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ABSTRACT

Motivation: Prediction of protein function from protein interaction
networks has received attention in the post-genomic era. A popular
strategy has been to cluster the network into functionally coherent
groups of proteins and assign the entire cluster with a function
based on functions of its annotated members. Traditionally, network
research has focused on clustering of nodes. However, clustering of
edges may be preferred: nodes belong to multiple functional groups,
but clustering of nodes typically cannot capture the group overlap,
while clustering of edges can. Clustering of adjacent edges that share
many neighbors was proposed recently, outperforming different node
clustering methods. However, since some biological processes can
have characteristic ‘signatures’ throughout the network, not just
locally, it may be of interest to consider edges that are not necessarily
adjacent.
Results: We design a sensitive measure of the ‘topological similarity’
of edges that can deal with edges that are not necessarily adjacent.
We cluster edges that are similar according to our measure in different
baker’s yeast protein interaction networks, outperforming existing
node and edge clustering approaches. We apply our approach to the
human network to predict new pathogen-interacting proteins. This is
important, since these proteins represent drug target candidates.
Availability: Software executables are freely available upon request.
Contact: tmilenko@nd.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Network research spans many domains. We focus on protein–
protein interaction (PPI) networks, with the goal of identifying new
pathogen-interacting proteins. In PPI networks, nodes are proteins
and undirected edges correspond to physical binding between the
proteins. We focus on PPI networks since it is the proteins, gene
products, that carry out most biological processes, and they do
so by interacting with other proteins. High-throughput screens for
interaction detection, such as yeast two-hybrid (Y2H) assays or
affinity purification coupled to mass spectrometry (AP/MS), have
yielded partial PPI networks for many model organisms and human
(Giot et al., 2003; Simonis et al., 2009; Stelzl et al., 2005; Yu et al.,
2008), as well as for bacterial and viral pathogens (LaCount et al.,
2005; Parrish et al., 2007). Many biological network datasets are
now publicly available (Breitkreutz et al., 2008; Peri et al., 2004).

Analogous to genomic sequence research, biological network
research will impact our biological understanding. However, it is
in its infancy, owing to computational hardness of many graph
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theoretic problems (Cook, 1971), as well as to incompleteness of
the current network data. Importantly, the number of functionally
uncharacterized proteins is large even for well-studied model species
(Sharan et al., 2007). Computational characterization of protein
function could save resources needed for biological experiments.
In particular, PPI network analysis could suggest likely candidates
for experimental validation, since proteins aggregate to perform a
function, and since PPI networks model these aggregations.

Thus, prediction of protein function (Sharan et al., 2007) and the
role of proteins in disease (Goh et al., 2007; Radivojac et al., 2008;
Sharan and Ideker, 2008; Vanunu et al., 2010) from PPI networks
have received attention in the post-genomic era. It has been argued
that proteins that are close in the network are involved in similar
biological processes (Sharan et al., 2007) that ‘topologically central’
proteins correspond to ‘biologically central’ (e.g. lethal, aging- or
cancer-related) proteins (Jeong et al., 2001; Jonsson and Bates, 2006;
Milenković et al., 2011; Sharan and Ideker, 2008) or that proteins
with similar topological neighborhoods have similar biological
characteristics (Ho et al., 2010; Milenković and Pržulj, 2008).

