 1 (pOC, pre-
osteoclasts) or 3 days (OS, osteoclasts). Cells were immunostained using an
antibody against the C terminus of TLT-1 followed by Cy3-conjugated sec-
ondary antibody. Nuclei and actin filaments were stained with DAPI and FITC-
conjugated phalloidin.

FIGURE 3. TLT-1s knockdown enhanced the formation of osteoclasts and
resorption activity. A, BMMs were transfected with siRNA oligonucleotides
specific for TLT-1s. At 2 days after transfection, the mRNA level of TLT-1s was
determined by RT-PCR analysis. B, TLT-1s knockdown was performed in BMMs
by siRNA transfection. Cells were further incubated in the presence of 20
ng/ml of M-CSF and 100 ng/ml of RANKL or co-cultured with calvarial osteo-
blasts for 4 days before TRAP-staining. C, TLT-1s knockdown was performed in
BMMs by siRNA transfection. Cells were further cultured with RANKL for 2
days. The level of NFATc1 protein expression was measured by Western blot-
ting. D, control or TLT-1s-silenced BMMs were plated on dentin slices and
cultured in the presence of RANKL for 5 days. The resorption pits were visual-
ized by hematoxylin staining after removing the cells. The resorbed area was
measured by densitometry.

FIGURE 4. Retroviral overexpression of TLT-1s reduced the formation of
osteoclasts. A, BMMs were infected with viruses harboring control (pMX) or
TLT-1s (pMX-TLT-1s) constructs. Cells were further cultured with RANKL for 2
days and the protein level of TLT-1s was detected by Western blotting.
B, TLT-1s virus-infected BMMs were differentiated with RANKL for 4 days
before TRAP staining. The number of TRAP-positive multinuclear osteoclasts
was counted. C, BMMs were first transfected with siRNA oligonucleotides for
TLT-1s knockdown. On the next day, cells were infected with pMX- or pMX-
TLT-1s-containing viruses. BMMs were further cultured with RANKL for 4 days
before TRAP staining. D, the number of TRAP-positive osteoclasts in C was
counted. *, p � 0.05 versus control.

Regulation of Osteoclastogenesis by TLT-1s

AUGUST 24, 2012 • VOLUME 287 • NUMBER 35 JOURNAL OF BIOLOGICAL CHEMISTRY 29623

http://www.jbc.org/cgi/content/full/M112.351239/DC1


co-stimulatory receptor signaling in osteoclast precursors.
Although TLT-1s did not associate with osteoclast-associated
receptor (data not shown), FLAG-tagged TLT-1s co-immuno-
precipitated with TREM-2 (Fig. 5A) independently of RANKL
stimulation in BMMs. Notably, SHIP-1 and SHP-1 phosphata-
ses co-immunoprecipitated with TLT-1s in association with
TREM-2 (Fig. 5B) indicating that TLT-1s inhibited TREM-2-
mediated signaling by recruiting SHP-1 and SHIP-1 toTREM-2
in osteoclast precursor cells.

Modulation of Calcium Oscillations by TLT-1s—Because
TREM-2 activation has been shown to facilitate PLC�2-medi-
ated calcium oscillations, the effect of TLT-1s knockdown on
PLC�2 activation and calcium oscillations was investigated.
After TLT-1s knockdown, pre-osteoclasts were serum-starved
and re-stimulated with RANKL. As shown in Fig. 6A, TLT-1s
knockdown significantly elevated the RANKL-mediated
PLC�2 phosphorylation. In addition, the total intracellular cal-
cium concentration was also elevated in TLT-1s-silenced pre-
osteoclasts (Fig. 6B). Furthermore, the frequency and ampli-
tude of RANKL-dependent calcium oscillations were also
dramatically increased by TLT-1s knockdown (Fig. 6C). These
results suggest that TLT-1s is a transmembrane adaptor mole-
cule that regulates RANKL-mediated calcium oscillations.
Modulation of Osteoclast Precursor Proliferation by TLT-1s—

