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Abstract
Using the problem of ion channel thermodynamics as an example, we illustrate the idea of
building up complex thermodynamic models by successively adding physical information. We
present a new formulation of information algebra that generalizes methods of both information
theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics,
identifying a nonequilibrium ‘process’ free energy functional in addition to the well-known
integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-
Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and
time-dependent behavior from transient thermal and mechanical driving forces. Comparing the
physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of
nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance.
Our result is that statistical mechanical descriptions derived from a few primitive algebraic
operations on information can be used to create experimentally-relevant and computable models.
By construction, these models may use information from more detailed atomistic simulations.
Two surprising consequences to be explored in further work are that (in)distinguishability factors
are automatically predicted from the problem formulation and that a direct analogue of the second
law for thermodynamic entropy production is found by considering information loss in stochastic
processes. The information loss identifies a novel contribution from the instantaneous information
entropy that ensures non-negative loss.
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1 Introduction
Ion channels are transmembrane proteins that allow movement of solutes between two
aqueous/membrane interfaces [1]. Selective channels and transporters are critical for
maintaining living cells in their nonequilibrium state. Similar functionality is a required
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ingredient of synthetic semi-permeable partitions, used in fuel cells, solute separation, and
electrochemical sensing. The operational characteristics of these devices are determined
from their response to applied pressure, electric fields, and solute concentration differences.
The most easily measured response is ion conduction, available through current
measurements that can be carried out on micrometer-sized patches at milli-second resolution
[2, 3]. Conduction of other species, such as water, as well as structural changes in the
channel and surrounding interface regions are also important, but less accessible. The most
easily accessible theoretical descriptions of channel behavior center around the structural
properties of the equilibrium state and its propensity for ion occupancy under no external
bias (in non-conducting conditions). In this article we present a top-down view by
successively adding mechanistic information to predict these propensities. This allows a
construction of simplified physical interpretations of channel behavior, but uses a statistical
mechanics capable of deriving all the complexities of atomistic and quantum-mechanical
systems. Because no net currents are present at equilibrium [4], the fluxes in these systems
must be analyzed using a nonequilibrium theory.

When the conceptualization of an ensemble was extended by Gibbs [5] from physically
realizable systems with many weakly interacting particles to non-interacting replicas of
systems that may contain strong internal interactions, there seemed to be two entirely
different ways in which the laws of thermostatics could be produced. This conception could
hardly be considered as satisfactory, and it leaves unanswered the physical reason for the
weak coupling between ensembles that is supposed to bring about equilibrium [6]. Although
there continues to be debate over these conceptualizations [7], attempts to prove ergodicity
and convergence to maximum entropy distributions using mechanical arguments show that
the most robust route is to introduce some form of uncertainty [8, 9]. It has been noted that
the maximum entropy formalism follows if one assumes the existence of infinite heat-baths
[10]. Such results have given way to a gradual increase in acceptance of the information-
theoretic derivation popularized by Jaynes [11–13] and others [14]. These works have
helped clarify the situation by making a distinction between the “delusion that an ensemble
describes an ‘objectively real’ physical situation” [12] and the subjective question of
determining the “agreement between the premises and the conclusions” [5].

It cannot be denied that these views call forth some objections. Perhaps the strongest
criticism of this approach is associated with the use of the term, ‘subjective.’ This term
seems to imply that the results of the theory cannot be considered as objectively existing in
reality. Again, Jaynes presented detailed examples applicable only to the canonical ensemble
already given by Gibbs. This has left the question of how the molecular degeneracy factor
may be derived, as on this point Jaynes reverts to a functional argument requiring the
entropy to be extensive with respect to the volume [15]. A similar criticism of his approach
to nonequilibrium is that it is operationally similar to the projector-operator formalism [4,
14, 16, 17], and has departed from the original program of formulating universally
applicable laws based on a minimal description of a thermodynamic system. Indeed, a
description of nonequilibrium ensembles obtained simply by applying maximum entropy to
path space, the maximum caliber approach, does not produce a causal description of
mechanics [18].

It appears after these remarks that the usefulness of the information theoretic approach
outside of the realm of the canonical ensemble may be called into question and that this
investigation concerns important logical principles. We have therefore built up a purely
statistical theory by which we have been able to show that both of the above objections may
be answered.
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This derivation is made possible by the assumption that a probability exists for every piece
of information given a starting set of assumed information. Representing coordinates for
specifying a microstate of a thermodynamic system as a logical hypothesis, we derive the
machinery of statistical mechanics by building up a probability distribution for a set of
possible coordinates as well as information on their relative probabilities. Every change in
the thermodynamic state of the system corresponds to a change in an objective state of
knowledge. A judicious use of Bayes’ theorem then allows us to build up an algebra for
describing these changes. The partition functions of these states become fundamental objects
for computation of averages given known information, equilibrium or otherwise.

In the next section, we define an information algebra for working with belief functions
generated by successive addition of information. Section 3 applies this work to the grand-
canonical distribution for ion occupancy within a channel. The informational origins of the
(in)distinguishability factor in the problem symmetry group and of the thermostatic forces in
experimental convention are emphasized. The next section considers the consequences of
adding coordinates to the system. Rather than allowing the distribution over initial
coordinates to change, Sect. 5 then asks what distribution we obtain by calibrating the newly
added coordinates to the existing distribution. Applying the resulting theory to the ion
channel problem then identifies a minimalistic description of a small-scale nonequilibrium
system. Quantifying the information loss in this process leads to a novel form for the second
law of thermodynamics, which combines both the instantaneous information entropy and the
system energy flux. The nonequilibrium partition function gives a set of Green-Kubo
relations valid for transient processes. Finally, we illustrate these developments with a
numerical calculation for deviations from steady-state conductance.

2 Information Algebra
A belief function may be represented as an unnormalized assignment of probability,

(1)

to a set of statements, C [19]. We say that such a belief function represents a ‘state of
knowledge’ when P(Q|C) is known up to a constant of proportionality for any logical
statement, Q. In order to carry out computations, we define the logical conjunction as a
single basic operation. This operation defines an algebra by forming a new state of
knowledge, AC, from a given state of knowledge, C, and a new hypothesis, A. As for A and
C separately, the combination AC can be also interpreted as a logical statement about a set
of events, so that we may compute P(Q|AC) for any Q up to a constant of proportionality.
Because the combination rule should involve P(Q|C) and P(A|C), it defines the rules of
probabilistic inference and should be considered carefully.