A particularly popular strategy for functional characterization of
proteins has been to cluster the network into functionally ‘coherent’
groups of nodes and assign the entire cluster with a function based on
functions of its annotated members (Sharan and Ideker, 2008; Sharan
et al., 2007). A variety of clustering approaches exist, each with
its own (dis)advantages (Brohee and van Helden, 2006; Fortunato,
2010). Typically, they aim to group nodes that are in a dense
connected network region (Fortunato, 2010). In addition, approaches
exist that cluster ‘topologically similar’ nodes without the nodes
necessarily being connected in the network. This is important, since
a biological process can have characteristic topological ‘signatures’
throughout the network, not just locally in close network proximity
(Ho et al., 2010; Milenković et al., 2010; Milenković and Pržulj,
2008). For example, we designed a measure that computes the
topological similarity of the extended network neighborhoods of
two nodes, without the nodes necessarily being close in the network
(Milenković and Pržulj, 2008). We found that 96% of known
cancer gene pairs that are topologically similar according to our
measure are actually not neighbors in the PPI network; instead,
they are at the shortest path distance of up to six (Milenković
et al., 2010). As such, they may be missed by approaches that focus
on connected nodes only. We clustered proteins in the human PPI
network that are topologically similar and showed that function of
a protein and its network position are closely related (Milenković
and Pržulj, 2008) and that the topology around cancer and non-
cancer genes is different (Milenković et al., 2010). We used these
observations to predict new cancer genes in melanogenesis-related
pathways and our predictions were validated phenotypically (Ho
et al., 2010).

Traditionally, network research has focused on clustering of nodes
(Fortunato, 2010). However, a network consists of nodes and edges.
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Fig. 1. Node clustering (left) versus edge clustering (right)

Hence, why favor nodes over edges, especially when clustering of
edges may be preferred? Since nodes typically belong to multiple
functional groups, and since clusters are expected to correspond to
the groups, it may be desirable to allow for a node to belong to
multiple clusters. Clustering of nodes typically cannot capture the
group overlap, especially if the network is partitioned into disjoint
node sets, as is the case with many (although not all) node clustering
approaches (Fortunato, 2010). However, clustering of edges can
easily capture the group overlap (Fig. 1). Edge clustering was
proposed only recently (Ahn et al., 2010; Evans and Lambiotte,
2009). Adjacent (connected) edges that share many neighbors were
defined as similar and were thus clustered together (Ahn et al.,
2010), outperforming different node clustering methods, including
a method that allows for the group overlap. However, it may be
of interest to consider edges that are not necessarily adjacent. For
example, 97% of pairs of human proteins that both interact with
the same pathogen are actually not adjacent in the PPI network. In
fact, they are at the shortest path distance of up to five. So, they
may be missed by approaches that focus on adjacent edges only,
since the end nodes of adjacent edges are at most at the distance
of two.

Hence, we introduce a new measure of edge similarity that is
not only capable of dealing with edges that are not necessarily
adjacent, but is also a more sensitive measure of topology than the
above shared-neighborhood measure (Ahn et al., 2010). We show
that grouping of edges that are similar according to our measure
results in clusters of comparable or better quality than the above
clustering approach by Ahn et al. 2010. We apply our clustering
strategy to the human PPI network to identify from the clusters new
pathogen-interacting proteins and hence drug target candidates.

1.1 Our contribution
We recently designed a graphlet-based measure of the network
position of a node; graphlets are small induced subgraphs (Fig. 2)
(Pržulj, 2007). This measure generalizes the degree of a node that
counts the number of edges that the node touches (where an edge
is the only 2-node graphlet) into the node graphlet degree vector
(node-GDV) that counts the number of 2 to 5-node graphlets that
the node touches (see Section 2). Hence, node-GDV describes the
topology of the node’s up to 4-deep neighborhood (Milenković and
Pržulj, 2008). This is effective: going to distance of four around a
node captures a large portion of real networks, as they are small-
world (Watts and Strogatz, 1998). For this reason, and since the
number of graphlets on n nodes increases exponentially with n, using
larger graphlets could unnecessarily increase the computational
complexity. In addition, we designed node-GDV-similarity measure
to compare node-GDVs of two nodes and quantify the topological
similarity of their extended network neighborhoods (Milenković and
Pržulj, 2008).

Now, we design edge-GDV to count the number of different
graphlets that an edge touches (Fig. 2), and we design edge-GDV-
similarity to compare edge-GDVs of two edges and quantify the
topological similarity of their extended network neighborhoods (see
Section 2). Unlike the shared-neighborhood measure (Ahn et al.,
2010), edge-GDV-similarity can deal with edges independent on
whether they are adjacent. In addition, by counting the shared
neighbors of end nodes of two (adjacent) edges, the shared-
neighborhood measure actually counts the 3-node paths that the end
nodes share (Ahn et al., 2010). Since edge-GDV counts the different
up to 5-node graphlets that an edge touches, including 3-node paths,
edge-GDV is a more constraining measure of topology. See Section
2 for details.

