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ABSTRACT

Motivation: Due to the high mutation rate of human
immunodeficiency virus (HIV), drug-resistant-variants emerge
frequently. Therefore, researchers are constantly searching for new
ways to attack the virus. One new class of anti-HIV drugs is the
class of coreceptor antagonists that block cell entry by occupying a
coreceptor on CD4 cells. This type of drug just has an effect on the
subset of HIVs that use the inhibited coreceptor. A good prediction
of whether the viral population inside a patient is susceptible
to the treatment is hence very important for therapy decisions
and pre-requisite to administering the respective drug. The first
prediction models were based on data from Sanger sequencing of
the V3 loop of HIV. Recently, a method based on next-generation
sequencing (NGS) data was introduced that predicts labels for
each read separately and decides on the patient label through a
percentage threshold for the resistant viral minority.

Results: We model the prediction problem on the patient level taking
the information of all reads from NGS data jointly into account. This
enables us to improve prediction performance for NGS data, but
we can also use the trained model to improve predictions based
on Sanger sequencing data. Therefore, also laboratories without
NGS capabilities can benefit from the improvements. Furthermore,
we show which amino acids at which position are important for
prediction success, giving clues on how the interaction mechanism
between the V3 loop and the particular coreceptors might be
influenced.

Availability: A webserver is available at
|nttp://coreceptor.bioinf.mpi-inf.mpg.de}

Contact: |nico.pfeifer@mpi-inf.mpg.de]

1 INTRODUCTION

Since the discovery of the human immunodeficiency virus (HIV)
in 1983 (Barr-Sinoussi er all, [1983; IGallo ef all, [1984) there has
been an enormous attention of researchers to HIV and the associated
disease, the acquired immune deficiency syndrome. The first drug
against HIV was already introduced in 1985 dMimxa_eLaU, h_%?ﬂ),
but it soon became obvious that additional anti-HIV drugs would
be needed due to the high mutation rate of the virus. Even with
the introduction of combination drug therapy in the mid 1990s,
the viral populations of HIV-infected patients under therapy could
become resistant after a certain period of time-creating the need for
further anti-HIV drugs that attack the virus in a different manner.
Therefore, researchers are constantly searching for new ways to

*To whom correspondence should be addressed.

limit viral load in HIV-infected patients. HIV needs a coreceptor
on CD4 cells to enter the cell (E‘;E M). Different HIV strains
use different coreceptors. The two most prominent coreceptors are
CCRS5 and CXCRA4. The first approved drug that blocks cell entry of
CCRS5-using viruses (RS viruses) by serving as a CCRS antagonist
is called maraviroc ,2009), but there is no
approved drug that blocks cell entry of CXCR4-using HIVs (X4
viruses). Administering CCRS blockers requires use of a companion
diagnostic determining viral coreceptor usage, also called viral
tropism. For this purpose, Whitcomb et al. (2007) introduced a
laboratory test called Trofile, which was replaced by the Enhanced
Sensitivity Trofile Assay (ESTA) (Reeves er all, [2008), but these
methods have a long turnaround time, are costly, are not widely
accessible and require large sample volume m, M).
Recently, approaches that predict viral tropism based on the genetic
sequence of the V3 loop, which is part of the envelope (Env) protein
of HIV, have been introduced {lensen et gil, 2003 |S_mg_eLa.L|
M). All of these models were trained with either clonal-sequenced
data or bulk sequenced data. In the former case, the sequences
of individual clones of R5 or X4 viruses are used and in the
latter case each sequence represents a consensus of the dominating
strains in the whole viral population inside a patient. Such bulk
sequences also comprise ambiguous sequence positions, called
wobbles. Prediction models based on bulk sequenced data perform
in general worse than methods on clonal sequences @m,