Jaynes [13] presents a cogent interpretation of probability theory as a method for conducting
logical inference in the presence of uncertainty. This interpretation is based on Pólya’s
qualitative conditions for plausible reasoning in mathematics [20] combined with the
consistency theorems of Cox and Aczél [21, 22] deduced by consideration of the
associativity equation. Requiring our system for assigning plausibilities to be associative,
such that adding information in any order leads to the same probability assignment, it is
possible to deduce the product rule,

(2)
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for which the right equality is Bayes’ theorem. In this paper, we denote propositions using
Greek or capital letters, and the symbols on the right of the | represent given information, or
assumptions. This distinction is necessary to allow for propositions that represent
coordinates,

X: Some property of the system is described by the number x.

Propositions always appear inside the probability or Z[ ] symbols and follow the Boolean
algebra, where multiplication denotes a logical ‘and,’ while addition represents a logical
‘or.’

In order to ensure this condition is always satisfied, a generic rule must be given for carrying
out the conjunction,

(3)

We can prune the summation set, {Q}, by only including statements directly relevant to
deciding the plausibility of C or A. To see this, assume that these relevant statements are
collected in the space . Then write {Q} =  × , where Y ∈  are irrelevant to A and C
(when X is known) so that P(Y|XAC) = P(Y) and P(Q|AC) = P(XY |AC) = P(X|AC)P(Y).
The sum in (3) factors into

An immediate difficulty arises using (3) in adding the first piece of information. This is
because P(A|C) may only be known up to a constant. We therefore make the convention of
always assuming the principle of indifference (termed I) on the right-hand side of the
probability symbol. Although it may be omitted in some formulas for clarity, it is always
implicitly assumed to be present. This principle assigns a default distribution, P(A|I) =
constant, but does not affect the conditional assignments, P(A|CI), when C says something
about A.

In order to work with likelihood ratios instead of the explicitly normalized form of (3), we
introduce a null hypothesis, Φ, that is undecidable from any other information. It has the
formal properties,

(4)

Now divide the set of statements, C′ (appearing above), into two sets, C′ = DC. From the
two equivalent ways of composing P(DΦ|CI) using Bayes’ theorem, it is easy to see that the
above is true if and only if Φ is irrelevant to conclusions about D,

We thus recognize Φ as the identity element of information algebra.

By weighing alternatives against P(Φ|I), it is possible to re-phrase (3) into
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(5)

Now, if P(QC|I) is known up to normalization as Z[QC], then Z[C] = Σ{Q} Z[QC] and

(6)

This re-casts (5) as an explicit formula for carrying out the logical conjunction,

Because this derivation is symmetric in C and A, the conjunction is commutative and
associative.

2.1 Inverse Elements
To find an inverse in this algebra, we compare the addition C → AC with C → BC. Instead
of computing each of these separately, we directly find likelihood between AC and BC using

(7)

This shows that the distribution over Q|AC may be had from Q|BC via re-weighting.

However, if there is a Q for which P(Q|BC) is zero, but for which  is non-
zero, then (7) cannot be evaluated. Therefore if B contains a restriction on the set of
allowable Q, then this restricts mutual comparison among A, B. In other words, the inverse
of B relative to A only exists when P(Q|BC) is nonzero on a smaller space Ω ⊆ {Q} than
{Q} on which P(Q|AC) is nonzero. An absolute inverse exists if this holds for all A, or
equivalently, for A = Φ. This caveat is related to the computational problems involved in
computing Z[AC] using (7) as a Monte Carlo method based on data, Q, sampled from P(Q|
BC) [23, 24].

Because the conjunction formula (5) is simply (7) for the special case B = Φ, it is convenient
to define

(8)

so that likelihood ratios can be expressed more simply as
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(9)

As their name implies, these are weights,

(10)

It must be understood that the re-weighting is only valid when wB→A(Q) < ∞ for all Q with
Z[QAC] > 0.

Propositions defined inside some set of allowable questions, Ω, can still be compared against
one another, and their likelihoods computed from either the null hypothesis, Φ, or a new null
hypothesis, Φ Ω, defined relating only to Q allowed by Ω. Addition of the information, B =
BΩ, to a state can be represented using a commutation diagram (Fig. 1), where paths
represent step-wise addition of constraints/hypotheses. Completely commuting classes share
an underlying definition of coordinate space. Whenever information of the type Ω is added,
it directly bears on subsequent propositions. Paths adding BΩ will therefore restrict the set of
subsequent questions that may be asked without knowledge of P(Ω|C). These paths are
therefore represented by a directed edge, branching from the above completely connected
graph. The commutation diagram terminology is justified by noting that the multiplicative
functions, (8), transforming one probability distribution into another arrive at the same
distribution function for any ‘allowed’ path.

The considerations up to this point show that it is possible to define a probability assignment
for any states of knowledge about a set of possible underlying causes, {Q}, by specifying
likelihood ratios for successive addition of this information to each system state, Q ∈ {Q}.
Update schemes taking a consistent valuation, Z[QC], to another, Z[QAC], have been
derived that exploit factorability of Z[Q1Q2 … AC], where only some parts, Qi, of each
complete state specification, Q, are relevant to each other and to hypotheses in A [19, 25,
26]. In reference [19] it is particularly clear that addition of evidence to a state of knowledge
is carried out by successively moving new information along a causal path using an
unnormalized form of (10).

2.2 Inference
Our definitions for the information algebra may be connected to the usual use of Bayesian
probability theory in the following way. Given a set of possible parameters, θ ∈ , we may
use their symmetries [13] to arrive at a state of knowledge, , listing unique parameter
values. The principle of indifference then assigns a uniform relative weight over ,

This means that the relative likelihood of the set  is Σθ Z[θ ] = | |, and the prior
distribution, Z[θ ]/Z[ ], is uniform.