We cluster edge-GDV-similar edges in the human PPI network
to predict new pathogen-interacting (PI) proteins from the clusters.
But first, we compare our approach to existing clustering methods,
as follows. The existing edge clustering method mentioned above,
henceforth denoted by edge - shared neighborhood (edge-SN) (Ahn
et al., 2010), was already shown to be superior to different node
clustering methods on four baker’s yeast PPI networks. With our
approach, we cluster edges in the same way as edge-SN, but we use
edge-GDV-similarity instead of the edge-SN’s shared-neighborhood
measure as the distance metric, without changing other aspects of
the clustering procedure. This way, we can evaluate the contribution
of edge-GDV-similarity alone to the quality of clusters. Just as
Ahn et al. 2010, we (initially) cluster only adjacent edges, and of
all partitions, we choose the one with the maximum density (see
Section 2). Just as Ahn et al. 2010, we evaluate such partition with
respect to: cluster coverage (the portion of the network ‘covered’
by ‘non-trivial’ clusters), overlap coverage (the amount of node
overlap between clusters), cluster quality (enrichment of clusters in
Gene Ontology (GO) terms (Ashburner et al., 2000)) and overlap
quality (the correlation between the number of clusters and the
number of GO terms that nodes participate in). When applied to
the same yeast networks, our approach in comparable or superior
to edge-SN (and hence to the node clustering approaches that were
outperformed by edge-SN). Thus, we gain by using a more sensitive
measure of topology compared to edge-SN. When we cluster both
adjacent and non-adjacent edges, our method in general performs
even better. Hence, we gain further by using a measure that can
deal with edges that are not necessarily adjacent. We note that we
do not propose a new clustering method but a new edge similarity
measure that can serve as a distance metric for existing clustering
methods.

After we evaluate our approach on yeast, we apply it to human,
hypothesizing that if many end nodes of edges in a cluster are
PI proteins, then the other end nodes of edges in that cluster are
likely PI proteins. Here, instead of comparing different distance
metrics within the same clustering method (as above), we aim to
compare different clustering methods when using the same (best)
distance metric. Hence, we use edge-GDV-similarity as the distance
metric for two popular clustering methods: hierarchical and k-means
(i.e. k-medoids) clustering (see Section 2). In addition, we aim
to evaluate how much we gain by clustering edges compared to
clustering nodes. This is partially answered on yeast, since we
compare our method to edge-SN, which was already compared to
different node clustering methods on the same networks. However,
our edge clustering method (and hence edge-SN) is conceptually
different than these node clustering methods. For a fair comparison
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of edge and node clustering, we use edge-GDV-similarity and node-
GDV-similarity, conceptually equivalent measures of the network
position of an edge and a node, respectively, as distance metrics for
the same clustering method. We do this for both hierarchical and
k-medoids clustering.

Hence, we apply four clustering strategies to human to predict new
PI proteins: hierarchical node clustering (node-HIE), hierarchical
edge clustering (edge-HIE), k-medoids node clustering (node-
KM) and k-medoids edge clustering (edge-KM). We evaluate their
prediction accuracies in systematic leave-one-out cross-validation
and precision–recall settings (see Section 2). Interestingly, edge-
HIE is superior, followed by node-KM, edge-KM and node-HIE.
Since all clustering strategies except node-HIE produce non-
random results, for each of them, we identify clusters that are
statistically significantly enriched in known PI proteins and predict
novel PI proteins from the clusters. This way, we complement
predictions produced by the different strategies. We study their
overlap and identify ‘high-confidence’ predictions produced by
multiple strategies. We validate 44% of our predictions in the
literature.