). Presumably, this is due partly to the fact that bulk consensus
sequences describe the dominating strains in a viral population
only incompletely and partly because small viral minorities do not
show up in bulk data at all. Further improvements were achieved
by utilizing other parts of the env sequence and information on
the three-dimensional structure of the V3 loop of the viral surface
gene (Dybowski et all, 2010; ISander er all, 2007). Very recently,
prediction models for deep sequencing data of the V3 loop were
introduced by Swenson et al. (2011). They used next-generation
sequencing (NGS) data from the Maraviroc versus Optimized
Therapy in Viremic Antiretroviral Treatment-Experienced Patients
(MOTIVATE) studies (Esitkenheuer ef all,2008: [Gulick et all,2008)
to predict virologic response to maraviroc. This dataset comprises
~3000 reads per patient sample, where each read corresponds to a
particular V3 loop of an HIV variant inside the patient. Swenson
et al. classified each read with standard tools and then classified the
whole sample depending on how large the fraction of reads with
predicted X4-capable label was. This means that they had to use
one cutoff for the method that predicted the label for each read and
another cutoff to specify the minimal fraction of X4-capable reads
such that the sample was classified as X4-capable. Unfortunately,
the authors trained these thresholds directly on 75% of the data that
they then used for validation, which is why it is unclear how well
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the method performs on unseen data. Instead of classifying each
read separately, we consider the reads of a sample jointly and train
a classifier on this joint representation. This is motivated by the
fact that a mere percentage threshold might not have the adequate
information for deciding whether a viral population withstands
treatment with maraviroc.

Here, we present a method that analyzes the NGS data in a more
elaborate fashion. We show that the new method performs better
than existing methods without training any parameters on the test
data. Furthermore, we introduce new models for predictions based
on bulk Sanger sequences and show how to improve predictions with
a model trained on NGS data. This is particularly important since
many clinics will not have access to NGS techniques for some time
to come. Additionally, we show how one can obtain interpretable
prediction results and evaluate information on which of the residues
of the V3 loop contribute to the improvement of prediction accuracy.
Specifically, we find amino acids at certain positions that are highly
predictive and might lead to new insights about the interaction
between the V3 loop and the different coreceptors.

2 METHODS

2.1 Data
We analyzed V3 loop sequence data from the MOTIVATE

trial (Eitkenheuer et afl, R008; IGulick er afl, R00§) and from
study A4001029, which were described in detail by Swenson et al.
(2011). We also had bulk sequenced Sanger sequences from the
same patient group. The NGS data were filtered according to the
steps described in Swenson ef al. (2011). This means that we
excluded truncated reads that missed four or more bases on either
end of the V3 loop. Samples with fewer than 750 reads were
removed from the dataset. This resulted in a dataset containing
876 patients with NGS data and bulk sequencing data. For each
patient, we had plasma viral load (pVL) measurements at several
time points, measured as number of copies per milliliter. For our
analysis, we utilized the pVL measurements at baseline, 8 weeks
after treatment start and 48 weeks after treatment start. All DNA
sequences were translated to amino acid sequences. Then, we
created a multiple sequence alignment (MSA) from the Sanger
sequences as well as an MSA from the NGS sequences using
MUSCLE d@ M). Afterwards, we created a joint MSA
of all sequences with MUSCLE. We used standard parameters
during all MUSCLE runs. The consensus sequence of the final
MSA was CTRPNNNTRKSIHIGPGRAFYATGDIIGDIRQAHC
(excluding all MSA positions with <1% amino acids). This sequence
was recently isolated from an HIV-1-infected patient (Fernandez-
Garcia et al.,[2009) and determined to have the R5 phenotype.

2.2 Finding the most representative sequences

The median number of different amino acid sequences for each NGS
sample was 47. Since it can be assumed that not all sequences are
necessary to predict whether a patient will respond to maraviroc or
not, we tried to find a small set of sequences for each patient that best
represents the diversity of all present viral sequences. This problem
is similar to determining the population structure in a sample.
One of the most recent approaches for determining these different
subpopulations utilizes a Dirichlet process mixture ,
mﬁ). Applying the tool to our dataset with standard parameters, this
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Fig. 1. Choice of representatives: This plot shows information about the
reads of a patient. Each cross in the plot at the top corresponds to a read of the
patient and the coordinates are computed by projecting the property encoded
reads onto the first and second principal components (PC1 and PC2). The
chosen representatives in the PC1 dimension are marked by red circles. The
plot at the bottom shows the read counts for the corresponding reads

approach classified almost all reads as representatives of different
subpopulations which is why we used principal component analysis
(PCA) instead (Pearsod, ). Applying PCA to detect hidden
population structure has recently been done by Price et al. who
effectively applied PCA to single-nucleotide polymorphism data
to remove the influence of population structure on genome-wide
association tests R ).