Next, some data, D, is collected and the state of knowledge updated to D  by conjunction,
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(11)

Notice that θ implies , so that the likelihood ratio Z[Dθ]/Z[D ] along the path D  → Dθ
now gives the posterior distribution. Bayes’ theorem appears as the cycle identity between
successive likelihood ratios for D  →  → θ → Dθ,

3 Canonical Ensemble Model for a Channel Binding Site
The unnormalized probability Z[C] in (1) is formally a function of the state of knowledge C
that can be arrived at independently from the order of information addition. We will show
that up to normalization, this is identical to the thermostatic partition function, a function of
the state of a thermostatic system. We assume in this section that the hypotheses are
conditionally independent if the coordinates, X, are known so that wA(XC) = wA(X).

First we have to address the physical problem of defining wA(X) for two types of
information:

• Constraints limiting hypothesis space (or focusing operations) [26], Ω: The set of
allowed states is limited to those in which Q is a member of the set, Ω; and

• Maximum entropy constraints, F: The probability distribution of the system, given
that F is accepted, is the most likely observational distribution that obeys 〈f (x)|F
C〉 = F for any C.

Once specified, these will determine how transformations between states of knowledge are
carried out using the information algebra.

A general pattern forms for assigning wA(XC) by first finding a minimal set of relevant
information XY, implied by XC so that A is conditionally independent of C when XY is
known, simplifying the weight to wA(XC) = wA(XY). Comparing wA(XY) for different A
then suggests an appropriate relative weight. This relative weight problem is similar to the
problem of factoring Z[QAC] in belief networks [25].

3.1 Degeneracy Factors
To find wΩ (Q), we start from an implicit definition of Ω as re-normalizing:

(12)

where the indicator function, I (·) is one when the condition is satisfied, and zero otherwise.
Two constraints that both allow Q should be equally likely given the same starting
information, C, leading to the assignment

(13)

with partition function
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(14)

This is consistent with Z[ ] of the last section as well as the free energy cost for inserting a
hard core solute into solution [27] or imposing a constraint on the geometry of an ion
binding site [28].

Now consider the multi-ion binding site in a K+ ion channel selectivity filter (Fig. 2) [29].
Four cationic binding sites are distinguished, and it is assumed that the channel presents a
high enough energetic penalty to exclude the possibility of anion occupancy. We do not
expect multiple ion occupancy of the same site to be possible (or highly probable) because
of mutual electrostatic repulsion and geometric features of the channel. This leads us to the
fermion-like default statistics,

(15)

where n particles may occupy k states in  ways for a total of 2k elementary states of the
system. The notation ⊕[·] is used to mean that each of the referenced states are mutually
exclusive.

In the absence of any other information, each state is equally likely, and

(16)

This probability distribution factors into a product of independent distributions for each site,
with equal probability for occupied and unoccupied states. The distribution is shown in Fig.
3a.

The partition function is the number of states, Z[ ] = 24 (14). Using the same equation, the
partition function of a constrained system, for example at fixed N, is

. The much debated ‘(in)distinguishability factor’ for
particle counting [30, 31], as well as a volume factor, have already crept in as a consequence

of the definition in (15) since in the limit K ≫ N, . It is easy to see from the
arguments leading to (15) why Z[N ] should always be the size of the fundamental domain
of symmetry or unique space over which any function can be defined (e.g., a
crystallographic unit cell). This always gives division by the correct symmetry factor.

3.2 Energy Functions
Formulas (9) and (10) are well-known relations in statistical mechanics when Boltzmann
factors are inserted for the weights

(17)
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In that case, they identify P(X|F ) as the canonical distribution and generate free energy
perturbation and umbrella sampling formulas [32]. To develop physical intuition, we show
in Appendix A how wF (X) can be related to its definition at the beginning of this section
using an intuitive derivation of the relative information entropy.

To go beyond the uniform distribution for ion occupancies, we may add a constraint on
average energy, labeled by β. A simplified energy function is constructed for the ion channel
system by including a mutual Coulomb repulsion between the ions, constrained to the
vertical axis and spaced at 3.5 Å, close to the spacing observed in the 1K4C crystal structure
[33]. We also assume a simple stabilization energy for each ion from the protein, E0 ≈ −111
kcal/mol, just strong enough to give multiple ion occupancy in Fig. 3c. Abbreviating N X to
X, the energy function is

(18)

Placing this constraint on the average system energy at constant N leads to the well-known
canonical distribution with partition function

Here, it can be seen that the probability for N , proportional to , cancels in the
expression so that the increment Z[Nβ ]/Z[N ] is an average according to (5). Removing
the constraint on N also leads to the multicanonical ensemble in the same way, viz. Z[β ] =
ΣN Z[Nβ ] (14), P(N|β ) = Z[Nβ ]/Z[β ].

In either case, we can assign the parameter β the meaning of, “there exists a physical
mechanism that decreases the likelihood of the system being in a high-energy state.” To
separate these energy states, we introduce a constraint on the energy, denoted by E. Thus, if
a system were allowed to choose its own energy state,1 the force would bias this choice
according to P(Eβ|A)/P(EΦ|A) = e−βE. We can set this bias, β, to give a reference system
with known properties by exactly balancing its internal tendency toward higher energy, P(E
+ dE|A)/P(E|A)e−βdE = 1. This implies that β should solve  for a reference
system with known energy; for example, a thermometer in which energy is easily measured
by size expansion. Because our reference thermometer is constantly exchanging energy with
the environment, we usually observe its average energy, and β should be chosen such that

. The difference between these values (maximum vs. average energy) is
important for small systems, but becomes negligible in the limit of large system sizes [34].
Using either of these forces in the present system mimics the effect of allowing energy
exchange between the thermometer at this state and the system. This explains the convention
of identifying temperature with the dilation of a thermometer and its connection to the
statical force, β.

1Alternatively, to avoid anthropomorphic terminology, if the system energy is not constrained and we compare the maximum entropy
P(E|A).
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By the device of a reference system, the physical nature of the Lagrange multiplier, β, has
changed from an absolute constraint on the average energy of the system of interest into a
force biasing its energy. The information F thus has a different quality than the information
λ in (17) because the first implies that λ re-adjusts when further information is added.