2 METHODS

2.1 Datasets
Yeast PPI networks. We cluster the same four baker’s yeast PPI networks
that edge-SN was evaluated on (Ahn et al., 2010; Yu et al., 2008): i) Y2H
network, obtained by Y2H, with 1647 proteins and 2518 PPIs; ii) AP/MS
network, obtained by AP/MS, with 1004 proteins and 8319 PPIs; iii) LC
network, obtained by literature curation, with 1213 proteins and 2556 PPIs
and iv) ALL network, representing the union of Y2H, AP/MS and LC, with
2729 proteins and 12 174 PPIs. Using these different networks ensures that
our method is robust to different types of experiments for PPI detection.

The human PPI network. The human PPIs were obtained in July 2011
from BioGRID (version 3.1.79) (Breitkreutz et al., 2008) and HPRD (Peri
et al., 2004). We take the union of the two networks (using UniProt protein
IDs (The UniProt Consortium, 2012)) to increase the coverage of the cellular
space, resulting in 12 111 unique proteins and 59 191 unique PPIs.

Pathogen-interacting proteins. 9884 human–pathogen PPIs were obtained
from VirusMint (Chatr-aryamontri et al., 2009) and Dyer et al., 2008. The
PPIs involve 1338 human proteins, of which 1113 are present in the human
PPI network, and 706 pathogen proteins from 193 pathogens.

2.2 Related work
We compare our method to three popular node clustering methods: clique
percolation (Palla et al., 2005), greedy modularity optimization (Newman,
2004) and Infomap (Rosvall and Bergstrom, 2008). In addition, we compare
it to the existing edge clustering algorithm, edge-SN (Ahn et al., 2010).
Briefly, clique percolation is the most prominent overlapping node clustering
algorithm, greedy modularity optimization is the most popular modularity-
based technique, and Infomap is often considered the most accurate method
available (Ahn et al., 2010). Edge-SN hierarchically groups adjacent edges
whose non-common end nodes share many neighbors (see below). We did
not run these algorithms on the yeast networks ourselves. Instead, we use
the results reported by Ahn et al. (2010) who ran the algorithms on the
same networks. For details on how the methods were implemented, see Ahn
et al. (2010). We do explain how Ahn et al. (2010) implemented edge-SN,
as we implement our method in the same way (except that we use a different
distance metric).

Edge-SN algorithm works as follows. If the set of node i and its
neighbors is denoted as n(i), the similarity between adjacent edges eik

Fig. 2. All 2 to 5-node graphlets. They contain 73 topologically unique ‘node
orbits.’ In a graphlet, nodes in the same node orbit are of the same shade
(Pržulj, 2007). They also contain 69 topologically unique ‘edge orbits.’ (3–
5-node graphlets contain 68 edge orbits.) Edge orbits are defined by node
orbits of the edges’ end nodes (an alternative definition exists; see the main
text). In a graphlet, different edge orbits are numbered differently.

and ejk with common node k is S(eik ,ejk )=|n(i)∩n(j)|/|n(i)∪n(j)|. This
shared-neighborhood measure is used as a distance metric for single-linkage
hierarchical clustering. With this method, a tree or dendrogram, is created.
Leaves of the tree are edges of the network and an interior node in the
tree represents a cluster made up of all children of the node. The tree is
constructed by assigning each edge to its own cluster and iteratively merging
the most similar pair of clusters. The tree has to be cut in order to create a
partition of K clusters. To determine where to cut the tree, edge-SN uses
an objective function called partition density, computed as follows. For a
network with M edges, {P1,··· ,PK } is a partition of the edges into K clusters.
Cluster C has mC =|C| edges and nC =|∪eij∈C i,j| nodes. C’s density is
DC =[mC −(nC −1)]/[nC (nC −1)/2−(nC −1)] and the partition density is
D= (2/M )

∑
K [mC (mC −(nC −1))/((nC −2)(nC −1))]. For details, see Ahn

et al. (2010). Edge-SN cuts the tree at different levels and chooses a partition
with the maximum value of D. However, meaningful structure may also exist
above and below the level corresponding to maximum D (Ahn et al., 2010).