In order to use PCA, we transformed the amino acid sequences
to numerical vectors. We evaluated two different encodings. The
first one was a sparse binary encoding where every amino acid is
transformed into a bit vector of length 20. Each of these bit vectors
has all zeros except for one entry which is at the position of the
amino acid in the amino acid alphabet. The final encoding is the
concatenation of all of these bit vectors. The second encoding is
based on a compact representation of physico-chemical properties
of amino acids introduced by Venkatarajan and Braun (2001). Our
preliminary analysis showed that the encoding based on physico-
chemical properties produced better results which is why we used
this encoding in all subsequent experiments. After encoding the
sequences, we performed a PCA on the data. Then, we used the first
n principal components (PCs) that explained 95% of the variance
to find good representatives of the variation in the dataset, while
n was constrained to be smaller than six. For this purpose, we
inspected each PC separately and chose one representative from each
extreme of the PC. To avoid picking meaningless outliers, we took
the read with the highest read count from each boundary region.
The boundary region is defined as the smallest region containing
the most extreme values on the PC whose reads cumulatively
represent at least 5% of the total read counts. An example from
one of the patient samples can be seen in Figure [ for the first PC
(PC1). To demonstrate that the information from the different PCs
represents different parts of the variation, the plot shows a two-
dimensional illustration of the PC space (PC1 and PC2) at the top,
but for the choice of the representatives of PC1 only the information
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represented in the bottom of the figure is important, namely, the
read counts and the position according to the actual PC. For each
patient sample we also included the two reads with the highest read
counts into the set of representatives. Note that it should not hurt
the learning algorithm if we include some more representatives than
necessary, which is why we chose this conservative approach.

2.3 A kernel for NGS data

Previous approaches for predicting coreceptor usage from NGS
data were based on considering each read of a patient sample
separately (]Smnssm_ﬂLaﬂ, |2£)_]_]]). Instead of considering the
sequences separately, we considered all important reads of a sample
jointly. For this purpose, we used the normalized set kernel (NSK)
introduced by Girtner er al. (2002) and selected representative
sequences using PCA as described above for computing the kernel.
Instead of being defined on sequences, the NSK is defined on sets
of sequences. Let X" be all possible sequences. Then, the NSK for
sets X, X' C X is defined as

ks(X,x/)

ki X ,X/ = _
NSk (X, X) rorm X )fnorm (X”)

xeX,x'eX’

ey

where the inner kernel kg is a kernel defined on sequences x,x’ € X
and fhorm(X) is a normalization function. Gértner et al. tested
different normalization functions. The normalization function that
performed well on their dataset was feature space normalization:

JrormX)= /erx,x’eXkS(x’x/)’ which is why we used this

approach in our experiments.

2.4 Prediction models for different data scenarios

We built different models to compare performances in different
scenarios. Since all models are binary classifiers that predict the
coreceptor usage phenotype (X4-capable versus not X4-capable)
from the genotype, the name of all models starts with geno2pheno-C.
If training and test data are from different sequencing techniques,
the training data are named first and the test data are named second.
The first scenario is that NGS data are available for all samples. In
this case, we extracted the best representatives as described above
and used an NSK with a Gaussian radial basis function (RBF)

kernel (Schélkopf and Smold, 2001) as the inner kernel function to
train a support vector machine (SVM) (Kh]ies_an.dlapnild, [1999).