Another constraint we may add is the inclusion of an external force on the total number of
ions, μ. Because the n ions are more likely to choose an environment with lower energy,

−μn, this changes the probability of ion occupancy by . The multiplier β appears
because we want to express μ in energy units. Just as above, we can choose the chemical
potential, μ, to give a reference system with known properties by balancing its internal

energy change on ion addition using the choice  [35]. We can mimic the
effect of allowing K+ transfer from a bulk 100 mM KCl solution to a reference volume of
V0 = 4 Å3 in the present system (with the corresponding Cl− moved to a similar
environment and its contribution neglected) by choosing μK+ = −81 + β−1 ln(0.1V0) kcal/
mol [36]. Without this constraint on N, the system is effectively allowed to exchange
particles with vacuum. The combination of both constraints, which we refer to as F = βμ, is
shown in panel (c) of Fig. 3. The preference for the separated state (X1X4) in this model
shows the effect of mutual ion repulsion.

4 The Generalized Ensemble Model for Including Conformations
The theoretical background in Sect. 2 allows us to go further than the most common
relations of thermostatics. In particular, the choice of coordinate space, , is no different
than any other constraint except that it is almost never moved to the left-hand side to form
quantities such as P(F |I) and comparisons between states are carried out almost
exclusively with a fixed . The addition of coordinates is associated with the transition from
canonical to multicanonical ensembles. It has served as the starting point for some very
difficult reading in thermodynamics textbooks involving over/under counting and
(in)distinguishability arguments.

Since the rules have already been given above, we proceed to an example: addition of
protein-ion interactions by assuming a set of protein conformational states. A simplistic
example is provided by assuming (in addition to an open state, O) two ‘C-type’ inactivated
states in which a pinching motion of the pore prevents occupancy at site 2 (state I1) or sites 2
and 3 (state I2, see Fig. 2) [37]. These states are assumed to be mutually exclusive and
exhaustive, so that all conformational states, Y, are a member of the space Ω = ⊕(O, I1, I2).
Before any coupling is assumed, the total number of occupancy states, | |, is multiplied |Ω|
times to create the product space, Ω × .

To add coupling, introduce a hypothesis, G, stating the unallowed joint conformations.
Using (13) and (10),

(19)

But since GΩ is just another piece of information on XY,

(20)

Summing over X gives P(Y|FG Ω) = Z[Y F G ]/Z[F G Ω]. The partition function again
has the interpretation of an unnormalized probability. This idea forms the basis for
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understanding the ratio between Z[AF G ] and Z[B F G ] as a log-likelihood ratio
between two Hamiltonians, and for extending a canonical ensemble into a multicanonical
one. If the number of states changes for this process, then as we have shown for the grand-
canonical ensemble, our definition of P(Ω|I) (14) counts each ‘state of knowledge’ once, and
thus directly accounts for (in)distinguishability factors.

Incorporating the conformational state information, GΩ, into the ion channel system leads to
the results shown in panels (b), no energetic constraint, and (d), constrained chemical
potential and energy, of Fig. 3. Because fewer states are available to the system in
conformations I1 and I2, they appear less often. Colloquially, they are said to be entropically
un-favorable. In our derivation, this entropy decrease came about from adding information
G to F Ω. Using the definition of the entropy given in (34) implies that the relative entropy
addition F  → F Ω is zero. This should be expected for a measure of information since
the ability to observe a new variable, Y, that is nevertheless completely random adds no real
information. The statement, ‘I2 is entropically unfavorable’ is therefore expressing the fact
that the accessible volume for X has decreased from some previously available volume upon
changing Ω to I2 or upon adding information I2G.

The conventional thermodynamic entropy implicitly defines a previously available volume,
regardless of whether such a state physically exists. Instead of this behavior, it seems
preferable to define the entropy relative to the completely uniform distribution, as we have
done here. In this case, the probability for occupying degenerate (but distinguishable) states
increases because of the counting conventions of the partition function. This dependence is
made explicit in the present definitions of likelihood ratios and relative entropies.

Comparing the default model to an assignment of free energies calculated in Ref. [29] shows
a stronger preference for occupancy at S2, S4 than S1, S4 due to a large stabilization for
occupancy at S2. The crystal structures of Ref. [37] show decreases in occupancy at this site
due to a pore-domain conformational change, and it is interesting to speculate that this
conformational change is involved in destabilizing S2 during ion permeation. In our analysis
up to this point, an assumption for the channel conformation has had the same effect as
assuming an energy function for the system. Labeling the conformations and allowing them
to change gives the conformations the interpretation of an additional system coordinate. For
the system to destabilize S2, the I1/I2 conformations would require an additional biasing
energy from the environment. Another way to approach the problem is to use ion
occupancies averaged over conformations along with information on their coupling to infer
the conformational distribution. This method will be shown in the next section.

5 Including Time-Dependence Using Conditional Information
If we had assumed some experimentally known probability distribution over X instead of the
energy function assumed for F in the last example, then adding information G becomes
qualitatively different. To avoid interfering with the distribution over X, the information F
must take priority over any other constraints we may add to the problem. However, this does
not prevent us from coupling Y to X using the conventional maximum-relative entropy
hypothesis,

G: The probability of XY, given that G is accepted, is the most likely observational
distribution that obeys 〈g(y; x)|AXG〉 = G(X) for any AX.

The entropy functional (34) decomposes as

Rogers et al. Page 11

J Stat Phys. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(21)

The sums in this section are all taken to be over X ∈  and Y ∈ Ω without loss of generality
since we choose  × Ω to be the set of all XY relevant to deciding A or G. The last term in
the expansion above is a conditional entropy, which is a functional of P(Y |AGXΩ) and
depends on X. Because each conditional distribution can be chosen independently from the
others and from P(X|AG Ω), the entropy of each one is independently maximized when 
[AG Ω|A Ω] is maximum. However, the presence of Y allows [AG Ω|A ] to differ
from [A |A ] = 0, since P(X|AG Ω) = ΣY P(XY |AG Ω). For these two to be equal
in general requires that P(X|AG Ω) = P(X|A ), that is, that the distribution of X not be
dependent on the information GΩ when A is present.

Because we want to specify the marginal distribution of X directly, it is convenient to denote
this information as the compound hypothesis,

FX: The probability distribution of X is determined by information FX and unchanged by
information GΩ.