2.3 New measures of network topology: edge graphlet
degree vector (edge-GDV) and edge-GDV-similarity

A graphlet is an induced subgraph of graph X that contains all edges of
X connecting its nodes (Fig. 2). We generalized the degree of node v that
counts the number of edges that v touches (where an edge is the only 2-node
graphlet, G0 in Fig. 2) into node graphlet degree vector (node-GDV) of v
that counts the number of 2–5-node graphlets (G0, G1, ..., G29 in Fig. 2) that
v touches (Milenković and Pržulj, 2008). We need to distinguish between v
touching, e.g. a G1 at an end node or at the middle node, since G1 admits
an automorphism that maps its end nodes to each other and the middle
node to itself. To understand this, recall the following. An isomorphism
f from graph X to graph Y is a bijection of nodes of X to nodes of Y
such that xy is an edge of X if and only if f (x)f (y) is an edge of Y . An
automorphism is an isomorphism from X to itself. The automorphisms of
X form the automorphism group, Aut(X ). If x is a node of X , then the
automorphism node orbit of x is Orb(x)={y∈V (X )|y= f (x) for some f ∈
Aut(X )}, where V (X ) is the set of nodes of X . Thus, end nodes of a G1

belong to one node orbit, while its middle node belongs to another one.
There are 73 node orbits for 2–5-node graphlets. Hence, node-GDV of v has
73 elements counting how many node orbits of each type touch v (v’s degree
is the first element). It captures v’s up to 4-deep neighborhood and thus a
large portion of real networks, as they are small-world (Watts and Strogatz,
1998).

Since a graphlet contains nodes and edges, we propose a new graphlet-
based measure of the network position of an edge. We define edge-GDV
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to count the number of graphlets that an edge touches at a given ‘edge
orbit’ (Fig. 2). We define edge orbits as follows. Given the automorphism
group of graph X , Aut(X ), if xy is an edge of X , then the edge orbit of xy
is Orbe(xy)={zw∈E(X )|z = f (x) and w= f (y) for some f ∈Aut(X )}, where
E(X ) is the set of edges of X . Alternatively, we can define edge orbits as
follows. An edge-automorphism from graph X to graph Y is a bijection g of
edges of X to edges of Y such that two edges xy and zw share a node in X if
and only if edges g(xy) and g(zw) share a node in Y . An edge-automorphism
is an edge-isomorphism from X to itself. The edge-automorphisms of X
form the edge-automorphism group, Aute(X ). If xy is an edge of X , then the
edge orbit of xy is Orbe(xy)={zw∈E(X )|zw=g(xy) for some g ∈Aute(X )}.
Independent of which of the two definitions we choose, the resulting edge
orbits are the same. For example, in Fig. 2, in a G1, both edges are in edge
orbit 1. In a G2, all three edges are in edge orbit 2. In a G3, the two ‘outer’
edges are in edge orbit 3, while the ‘middle’ edge is in edge orbit 4, and
so on. There are 68 edge orbits for 3 to 5-node graphlets. (We intentionally
exclude edge orbit 0 in the only 2-node graphlet, G0, as each edge touches
exactly one G0, i.e. itself.)

Comparing edge-GDVs of two edges gives a sensitive measure of their
topological similarity, since their extended network neighborhoods are
compared. Using some existing measure, e.g. Euclidean distance, to compare
edge-GDVs might be inappropriate, as some edge orbits are not independent.
Instead, we design edge-GDV-similarity measure as follows. For an edge e, ei