This approach is called geno2pheno-Cngs. We also tested the NSK
based on all reads of a patient instead of just the representatives, but
this led to inferior results (data not shown). The second scenario is
that only bulk sequenced data from Sanger sequencing are available.
In this case we built two different models. The first one was a
standard model where each patient was represented by the unique
Sanger sequence in which all ambiguous positions were removed.
The learning model consisted of an SVM with the Gaussian RBF
kernel. This approach is called geno2pheno-Cganger- If there is
an ambiguity in the Sanger sequence (e.g. an R meaning that the
DNA base is a mixture of A and G), geno2pheno-Cganger treats
this as missing data. This may not be the best way to represent
these positions, because they may contain important information
on the viral population in a patient. Therefore, we implemented
a second approach in which we translated the Sanger sequence
of each patient into position-wise probabilities for A, C, G and
T. We then translated the sequences into amino acid sequences

with corresponding position-wise probabilities. Afterwards, we drew
3000 sequences from each probabilistic representation to obtain a
simulated NGS dataset. The mean number of reads for the NGS
dataset was 3000 which is why we chose this number. We then
used the same methods as for geno2pheno-Cngs. This approach is
called geno2pheno-Cgapger+. One of the main goals of this study
was to find out if we can improve predictions for bulk sequenced
Sanger data with a model trained on NGS data. With the described
methods this is now straightforward. One can represent each patient
sample either by the unique subsequence as in geno2pheno-Csanger
or by the representatives drawn from the simulated NGS sample as
in geno2pheno-Cgapger+. This can then be used together with the
geno2pheno-Cngg model to predict the labels using an NSK and
the Gaussian RBF kernel as inner kernel function. The approach
with the unique subsequence representation for the test sequences
is called geno2pheno-Cygs—sanger and the one with the sampled
representatives is called geno2pheno-C NGS—Sanger* -

2.5 Computing significance for predictor comparisons

To evaluate whether an improvement in prediction accuracy between
the different prediction models is significant we compared the logq
pVLreduction at Week 8 for the patient samples classified to be in the
at risk of X4 emergence group. Therefore, for each two methods in
question we tested whether the pVL reduction values of the patients
classified to be at risk of X4 emergence by the first method and
the pVL reduction values of the patients classified to be at risk of
X4 emergence by the second method came from distributions with
different medians using a Wilcoxon rank sum test. Since we knew
the direction of the possible median shift, we reported the one-sided
p-value.

2.6 Visualizing the importance of positions inside the
V3 loop

After creating a predictive model, it is of interest to evaluate what
effect the individual positions in the input sequences have in order to
visualize their importance. For linear learning methods such as linear
SVMs or linear regression, it is straightforward to determine which
positions of the sequence had a certain effect on the prediction. For
non-linear SVMs, there have been approaches for string kernels to
visualize the importance of k-mers at certain positions by using
the support vectors (Meinicke er all, 2004; [Sonnenburg er ail,

). The approach is based on the idea that the differences in
the positive and negative support vectors are informative for the
prediction because samples more similar to the positive support
vectors should be predicted positive and vice versa. This approach
is only applicable if there is a finite feature mapping ¢(x) such
that ¢(x1)-¢(xp)=k(x1,x). This is not possible, for example, for
the Gaussian RBF kernel for which the samples are mapped into
an infinite dimensional feature space O ,2001)).
Since we used the Gaussian RBF kernel as an inner kernel function
in the NSK, we wanted to generalize the idea. In our approach, we
did not use the support vectors directly. Instead, we started with a
consensus sample of all samples and changed one letter at a time
to determine whether the prediction changed toward the positive
or the negative side of the classification boundary. We chose the
consensus sequence since it was phenotyped by Ferndndez-Garcia
et al. ) as RS5. Changing one letter at a time is a reasonable

i591



N.Pfeifer and T.Lengauer

approximation since the SVM computes the signed distance from
the decision boundary for each test sample x by

m
d()=) _yi(aik(x,x)+b),
i=1
with training samples x|,xp,...,X;, optimized parameters « € R™,
offset b and class labels y; € {—1,1}. The training samples x; with
a; >0 are called the support vectors. The distance can be divided
into two parts:

dx)= Y (ik(e,x)+b)— Y (k(e,x)+b).  (2)