TREM-2 signaling has been shown to enhance the proliferation
of osteoclast precursors via a phosphatidylinositol 3-kinase-
mediated activation of Akt, the proliferation of osteoclast pre-
cursors was tested after TLT-1s knock-down. Fig. 7A showed
that RANKL-induced Akt phosphorylation was significantly
increased in TLT-1s-silenced BMMs. However, the phosphor-
ylation of p38, ERK, and JNKwas marginally altered by TLT-1s
knockdown. The BrdU incorporation was significantly higher
in BMMs treated with TLT-1s-siRNA following both M-CSF
and M-CSF plus RANKL stimulation, compared with control
cells treated with scrambled siRNA (Fig. 7B). The BrdU incor-

FIGURE 5. TLT-1s recruits SHP-1 and SHIP-1 phosphatases to TREM-2.
A, BMMs were infected with viruses harboring empty vector (pMX) or FLAG-
tagged TLT-1s (pMX-FLAG-TLT-1s) and further cultured with RANKL for 2
days. After serum starvation for 3 h, cells were stimulated with 200 ng/ml of
RANKL for 30 min. The FLAG-tagged TLT-1s was immunoprecipitated using
an anti-FLAG antibody. Immunoprecipitated (IP) proteins or whole cell lysates
were subjected to Western blotting. B, control or TLT-1s-overexpressing
BMMs were cultured with RANKL for 2 days. After serum starvation for 3 h,
cells were stimulated with 200 ng/ml of RANKL for the indicated times. Whole
cell lysates were subjected to immunoprecipitation using an anti-FLAG anti-
body followed by Western blotting.

FIGURE 6. TLT-1s modulates calcium oscillations. BMMs were transfected
with scrambled control siRNA or TLT-1s-siRNA. A, siRNA-transfected BMMs
were incubated with RANKL for 2 days and the whole cell lysates were sub-
jected to Western blotting. B, TLT-1s-silenced BMMs were seeded on 96-well
plates, incubated with RANKL for 2 days, and loaded with Fluo-4 NW. The
calcium-dependent fluorescence was measured using a plate reader.
C, BMMs were plated on coverslips after TLT-1s knockdown. After incubation
with RANKL for 2 day, cells were loaded with Fura-2/AM and the calcium
oscillations were monitored using a confocal microscope. *, p � 0.05 versus
control.
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poration was consistently higher in TLT-1s-silenced BMMs
over a 3-day culture withM-CSF stimulation (Fig. 7C). To sum-
marize, we propose the following working model (Fig. 7D):
RANKL and co-stimulatory receptor signaling evokes PLC�2-
mediated calcium oscillations, which induce NFATc1-depen-
dent osteoclast differentiation. TLT-1s, an adaptor molecule
that associates with TREM-2, inhibits osteoclastogenesis by
recruiting SHP-1 and SHIP-1 phosphatases to the complex.

DISCUSSION

ITIM-containing receptors were identified by their ability to
inhibit signaling by ITAM-bearing receptors. Such ITIM-bear-
ing receptors have been known to regulate osteoclastogenesis
via the recruitment of phosphatases to co-stimulatory recep-
tors (16, 19). In the present report, we identified and character-
ized the novel ITIM-bearing alternative transcript TLT-1 des-

ignated as TLT-1s by 5�-RACE analysis in BMMs. TLT-1s has a
distinct N-terminal sequence from intron 2 of the TLT-1 gene.
TLT-1 andTLT-1s showed the different tissue distribution pat-
terns. TLT-1 is expressed exclusively in platelets and mega-
karyocytes. Interestingly, the TLT-1s was not expressed in plate-
lets. TLT-1s was expressed in macrophages and osteoclast only.
Although further investigation is required, the possible use of an
alternative promoter might have resulted in the tissue-specific
expression of TLT-1s. Because primary calvarial osteoblasts
expressed neither TLT-1 nor TLT-1s (data not shown), TLT-1s
could be a specific therapeutic target for bone erosive disease such
as osteoporosis induced by unregulated osteoclastogenesis.
TLT-1, mainly expressed in platelets and megakaryocytes, is

the only inhibitory receptor of the TREM cluster. In contrast to
the full-length TLT-1, TLT-1s has a very short extracellular Ig
domainwhile containing an intact transmembrane domain and

