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When a point Brownian particle diffuses in a straight cir-
cular tube of radius R in the presence of a laminar stationary
flow of the liquid (Poiseuille flow), particle’s effective diffu-
sion coefficient along the tube axis, Deff, is given by

Deff = D + v̄2R2

48D
, (1)

where D is the particle diffusion coefficient in the absence
of flow, and v̄ is the average fluid velocity. The increase of
the axial diffusion coefficient, Deff > D, is due to the radial
diffusion that transports the particle among layers with dif-
ferent axial velocities. Taylor discovered this effect in 1953.1

Later Aris improved the Taylor theory.2 In this short note we
give a new derivation of the expression for Deff in Eq. (1),
which is based on consideration of the axial displacement of
a single particle that moves in the plane normal to the tube
axis along a given trajectory {r}t. We derive the expression
in Eq. (1) by averaging this displacement and its square over
different realizations of the trajectory and analyzing the long-
time asymptotic behavior of these two moments. To the best
of our knowledge our derivation of Deff is quite different from
traditional derivations that one can find in the textbooks and
original papers.

Consider a laminar steady flow in a straight circular tube
of radius R. We use cylindrical polar coordinates (r, θ , z) with
the z-axis directed towards the flow. The fluid velocity v(r)
monotonically decreases from its maximum value at the cen-
ter of the tube to zero at r = R,

v(r) = 2v̄

(
1 − r2

R2

)
, 0 ≤ r ≤ R, (2)

where v̄ is the average velocity given by

v̄ = 2π

∫ R

0
v(r)peq(r)rdr = 2

R2

∫ R

0
v(r)rdr, (3)

and peq(r) = 1/(πR2).
We use {r}t as the notation for a two-dimensional

particle trajectory in the plane perpendicular to the tube axis
observed for time t, {r}t = {r(t′), 0 ≤ t′ ≤ t}. The particle
velocity in the axial direction at time t is

ż(t |r(t)) = v(r(t)) + f (t), (4)

where f(t) is the Gaussian δ-correlated random force with zero
mean, 〈 f(t)〉 = 0, which satisfies the fluctuation-dissipation
theorem,〈f(t)f(t′)〉 = 2Dδ(t − t′). On average this force does
not lead to an axial displacement, but leads to the additive
contribution 2Dt to the mean squared displacement. Force

f(t) is responsible for the particle diffusion along the tube
axis in the absence of flow, which is represented by the first
term in the right-hand side of Eq. (1). The second, non-trivial
term in the right-hand side of Eq. (1) is due to the particle
motion along the tube radius. With this in mind, hereafter
we ignore force f(t). Then displacement of the particle in the
axial direction is given by

z(t |{r}t ) =
∫ t

0
v(r(t ′)|{r}t )dt ′. (5)

In what follows we use this displacement to derive the
second term in the right-hand side of Eq. (1) by analyzing the
long-time asymptotic behavior of the first two moments of
the displacement averaged over different realizations of the
trajectory {r}t.

Using the identity

∫
δ(r − r(t))dr = 1, (6)

we can write Eq. (5) as

z(t |{r}t ) =
∫

v(r)

(∫ t

0
δ(r − r(t ′))dt ′

)
dr. (7)

This presentation of the displacement has a transparent phys-
ical interpretation. Indeed, (

∫ t

0 δ(r − r(t ′))dt ′)dr is the cumu-
lative time spent by the trajectory in the small vicinity of point
r, where the particle velocity is v(r). Thus, Eq. (7) gives the
displacement as a weighted sum of the cumulative times spent
by the trajectory at different points of the tube cross section,
using the local velocity, v(r), as a weight factor. Such repre-
sentation of the displacement is the key step in our approach
to the problem.

Averaging Eq. (7) over all trajectories that start from the
same point, r(0) = r0, we obtain

〈z(t)〉 r0
= 〈z(t |{r}t )〉 r0

=
∫

v(r)

(∫ t

0

〈
δ(r − r(t ′))

〉
r0

dt ′
)

dr. (8)

The averaged δ-function in Eq. (8) is the particle propagator
(the Green’s function) (Ref. 3) in the plane perpendicular to
the tube axis,

〈δ(r − r(t))〉 r0
= g(r, t |r0). (9)
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Therefore, the averaged displacement is

〈z(t)〉 r0
=

∫
v(r)

(∫ t

0
g(r, t ′|r0)dt ′

)
dr. (10)

Here (
∫ t

0 g(r, t ′|r0)dt ′)dr is the mean cumulative time
spent by the trajectory, {r}t, in the small vicinity of
point r.