i:y,:] i;yi:—l

If we change x, then k(x,x;)=¢(x)-¢(x;) changes, which is the
kernel value of x and x;. This kernel value can be considered as
a similarity between the two sequences in the feature space that
corresponds to the mapping ¢. If the letter change leads to a change
toward the negative side of the decision boundary, then either the
first term of Equation () decreased or the second term increased or
both, meaning that the sequence became more similar (has a higher
k-value) to the negative support vectors compared with the positive
support vectors and vice versa for a change toward the positive
side. Therefore, one can compute a positional weight of a letter at a
certain position by changing the consensus sequence at that position
and measuring the change in d. More formally, let s;[i] be the letter ¢
at position i of sequence s;. We further have the consensus sequence
so of length n and ¥ being the alphabet of all possible letters. Given
(letter, position) pairs (c,i) with ce ¥ and 1 <i<n, we define the
sequence that only differs from the consensus sequence at position
i with letter ¢ as s(s)j[l]:C. The positional weight of the letter ¢ at
position i is then defined as

silil=c

w(c,i):d(s0 )—d(sg)-

This method is not limited to the kernels we used in our experiments.
One can imagine that this strategy also provides interesting insights
for an SVM with a graph kernel where one can construct a consensus
graph and only change the value of one node at a time to assign
weights to the particular nodes according to the difference in
prediction. If it is expected that positions are correlated, one can
further generalize this idea to change pairs of positions or even
higher orders.

2.7 Determining the most important positions for
prediction success

Given a trained classifier, the training samples and a set of correctly
classified sequences evaluating which positions influenced the
prediction performance most is an important part of interpreting the
model. For this purpose, we compiled a set P of (position, amino
acid) pairs containing all pairs that existed in the set of correctly
classified sequences and were different from the (position, amino
acid) information of the consensus sequence. Then we constructed
two sets of sequences. The first set contained all representatives of
all training sequences with a positive class label and the second set
contained all representatives of all training sequences with a negative
class label. We then performed Fisher’s exact test for all elements
of P using the positive and the negative set.

In our dataset, we were particularly interested in finding cases
where the additional reads from the NGS sample helped to improve
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Fig. 2. Fold reduction in plasma viral load (PVL): This plot shows the
log, reduction in PVL at week eight compared with baseline levels measured
as copies/ml

predictions. Therefore, we removed each modal sequence, the
sequence with the highest read count, for each set of representatives
before constructing the positive and the negative set as described
above. We then again performed a Fisher’s exact test on all elements
of P. The important (position, amino acid) pairs were the ones that
had a smaller p-value in the second test and were significant after
Bonferroni correction (p-value <0.05/|P)).

3 RESULTS

This section is structured into three main parts. In the first part,
we show that by considering the reads of a patient jointly our
new method that uses NGS data has higher predictive power than
established methods. Furthermore, we can show that one can use
our NGS model to improve performance for predictions based on
Sanger sequences. This is particularly important since many clinics
are still using this sequencing technology. Thus, any improvement
directly has an impact. In the second part, we demonstrate how
we can use our model to visualize which sequence positions are
most informative about the classification. The third part shows that
the most significant sequence positions are localized at structurally
important places.

3.1 Performance comparison

Since we used the same dataset as Swenson et al. (2011), we could
directly compare the performance of our and their method. They used
the NGS data in a different way than we did. Their prediction method
consisted of two steps. First, the label of each read was predicted
using_either geno2pheno (IE]EE EE EZ], |ESZ$!Z) or WebPSSM (Jensen
et al., ). In the second step, they classified the sample of a
patient as X4-capable if 2% of the reads or more had an X4-capable
label. Otherwise, they classified the sample as RS5. It has to be noted
that they used 75% of the test data to determine the cutoffs of their
method (the geno2pheno and WebPSSM cutoffs as well as the cutoff
to decide at which percentage of X4-capable reads the sample is
classified as X4-capable). In our evaluation we did not train on any
test data. Instead, we performed a nested cross-validation (CV) and
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Table 1. log;, reduction in pVL after eight weeks

Table 2. Sustained virologic response

no risk at risk A no risk at risk
geno2pheno-Csanger 2.4 2.3 0.1 geno2pheno-Cganger 47% 42%
geno2pheno-Cgpeer+ 2.4 2.1 0.3 geno2pheno-Cgypger+ 46% 36%
geno2pheno-CNGs —sanger 2.4 1.9 0.5 geno2pheno-CNGs—sanger 47% 33%
geno2pheno-Cngs—sanger+ 2.4 1.7 0.7 geno2pheno-Cngs —sanger+ 47% 31%
geno2pheno-Cngs 2.4 1.0 14 geno2pheno-Cngs 48% 22%
Swenson et al.? 2.4 (1.4) (1.0) Swenson et al.® (49%) (26%)