When this hypothesis is in place, we will have P(X|FX G Ω) = P(X|FX ). Bayes’ theorem
says that we must also have P(GΩ|XFX ) = P(GΩ|FX ), implying wGΩ (FX X) = 1.
Effectively, the Y have become ‘imaginary states’ to the system in the sense that there is no
free energy change for FX  → FX G Ω.

Although there is no change to  or the distribution of X, maximizing (21) results in

(22)

an expression reminiscent of the transition probability for a Markov process. The conditional
entropy is

and we define as usual

(23)

These considerations are sufficient to fill out the thermodynamic cycle when FX is assumed,
as has been done in the left half of Fig. 4.

Imposing the distribution among ion occupancy states given in Ref. [29] (shown for
reference in Fig. 3f) as FX, application of this procedure to determine the conformational

Rogers et al. Page 12

J Stat Phys. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



equilibrium shows that the channel is almost always in the open state due to the high
probability for occupancy of S2. The probabilities for I1 and I2 are 2.3 · 10−4 and 8 · 10−6.
Although X|FX is independent from GΩ, knowledge of Y is still informative for X, as

(24)

Using this method of inference, the occupancy distribution in the open state is shown in Fig.
3e. There is a very slight increase in occupancy at S2 and a decrease at S3, but the effect is
small because the open structure is dominant. Note that our assumption that the free energies
of Ref. [29] are averages over the conformational states is at odds with the crystal structures
of Ref. [37], indicating that motions around the S2 site not seen in short simulations may
play a role in destabilizing this site, enabling ion translocation through S1 and S3.

5.1 Transient, Nonequilibrium Transition Processes
We argue that addition of conditional maximum entropy information is central to
nonequilibrium statistical mechanics. To derive an ensemble of trajectories, we add all
possible transitions, Y, originating from each state, X. The initial state and its transitions are
linked by some information, G, which determines the distribution of Y given X. This
constraint determines a maximum entropy transition probability density, as considered in
differential form in Refs. [38, 39] and suggested in Ref. [40]. The hypothesis FX states that
what we know about the starting distribution is completely determined by FX and not by any
possible, but unknown, future events. It is required for the process to be non-anticipating in
the sense that no information about processes we may carry out in the future, GΩ, is
available from X.

By focusing on the information loss during a stochastic transition, we derive fluctuation
formulas for irreversible entropy production that include a contribution from the
instantaneous information entropy. Figure 4 displays the duality between fixing FX at the
initial time and fixing its propagated distribution FZ. In setting up an inference problem for
Y starting from FX GX, the distribution of Y is given by (22). If this distribution is used to
determine FZ using P(Z|FX G ) = ΣXY P(Y |FX GXΩ)P(X|FX )I (Z = Z(Y)), some
information loss occurs when FX is discarded and only FZ and information constraining the
transitions between states, G, retained. Assuming the transitions, Y, specify both end-points
X, Z, the distribution of Y carries the complete information for this process. Using the
information loss metric [13, 41],

(25)

The averaging is taken in the forward direction, and so L ≥ 0 evidently represents the
amount by which the real distribution FX G → XY FX G contains information not present in
a distribution guessed from FZ G*. Note that if G allows only one-to-one XZ, the transitions
are deterministic, and zero information is lost. More generally, if forward and backward
inference directions yield the same joint distribution so that FX G = FZ G*, then there is no
way to discern the direction of time’s arrow and no information is dissipated.
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The above relations are purely statistical, and have been stated in terms of maximum entropy
constraints for forward, G, and reverse, G*, inference problems. They are generally valid for
any choice of G*. In derivations of the fluctuation theorem [42], a particular choice of G* is
made corresponding to time-reversed equations of motion. The statistical perspective
expressed here shows that this operation is confined to the choice for G*, and provides a
suggestion as to the informational role of time-reversal. For example, the forward
constraints are consistent with the Langevin equation,

so that the momentum change (Δp = pZ − pX) is normally distributed about F - γv to yield a
Boltzmann distribution. The correct choice of G* is given by changing β to −β in the above
equation. The equation for Brownian motion can be similarly derived by constraining Δx2

with σ−2/2 and −ΔxF /2 with β. In both of these equations, the same set of forward
transitions are used for G*, but the sign of the Lagrange multipliers constraining the fluxes
are reversed. We can thus intuitively see that reversing the sign of externally applied forces
gives the correct fluctuation theorems using the information loss metric (25). This relation is
valid in transient stochastic dynamics, and allows for entropy to increase both by increasing
the entropy of the distribution (first part of (25)) and by the presence of irreversible fluxes
(last term of (25)). Such an informational perspective is required for understanding entropy
increase for processes that do not have time-reversal symmetry, but nevertheless have well-
defined and reproducible behavior.

Retaining only information about the end-points of a path Γ = X1X2 … XN, from F1 to FN,
we denote Γi = X1 … Xi and Γi = Xi … XN. We also assume constant  and conditional
independence, P(Xi+1|GΓi F1) = P(Xi+1|GΓi). If the transitions are known from Γ, the total
dissipation is

(26)

where kB is the Boltzmann constant. The path sum on the right is in agreement with the
thermodynamic entropy production given by the ratios of forward and reverse path
probabilities [42–44] as well as an expression for entropy production deduced from
mechanical considerations [38] when ln P(Xi+1|GΓi )/P(Xi|GΓi+1 ) = −λg(xi+1, xi), with g
a generalized flux. The left side identifies a contribution from the instantaneous information
entropy of the system. We have derived this result from the direction of information
propagation [45], and no special treatment has been given to the multiplier, β, defining the
externally applied temperature. This derivation also avoids the complications associated
with defining a steady-state. A curious feature is that it does not make specific reference to
heat. This may be explained by noting that the transitions associated to fluxes, g, are
probabilistic and represent interaction with an external system. These transitions may add or
remove energy from our system, while the external system remains at a fixed thermostatic

temperature state, . We then define the heat injected from the environment as the net
energy gain, βextdQ = 〈λg(xi+1; xi)〉. This identifies (26) with the Clausius form for the
second law [15, 46, 47],

(27)
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The above claims relating transition probabilities to fluxes can be established for the
Langevin and Brownian equations, and have been more thoroughly explored in a manuscript
devoted to nonequilibrium problems [18].