The propagator g(r, t|r0) tends to peq(r) = 1/(πR2) as
t → ∞. Denoting the difference between the propagator
and peq(r) by u(r, t|r0), we can write the propagator
as

g(r2, t |r1) = peq(r2) + u(r2, t |r1). (11)

Substituting this into Eq. (10) we obtain

〈z(t)〉r0
= v̄t +

∫
v(r)

(∫ t

0
u(r, t ′|r0)dt ′

)
dr. (12)

Since u(r, t|r0) vanishes as t → ∞, at asymptotically long
times we have

〈z(t)〉 r0
= v̄t + l(r0), t → ∞, (13)

where l(r0) is given by

l(r0) =
∫

v(r)

(∫ ∞

0
u(r, t |r0)dt

)
dr. (14)

As might be expected, the long-time behavior of 〈z(t)〉 r0
is

the sum of the product v̄ t and a constant term that depends on
r0.

Averaging the square of the displacement in Eq. (7) over
the trajectories that start from r0 we obtain

〈z2(t)〉r0 = 〈[z(t |{r}t )]2〉r0

= 2
∫ ∫

v(r1)v(r2)

(∫ t

0
dt2

∫ t2

0
〈δ(r2 − r(t2))

× δ(r1 − r(t1))〉r0dt1

)
dr1dr2. (15)

Similar to Eq. (9) the averaged product of the δ-functions in
Eq. (15) is the product of the propagators,

〈δ(r2 − r(t2))δ(r1 − r(t1))〉r0

= g(r2, t2 − t1|r1)g(r1, t1|r0), t2 > t1. (16)

This allows us to write
〈
z2(t)

〉
r0

in terms of the propagator

〈z2(t)〉r0 = 2
∫ ∫

v(r1)v(r2)

(∫ t

0
dt2

∫ t2

0
g(r2, t2 − t1|r1)

× g(r1, t1|r0)dt1

)
dr1dr2. (17)

Asymptotic long-time behavior of 〈z2(t)〉r0 can be found us-
ing Eq. (11),

〈z2(t)〉r0 = v̄2t2 + 2t

[
v̄l(r0) +

∫
v(r)l(r)peq(r)dr

]
,

t → ∞. (18)

Thus we have

lim
t→∞

〈z2(t)〉eq − 〈z(t)〉2
eq

2t
=

∫
v(r)l(r)peq(r)dr

= 2

R2

∫ R

0
v(r)l(r)rdr, (19)

where l(r) is function l(r) averaged over θ . We will see that
the integral in the right-hand side is just the second term in
the expression for Deff, Eq. (1).

To finish the derivation we take advantage of the fact that
the propagator g(r, t|r0) considered as a function of r0 satis-
fies

∂g(r, t |r0)

∂t
= D�r0g(r, t |r0), (20)

where �r0 is the two-dimensional Laplace operator, with re-
flecting boundary condition on the tube wall. As a conse-
quence, function u(r, t|r0) satisfies the same equation and
boundary condition. Integrating both sides of this equation
with respect to time from zero to infinity one obtains the equa-
tion for

∫ ∞
0 u(r, t |r0)dt . Multiplying both sides of the result-

ing equation by v(r) and then integrating over the tube cross
section one finds that l(r0), Eq. (14), satisfies

D

r0

d

dr0

(
r0

dl(r0)

dr0

)
= v̄ − v(r0) = v̄

(
2

r2
0

R2
− 1

)
(21)

with the boundary condition dl(r)/dr|r = R = 0. In addition, l(r)
satisfies the requirement∫ R

0
l(r)rdr = 0. (22)

This can be obtained using Eq. (14) and the fact that∫ R

0 u(r2, t |r1)dr1 = 0, which follows from Eq. (11). Integrat-
ing Eq. (21) one finds

l(r) = v̄

24DR2
(3r4 − 6R2r2 + 2R4). (23)

Substituting this into the integral in Eq. (19) and carry-
ing out the integration one recovers the second term in the
expression for Deff given in Eq. (1).
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