Performance comparison for the different methods regarding the median reduction of
logjo pVL in the different patient groups, measured in copies/ml eight weeks after
the beginning of the treatment: The first number corresponds to patients that had been
classified as no risk of X4 emergence and the second number is for the patients classified
as at risk of X4 emergence. The third number corresponds to the difference between
the medians of the ‘no risk’ and the ‘at risk’ group. The larger the A the better the
prediction method is able to distinguish patients with treatment success from patients
without treatment success.

4In contrast to the other approaches, parts of the test data were utilized to optimize
model parameters.

reported performance on the held-out test partitions. Since every
part of the data was in a test partition at one point of the evaluation,
we could obtain a test performance on the whole dataset.

The dataset contained viral load measurements at various different
time points. Swenson et al. suggested that the pVL measurement
at week eight was a good indicator of treatment success, which
is why we used it to compute training and test labels. Since we
wanted to classify the viral samples of patients according to whether
they induced failure of maraviroc treatment, we had to decide
which reduction in viral load between baseline and week eight
was considered too little. Figure [2] shows that there is a bimodal
distribution of the pVL reduction. It seems that for a log | reduction
in viral load larger than two it is likely that the patient belongs to the
right group (the group with significant pVL reduction). Therefore,
we used this value as a threshold, but the choice of this threshold did
not vary performance results significantly as long as it was chosen
within a reasonable range (log;y reduction between 1.5 and 2.1,
which corresponds to a reduction by factors between 31 and 126 of
the pVLs). In previous coreceptor usage prediction approaches RS
sequences were assigned a negative label and X4-capable sequences
obtained a positive label. Therefore, we used at risk of X4 emergence
as the positive class and not at risk of X4 emergence as the negative
class instead of treatment failure and treatment success.

To compare performances of the different approaches we ran a
5-fold nested CV on the dataset. This means that we randomly split
the dataset into five parts, performed an inner CV on four of the
five parts to determine the best parameters and then measured the
performance on the left-out fifth part. This was done for all possible
combinations. We repeated this process five times to minimize
random effects and report the mean performance over these five
runs in the following. In order to compare our performances to the
performances by Swenson et al., we reported the same measures as
they did. One measure they introduced was the pVL reduction of the
patients after eight weeks of treatment. If a method only classified
patients randomly into the two classes one would expect to obtain the
same median pVL reduction for both classes. The more the medians
differed because of a higher pVL reduction for the patients in the
not at risk of X4 emergence class and a lower pVL reduction in the
at risk of X4 emergence class the better was the method, because it

Performance of the different methods regarding sustained virologic response defined as
having a pVL lower than 50 copies/ml at week 48: The first number is the percentage
of patients with a sustained virologic response that had been classified as no risk of X4
emergence and the second number gives this percentage for the patients classified as ar
risk of X4 emergence.

4In contrast to the other approaches, parts of the test data were utilized to optimize
model parameters.

was able to distinguish patients that could benefit from maraviroc
treatment from the ones that could not.