The next result will be a derivation of generalized Green-Kubo relations as non-equilibrium
Gibbs-Maxwell relations. Because our free energy for the process A = FX1 G12 G123
… is simply the free energy for FX1 , we must find an alternate free energy functional.
Notice that the partition function for the transition Γi Ω → Gi Γi Ω is ΣY|Γie

−λig(y;Γi)/| Ω| (by
summing the top and bottom of (23)), so that we can define

(28)

The first derivatives generate a ‘first law’ relating time-dependent fluxes to forces for
nonequilibrium processes,

The second derivatives give a time-asymmetric Green-Kubo-like formula,

(29)

The derivation is subtle, and full details are given in Appendix B.

The thermal, λi, and mechanical, gi, driving protocols should be understood as specifying
the properties of the external system. Constant constraints correspond to connection to a
constant external driving force, while the stochastic nature of the transitions implicitly
defines an external heat bath. The process defined by (22) can also be history-dependent. By
analogy to the equilibrium process, either the average relation, G, or the force, λ can be set.
If these are, in turn, history-dependent, then a new set of possibilities for time-dependent
driving based on the behavior of the system are possible. For instance, setting λ as a
function of the current integrated over previous times, Σj<i g(Yj), connects one port of our
system to a capacitor, while constraining G as a function of the integrated force, Σj <i λj,
connects the system to a type of inductor [48].

For the ion channel example we have been developing, a completely new set of constraints
must be developed for transitions between states. For the forward problem, we are given Xi
as well as some set of feasible transitions, Y |Xi, from state i. Because the probability of
inactivated states are negligible, we consider only the open channel state, and single-jump
transitions as shown in Fig. 2 of Ref. [29]. Five transitions from each state are possible,
corresponding to doing nothing, or all sites moving up or down by the addition of a K+ or a
water at the appropriate end.

In order to produce a system that conserves energy, we place a constraint on the energy
change at each step,
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(30)

This amounts to a stochastic addition of energy to the system with average value

. The steady-state distribution will differ from the canonical distribution in
general because the normalization constant, Z[Xi β′Ω], depends on Xi. This difference has
come about because of the addition of information limiting which transitions are possible. If
all states were available during each transition, the normalization constant would again be
independent of Xi and we would recover the canonical distribution. For the Langevin and
Brownian equations with uniform applied temperature, the canonical distribution is also
obtained because the normalization constant is independent of Xi.

Because transitions are not generally spontaneous, but may have an energy barrier, we add
another constraint, β′E†, directly on the number of transitions per time-step, τ,

(31)

These barriers could, of course, be made to depend arbitrarily on the transition, Y. For
simplicity we assume that they are present only when a transition occurs and are uniformly
equal to the sum of 2 ps kcal/mol. The stochastic process specified by these two formulas
has the identity matrix as the small time-step limit, and an equilibrium-like distribution as
the large step limit. The energy barrier assumption differs from the usual rate equation
formulation, since the Chapman-Kolmogorov equation no longer holds. Instead, the
behavior of the above system is dependent on the time-scale studied, reminiscent of fractal
kinetic models [49]. Because this is a novel kinetic model, it remains to be seen how well
these two constraints reproduce actual dynamics; however, the form of this equation
matches well the nonlinearity near t = 0 in exact transition probabilities computed for the
Müller-Brown potential surface (Fig. 4 of Ref. [50]), while variations in the surface chosen
to divide states can be mimicked by changes in E†. We can recover a Markov model by
noting that E† may be a function of the time-step, τ, to give a specified average number of
transitions.

To finish our specification of nonequilibrium jump processes, we add forces on spontaneous
ion creation and annihilation. Removing the possibility of a change in ion number unless it
either enters or exits through an end of the channel, we can then specify the external force,
μ, acting on these special events using the same type of energy constraint (and assuming for
simplicity the same energy barrier) as above. This leads to

(32)

with dNint and dNext representing the number of ions added to the system (±1) from the
internal and external solutions, respectively. The form of this transition probability is similar
to that of a recent paper on currents in boundary-driven Kawasaki dynamics [51], which
were also analyzed using a cumulant-generating function similar to (28).
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An outward-driving voltage can be added to the system by imposing an external field,
increasing the likelihood for transitions moving ions outward by an amount eβΔVg(Y). The

function  counts the average number of ions taking a step out-ward
during transition Y, consistent with the sign convention of Fig. 2. For ion movements
internal to the channel, this has an equivalent effect on the path distribution as applying an
energy constraint eβΣjVjI (Xj) (I (·) is the indicator function). These constraints provide a
physically motivated kinetic model for our ion channel in arbitrary solution conditions and
driving voltages.

The steady-state ion occupancies at zero applied voltage and μ identical to that for (e) and
(f) of Fig. 3 are plotted in panel (g). The steady-state distribution is slightly altered from the
local equilibrium prediction of (e). This happens despite the fact that the transition
probability obeys detailed balance with respect to the steady-state, and exactly five
transitions lead into each ion occupancy state. The reason is that the transition probability is
normalized by a different value for the forward and reverse transitions.

As a final note, the current can be calculated as a perturbation from a steady-state using (29)

(33)

This gives the time-dependent linear response for small changes in the holding potential.
The conductance near the resting potential is the time-integral of the steady-state current
autocorrelation function (at zero average current), in accordance with Onsager’s
phenomenological equation [52]. The negative sign comes about because of the positive sign
of the constraint (βΔV). At other voltages, this integral is the slope of the current/voltage
curve. The presence of an additive constant time-asymmetry of (29) explains why Onsager
reciprocity only holds near equilibrium, where the fluxes are zero. Other Legendre
transforms of (28) lead to relationships at fixed currents or forces, as in the usual theory
[34].