FIGURE 7. TLT-1s inhibits the proliferation of osteoclast precursors. A, after TLT-1s-siRNA transfection, BMMs were serum starved for 3 h and stimulated with
200 ng/ml of RANKL for the indicated times. The phosphorylation of MAPKs was determined by Western blotting. Control cells were transfected with scrambled
siRNA. B, after TLT-1s-siRNA transfection, BMMs were cultured with 30 ng/ml of M-CSF for 3 days. Cell proliferation was measured using CCK assay. C, after
TLT-1s-siRNA transfection, BMMs were incubated with BrdU for 2 h. BrdU incorporation was determined by the ELISA method. D, upon ligation of RANK by
RANKL, co-stimulatory receptors such as TREM-2 associate with ITAM-containing adaptor molecule including DAP12 to trigger intracellular calcium signaling
that is critical for NFATc1 induction as well as proliferation signals through Akt activation. TLT-1s recruits SHP-1 and SHIP-1 phosphatases to TREM-2, thus
negatively regulating osteoclast differentiation and proliferation. *, p � 0.05 versus control.
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cytoplasmic ITIM domain. In this study, we found that TLT-1s
inhibited TREM signaling in osteoclast precursor cells. Because
the ITAM-mediated calcium signaling is crucial for osteoclas-
togenesis, mice deficient in both ITAM-signaling adaptors
DAP12 and FcR� are severely osteopetrotic because of the
impaired formation of osteoclast (20). Both DAP12 and FcR�
associate with the surface receptor TREM-2 in the osteoclast,
which is responsible for SYK kinase and PLC� activation
upstream of the calcium oscillations. On the other hand, ITIM-
bearing adaptor molecules are known to inhibit ITAM signal-
ing via a recruitment of phosphatases such as SHP-1, SHP-2,
and SHIP proteins. SHP-1 and SHIP-1 knock-out mice are
reported to exhibit severe osteoporosis because of a dramati-
cally increased number of osteoclasts (21, 22). Because TLT-1s
lacks the extracellular Ig domain compared with full-length
TLT-1, we hypothesized that TLT-1s acts as a genuine adaptor
molecule in a similar fashion with DAP12 and FcR� that are
also deficient in the extracellular domain. Immunoprecipita-
tion experiments revealed that TLT-1s is associated with
TREM-2, SHP-1, and SHIP-1. Indeed, the knockdown of
TLT-1s induced strong calcium oscillations and subsequent
NFATc1 induction. Interestingly, RANKL stimulation did not
affect the binding affinity of TLT-1 and TREM-2, suggesting
that TLT-1s regulates the basal TREM-2 signaling. TLT-1s
seems to be regulated at the transcription level byRANKL. Both
TLT-1smRNA and protein expressions significantly decreased
upon RANKL stimulation during the late stages of osteoclasto-
genesis, allowing TREM-2 signaling to play a key role in oste-
oclast differentiation.
In summary, we identified a novel ITIM-bearing mem-

brane protein, TLT-1s. TLT-1s down-regulated the TREM-
2-mediated ITAM signaling that is crucial for calcium oscil-
lations by recruiting SHP-1 and SHIP-1 phosphatases to
inhibit osteoclastogenesis. To our knowledge, this is the first
report providing evidence for the regulation of osteoclasto-
genesis by TLT-1 family proteins. The TLT-1s-mediated
negative regulatory mechanism of TREM-2 may be impor-
tant to prevent excessive ITAM signaling, ultimately main-
taining bone homeostasis.
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