The performance comparison of the different approaches is listed
in Table [l The first number in each cell gives the median logyg
pVL reduction in patients who were classified as no risk of X4
emergence (—) and the second number gives the median log
pVL reduction in patients who were classified as at risk of X4
emergence (+). As mentioned above, the first number should be
as high as possible while the second number is the better the
smaller it is for the purpose of clean separation between the two
classes. It can be seen that the standard method on Sanger sequences
performed badly. We could improve on the performance of this
baseline method by incorporating the uncertainties at ambiguous
sequence positions (geno2pheno-Cganger+)- Additionally, we could
show that test performance increased if a model trained with
NGS data was available, while the test set based on the sampled
representatives (geno2pheno-CNGS—Sangert) had slightly higher
predictive power than the approach that utilized the unique Sanger
subsequence (geno2pheno-CNGS.Sanger)- The improvement from
geno2pheno-Csapger 0 geno2pheno-CNGS—Sangert Was  highly
significant (p-value=6.22e —05), while it was only significant at
significance level o =0.11 or higher for the improvement from
geno2pheno-Cgapger+ t0 geno2pheno-CNGs—Sangert (p-value=
0.11). As expected the best performance could be achieved if
training and test data were NGS data (geno2pheno-Cngs). The
improvement from geno2pheno-CNGS—Sangert O geno2pheno-
Cngs was highly significant (p-value=0.0019). The method had
even higher predictive power than the method by Swenson et al.
since the median pVL reduction was smaller in the (4) group (1.0
compared with 1.4), while it was similar for the (—) group (2.4 for
both approaches). Nevertheless, the improvement compared with
an implementation of the method by Swenson ef al. in which we
learnt the thresholds in a nested CV was not significant (data not
shown). It has to be noted that we did not expect to obtain a
value of O for the (+) group since the patients were treated not
only with maraviroc, but also with a combination of other anti-HIV
drugs that were specifically tailored to the HIV viruses in the study
participants.

Another performance measure mentioned in Swenson et al. was
the proportion of people with a sustained virologic response. This
classification was positive for patients having a pVL lower than
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CTRPGNNTRKRIKFGPGRAFYT SGGIIGDIRQAHC

Fig. 3. Visualization example of a prediction: This plot shows the
visualization of the positional weights as described in the Methods section
for one test sequence during one of the nested CV runs of geno2pheno-
CNGS—Sanger- The letters are depicted in different colors according to the
positional weights. The red color corresponds to the at risk of X4 emergence
class. Positions that make the sequence more similar to no risk of X4
emergence sequences are marked in green. The higher the positional weight,
the larger is the corresponding letter

11

W."
4
\_‘; 27

Fig. 4. Bound V3 loop with highlighted important positions: This plot
shows the V3 loop of the PDB structure 2QAD N m),
visualized with BALLView , M). The important

positions are highlighted in yellow

50 copies/ml at Week 48. Similar to the reduction in pVL, for a
good predictor the percentage of patients with sustained virologic
response in the no risk of X4 emergence class should be as high
as possible, while it should be as low as possible for the people
classified as at risk of X4 emergence. The performance according
to this measure repeated the patterns from the previous measure,
meaning that we could improve on test performance for Sanger
data by using the model that incorporates positional uncertainties.
Furthermore, the model trained on NGS data improved the Sanger
data test set predictions, again slightly favoring the approach based
on the sampled representatives. Additionally, our model that only
uses NGS data for training and test had higher predictive power than
the approach by Swenson et al., although the improvement was not
statistically significant compared to a nested CV implementation of
the method by Swenson et al. (data not shown).

3.2 Important positions for prediction success

Interpretation of predictions is a central issue in this field. Very
often researchers restrain themselves to simple linear methods
for purposes of interpretability and while sacrificing performance.
Since we did not use a linear learning algorithm, we showed in
Section 2 how to derive meaningful positional weights to obtain
interpretable results without sacrificing performance. An example
for one of the test sequences in a geno2pheno-CNGS—Sanger Iun
can be seen in Figure @ For this sequence, the two positions
with the highest weights were positions 11 and 14. Specifically,
an R at position 11 and an F at position 14 were most predictive

Table 3. Important positions for prediction success

(pos, aa): p-value (pos, aa): p-value (pos, aa): p-value

run 1 (9,K):5.88405¢e—08 (11,R):1.09165¢—06 (27,V):3.09939¢ —05
run 2 (9,K):3.71415e—07 (11,R):2.24278e—05 (27,V):2.75498e — 05
run 3 (9,K):1.23451e—05

run4 (19,V):8.1314e—05 (31,K):1.25565¢—05

run 5 (11,R):1.32773e—07 (19,V):1.37038e—05 (25,A):3.75772e—05

This table shows the (position, amino acid) pairs that were significant after Bonferroni
correction and had a smaller p-value in the test without the modal sequence
representatives.

for the at risk of X4 emergence class. One could generalize the
idea to the sampled representatives of geno2pheno-CNGs—Sanger+
by weighting the different letters per position with their
occurrences.