The current-voltage characteristics calculated for a single channel using a 1 ps time-step are
shown in Fig. 5. The fluctuation-dissipation theorem (33) gives the slope of the current-
voltage curve, plotted as a tangent line at each data point. Low transition probabilities
between conduction states with high free energy barriers leads to very long relaxation times
(O(105) steps ~ 0.1 μs) in this system. The (usually large) contribution to (33) from the tail
region was obtained by fitting steps 500–1000 to an exponential and integrating to infinity.
Although this calculation demonstrates the numerical accuracy of (33), the choice of ion
occupancy free energies and transition barriers does not produce goodagreement with
experiment. The set of energy barriers used leads to larger current magnitudes at
hyperpolarized voltages (inward-rectifying behavior), inconsistent with the net-outward
rectification observed in Kv and large-conductance BK homologues. It is of interest to
model the transition energy barriers more accurately and determine whether the time-
dependence of dwell times for individual states is adequately represented by equations of the
present, maximum entropy, form.
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6 Conclusions
This work has provided a view of statistical mechanics as expressing relationships between
states of knowledge. This viewpoint has interesting connections to modern information
theory and its algebra. Thermostatic partition functions, Z[A ], have been identified as
expressing relative likelihoods. Changes in these functions correspond to changes in
information, and can be understood as a subjective probability assignment determining
relative likelihoods between allowed alternative states of the system. This interpretation of
the partition function leads naturally to multicanonical ensemble and umbrella sampling
methods [32].

To answer objections to such a subjective theory, we note that experiments are able to
compare work and heat values to find agreement with thermostatics, provided a given
system behaves according to the assumptions. In exactly the same way, Euclid’s geometry is
able to deduce physically measurable distances, provided these objects behave as ideal
solids. Subjectivity is present in both of these cases because assumptions are always
required in order to calculate one quantity from another. The term ‘subjective’ simply
acknowledges that this reasoning process proceeds from assumptions derived from
experience. Physical predictions of objectively real phenomena can be made from a
subjective theory based on assumptions that are objectively correct. This distinction explains
why the structure of statistical mechanics has persisted throughout the developments of the
last century and shows the practical utility of founding statistical mechanics on a
mathematical theory of information. Because its basic axioms are conventions chosen to be
logically consistent and in agreement with our intuition, the maximum entropy approach
operates as a device for carrying out extended logic.

Comparisons between states of knowledge can be done using the methods in this report. The
picture presented here does not require the specification of a complete set of all possible
states of knowledge. Instead, the relations of Sect. 2 give a basic, consistent set of equations
for defining the changes between these states. The algebra already justifies the appearance
of (in)distinguishability factors in the partition function, as shown in Sect. 3. We have
provided a justification for the common indicator function, wΩ (C) (13), for comparing
purely entropic changes in phase space, as well as the Boltzmann factor, for comparing
changes in maximum entropy information P(F | )/P(G| ) = Z[F ]/Z[G ] (see Appendix
A).

Two new types of information were introduced, corresponding to addition of states to a
system and conditional maximization of the entropy. These operations provide alternative
ways of looking at multiscale and nonequilibrium problems in terms of the Bayesian
probability theory of Jaynes [13]. The concept of building up thermodynamic equations of
state by adding system information is important for developing multi-scale understanding of
large physical systems. The predictions of the coarse-grained theory may be compared with
a fully atomistic (or ab-initio electronic) molecular dynamics simulation or coarse-grained
Monte Carlo sampling. Here the number of states will be greatly increased to include
coordinates and momenta of all particles, with a change in the energy function to a more
accurate approximation. The information entropy for adding coordinates, however, will
remain zero whenever the distribution is unchanged by maximizing entropy because the
entropy was de-fined only relative to a reference distribution. As this level of description
becomes computationally intractable, the approximate potential of mean force derived from
high-level considerations may be useful for locating important states for detailed study,
deriving stochastic boundary conditions, and applying force or energy biasing sampling
techniques. We have shown this line of reasoning for the KcsA ion channel by calculating a
current/voltage curve with interesting properties at depolarized voltage due to the energy
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barrier in moving out-ward from S2. Further work on conformational transitions associated
with this movement should be particularly relevant to the physical mechanism limiting
outward current and may have implications for Ba2+ ‘lock-in’ experiments [53, 54].

The addition of constrained maximum entropy information in Sect. 5.1 allows a treatment of
nonequilibrium problems. Starting with a ‘trajectory space’ and adding information on
allowed transitions as well as expectation values of fluxes between states leads to a state of
knowledge about the process. In our formalism, the ability to directly write down the
equilibrium distribution (a long-sought goal [16, 17, 55]) disappears in the same way a
marginal distribution over coarse-grained variables cannot be directly produced from an
equilibrium distribution over all atomistic coordinates and momenta. Instead, the transition
distribution can be directly written, and the transient fluxes and eventual steady-state (if it
exists) become path averages.

The Lagrange multipliers in the equilibrium theory are proxies for static forces on the
constrained variables that are imposed by an external system. In the same way, the Lagrange
multipliers biasing average energy exchange, number of transitions per time-step, ion
currents, and particle insertion/deletion operations can be understood as dynamic properties
of the external system. This implies that these dynamic forces may be determined by
examining their action on a known reference system in the spirit of circuit theory, where
resistors, capacitors, inductors, and memristors [48] form the prototypes for general time-
dependent constraint relationships between forces, fluxes, and their integrated counterparts.

A consideration of the information loss for stochastic processes leads to a formula similar to
the second law of thermodynamics (26), applicable arbitrarily far from equilibrium. An
average of the one-step partition function in (28) gives a simple way to generate Green-
Kubo type fluctuation-dissipation theorems. We emphasize that these formulas are not
required to be extensive or local [56–58], avoid the necessity of defining a steady-state [59,
60], and are independent of how we define fluxes so that we do not have to immediately
write down hydrodynamic equations [61]. This work has given a necessary statistical
foundation for extending statistical thermostatics by carrying over modern equilibrium
techniques such as the evaluation of free energy differences [62], and coordinate/path re-
weighting techniques [63, 64]. These formulas achieve Jaynes’ goal of providing a
“foundation for the predictive aspect of statistical mechanics, in which a single basic
principle and method applies to all cases, equilibrium or otherwise” [45]. They imbue
nonequilibrium and transient dynamic problems with the same structure as the equilibrium
thermodynamics given by Gibbs [5], and open the door for a new understanding of
processes far from equilibrium.
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Appendix A: Derivation of Maximum Entropy Weights
Our definition of F utilized the most likely observational distribution with respect to the
probability distribution from an initial state, C, before F has been accepted. If we use
information, F, as an assumption it should come from known experimental data on the
system. In order to establish F, we may therefore tabulate frequencies for X ∈ . If F C,
turned out to be true, scientists basing their conclusions only on C would be increasingly
surprised (or skeptical if the report is second-hand) at the evidence collected after N trials.
This is because the probability of these results given C  would be (from the multinomial
distribution),