We were interested in the (position, amino acid) pairs that had a
lower p-value in the set without the modal sequence than in the set
with the modal sequence, because this points to extra information
provided by the NGS training data. Therefore, we performed a
statistical test as described in Section 2. This was done for each
of the five runs of the nested CV of geno2pheno-CNGS—Sanger but
one could easily adapt this approach to the sampled representatives
of geno2pheno-CNGS—Sanger+ - The pairs remaining significant after
Bonferroni correction are shown in Table Bl The 11/25 rule is one
of the simplest ways to predict coreceptor usage based on the V3
loop sequence m&’m, M). In this approach, one checks
for basic side chains at position 11 or 25, implicating that these
positions are most important for prediction success. Positions 11
and 25 were part of the positions for which we found a significant
(position, amino acid) pair. Figure B shows the three-dimensional
structure of a bound V3 loop with the important positions highlighted
in yellow. One can see that position nine is in close proximity
to position 25, which supports the hypothesis that position nine
is important for the prediction, because one can expect that a
change at position 25 affects the binding to the amino acid at
position nine and vice versa. Position 19 was also identified as a
polymorphic position in information-theoretic analyses by Korber
et al. (1993). Note that in their analysis the numbering starts at
the second letter of the V3 loop which is why position 19 in
our analysis corresponds to number 18 in their analysis. Bickel
et al. 1“ 5%3) analyzed a larger dataset than Korber ef al. using the
same numbering and, among other covarying positions, they found
covariability between position 26 and position 7 (27 and 8 in our
analysis). This interaction is also supported by the V3 loop structure
in Figure @l All these hints from the literature support the hypothesis
that the amino acid changes at the positions of the significant pairs
of our analysis may impact the conformation of the V3 loop in
terms of whether it can bind to the CCRS coreceptor or the CXCR4
coreceptor. We were particularly interested in the changes that
improve the prediction and are not supported by the modal sequence,
to evaluate which additional benefit can be achieved by using NGS
data instead of Sanger sequences. Our approach is able to leverage
the information stemming from the more detailed resolution of the
viral population afforded by NGS data to infer signals in Sanger
sequences that orginate from viral minorities that make their mark
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on bulk sequences but do so insufficiently for be of benefit to the
learning algorithm. The ability of geno2pheno-CNGs—Sanger and
geno2pheno-CNGS —Sangert to pick up these signals is one possible
explanation for the fact that these methods had higher predictive
power than geno2pheno-Cganger and geno2pheno-Csanger+ -

4 CONCLUSION

Due to the high mutation rate of HIV, the viral populations inside
a patient are constantly changing. This is one of the main reasons
why until today there is no approved vaccine against HIV. It is
also the main reason why researchers constantly have to find new
ways to attack the virus. One of the new classes of anti-HIV drugs
are CCRS coreceptor antagonists. Since they are only effective
against RS viruses, it is very important to apply a reliable and
fast companion diagnostic before administering this type of drug
to a patient. Phenotypic tests such as Trofile or ESTA have a long
turnaround time, are costly and not easily accessible, and require a
large sample volume, which is why an accurate genotypic test has
many advantages. We were able to build a superior predictor by
prioritizing the most informative strains in a viral population and
crafting a more complex information merging procedure based on
a set kernel, rather than uniformly processing all strains occurring
in the population and merging information by using simple cutoffs.
Furthermore, we could show how to construct better predictors for
bulk sequenced Sanger sequences. This is very important since few
clinics have the means to routinely sequence patient samples with
NGS techniques. Additionally, we provided a method to visualize
how informative particular positions in the sequences are in terms of
the final prediction. We were also able to show which amino acids
at which positions were probably responsible for the performance
gain. We used this information to speculate about the structural
differences between the V3 loops of R5 and X4 viruses and might
help to identify important interactions between the V3 loop and the
particular coreceptors.

Our framework is very general. One can easily incorporate
additional features of interest (e.g. structural descriptors) by using
different feature encodings or other kernel functions in the inner
kernel. Furthermore, this approach is not limited to predicting
coreceptor usage and should be applicable to a wide variety of
prediction problems with NGS data, especially in cases where the
whole region of interest can be covered by one read.
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