(34)

According to C, the likelihood of such a set of observations decreases exponentially with the
number of trials. This is a condensed version of the Wallace derivation for the entropy,
presented in more detail in Ref. [13]. The limit taken in the second equation is as N → ∞,
which is appropriate for assessing such a set of hypothetical observations or second-hand
reports. Evidently, the Kullback-Liebler divergence, −  ≥ 0, represents the value of the
information F (or difference of opinion) to an observer who has already accepted C . The
relative information entropy, , reaches its maximum, zero, when the new information
does not alter the distribution. For any reasonable comparison to be made, the distributions
must be compared over the same set, , which should include any observational information
that A or B may predict. As in the case for likelihood ratios (5), the relative entropy is
independent of the distribution over irrelevant variables, Y ∈ . This happens here because
the probability assignments are identical over the subspace Q|Y for each Y.

According to this maximum entropy argument, the least surprising distribution given
information F is the maximum entropy distribution. This distribution should satisfy the
mathematical condition,

(35)

The unique solution to this condition is [13]
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(36)

for some λ(C), proving that the hypothesis F (35) is logically equivalent to assuming the

probability assignment of (36). The Jacobian  has been explicitly shown in this equation
because of the importance of continuous functions in thermodynamics. In a discrete setting,
it has the effect of dividing P(X|C) to maintain its normalization.

According to Bayes’ theorem,

(37)

and since two constraints that have the same weight at a given point should be equally likely
when X is given, wF (X) = e−λf (x). This should again equal wF (CX) as long as F is
conditionally independent of C, given X.

Already a few important differences from the standard development can be noticed in the
above. First, the commutativity of thermodynamic cycles is perhaps not as widely
appreciated as it should be. Although it is well known that Z[C] is a state function, because
of its definition in (1), this shows that a sum of relative free energy differences around any
closed loop of a thermodynamic cycle totals to zero with the caveat that (9) may only be
applied from a larger phase space to a smaller. The same is not true of relative entropies
(34), which give a sum dependent on the path taken. Instead, it is necessary to define [ 
C  | ] as the state function. Also, the entropy definition of (34) is independent of changes
in phase-space volume because P(X|AI) transforms the same way as P(X|BI) for an injective
change of variables X → Y.

Appendix B: Differentiation of Path Averages
We assume that the path probability can be written in the form (22),

(38)

The derivatives of − ln Z[Γi, λi] are conditional averages,

For brevity, the explicit dependence on λi has been omitted in the above. All averages in
this section are taken to be over the full path distribution of (38) except for the conditions
explicitly stated.

The dependence on λik of a general path average, 〈f (Γ, λ)〉, is given by
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Since

and

we can re-state the above as

(39)

To compute (29) in the case where gi are a function of only the (i → i + 1) transitions, Xi+1
(i.e. gi (Xi+1; Γi) = gi (Xi+1; Xi)), we take advantage of starting in a steady-state,

by defining k ≡ j − i ≥ 0. We can write the correlation function as

The last step used the fact that 〈g(Xk |X0)〉 is only a function of X0. This simplifies the
computation of the autocorrelation function for a Markov process, since only the vector
g(X1) and the matrix P(Xk X1X0|A) need to be stored. The latter can be updated by taking
independent steps for each initial transition X1, P(Xk+1X1X0|A) = Σk P(Xk+1|Xk)P(Xk X1X0|
A). When the probability loses the information on what transition occurred at X1, P(Xk |
X1X0A) → P(Xk |X0A), the flux-autocorrelation becomes zero.
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Fig. 1.
Reaction diagram showing system states as nodes. Two constraints, , defining a coordinate
space, and Ω, defining some further restriction are illustrated here. F and G are average value
constraints, and their relative likelihoods can be calculated using (9) in either direction. For
identical constraints, all hypotheses are completely connected, as shown by the double-
headed, dark arrows. Restrictions such as  or Ω limit the set of propositions that can be
directly compared without knowledge of P(Ω|I)/P(Φ|I), and only one comparison direction is
allowed, illustrated by the grey, dotted arrows
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Fig. 2.
KcsA ion channel selectivity filter in its biological orientation (intracellular solution below)
showing ion binding sites S1–S4. For visual clarity, two of the four identical monomer units
are not shown. Physiological conventions for the potential difference, ΔV, and direction of
outward positive current (g) are indicated. Also shown are sites left unoccupied in channel
conformations I1 (S2 unoccupied) and I2 (S2, S3 unoccupied)
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Fig. 3.
Ion occupancy distribution in successively complex models. Number distributions are
plotted normally (right scale), while probabilities for occupancy of individual sites are
plotted vertically (top scale). The set of figures on the left do not include protein
conformational changes, while those on the right include the possibility of pinching at S2 or
both S2 and S3. The models are (from top to bottom), the default uniform distribution, a
simple electrostatic energy distribution, a model based on the free energies of Ref. [29], and
a nonequilibrium simulation using the same free energies
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Fig. 4.
Reaction diagram for adding conditional maximum entropy information. Partition functions,
determined by likelihood ratios for each transition, are written out for each state. For the
‘forward’ process FX  → FX G Ω, there is a ‘reverse’ process FZ  → FZ G* Ω
signifying the dual maximum conditional entropy problem
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Fig. 5.
Current-voltage plot calculated using the free energies from Fig. 2 of Ref. [29] along with
the assumptions listed in the text. The voltage plotted in this figure is the sum of the five
voltage steps between S0–S5. Traces are labeled using internal/external cation
concentrations (in mM). The integrated autocorrelation function is shown along with its
tangent lines according to (33). The reversal potential shifts are physically reasonable, and
inward rectification is observed
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