is the ith element of its edge-GDV. The distance between the ith edge orbits of
edges e and f is Di(e,f )=wi ×|log(ei +1)−log(fi +1)|/log(max{ei,fi}+2),
where wi is the weight of edge orbit i that accounts for edge orbit
dependencies. For example, the differences in counts of orbit 2 of two
edges will imply the differences in counts of all other orbits that contain
orbit 2, such as orbits 8–12 (Fig. 2). This is applied to all edge orbits: the
smaller the number of orbits that affect orbit i (including itself), oi , the
higher its weight wi , where wi =1−log(oi)/log(68). Clearly, wi is in (0,1]
and the highest weight of 1 is assigned to orbit i with oi =1. The log is
used in the formula for Di because the ith elements of two edge-GDVs
can differ by several orders of magnitude and we do not want the distance
between edge-GDVs to be dominated by large values; in addition, we want
to account for the relative difference between ei and fi and that is why we
divide by the value of the denominator, which also scales Di to [0, 1). The
constants are added to prevent Di to be infinite. The total distance is D(e,f )=∑68

i=0 Di/
∑68

i=0 wi . Finally, edge-GDV-similarity is S(e,f )=1−D(e,f ). It is
in (0, 1]. The higher the edge-GDV-similarity, the higher the topological
similarity of edges’extended network neighborhoods. We design edge-GDV-
similarity as described because we already designed node-GDV-similarity,
which compares node-GDVs, in a similar way (Milenković and Pržulj, 2008),
and because we showed in different contexts that node-GDV-similarity
successfully extracts function from network topology (Kuchaiev et al., 2010;
Memisević et al., 2010; Milenković et al., 2010, 2011). So, we expect
edge-GDV-similarity to successfully extract function from topology as well.

2.4 Our clustering strategies
Clustering of the yeast PPI networks. We cluster the yeast PPI networks
in the same manner as edge-SN, except that we use edge-GDV-similarity
as the distance metrics instead of using the shared-neighborhood measure.
Initially, for a fair comparison with edge-SN, we cluster adjacent edges only,
to test if and how much we gain by using our more sensitive measure of edge
similarity. Later on, we cluster all edges, to test if and how much we gain
by taking into account edges that are not necessarily adjacent. Some further
information is provided below, after defining measures of partition quality.

Clustering of the human PPI network. We cluster the human PPI network
to identify novel PI proteins from the clusters. To test if and how much
we gain by clustering edges instead of nodes, we use edge-GDV-similarity
as the distance metric to cluster edges, and we use node-GDV-similarity
as the distance metric to cluster nodes. We do this for two popular
clustering methods: hierarchical clustering and k-medoids clustering. With

all four clustering strategies (hierarchical node clustering, hierarchical edge
clustering, k-medoids node clustering and k-medoids edge clustering), we
cluster nodes/edges independent on whether they are adjacent. When node-
/edge-GDV-similarities are computed, all proteins and PPIs in the human
network are considered. However, in the clustering process and in subsequent
analyses of the clusters, we consider only nodes with more than three
interacting partners in the network; consequently, we consider only edges
with both end nodes having degree of more than three. We do this since poorly
connected proteins are more likely to be involved in noisy PPIs. Similar was
done previously (Brun et al., 2004; Ho et al., 2010; Milenković et al., 2010).
In the network, there are 6121 proteins with degrees higher than three (of
which 948 are PI proteins) and there are 47 735 edges between these proteins.

We form hierarchical tree as described above, clustering both adjacent and
non-adjacent nodes/edges. We cluster non-adjacent nodes/edges because we
hypothesize that function is encoded throughout the network, not just in
dense connected local network regions. For this reason, choosing a partition
with the maximum partition density might be inappropriate. Instead, we
choose a partition as follows. We already clustered the human PPI network
into hierarchical node clusters and tested many values for the desired
number of clusters, KHIE: 100, 250, 500, 750, 1000, 1250, 1500, 1750,
2000, 2250 and 2500 (Milenković et al., 2010). KHIE of 1250 resulted in
the best overall precision-recall (see Milenković et al. (2010) for details).
Hence, we use KHIE =1250 in this study for hierarchical node clustering.
For a fair comparison of node and edge clustering, we use the same KHIE

for hierarchical edge clustering. Using the same KHIE for node and edge
clustering will tell us if we gain by allowing for the group overlap with edge
clustering.

We form k-medoids (KM) node/edge clusters as follows. KM is a
modification of the k-means algorithm that chooses actual data points as
centers. We choose the value for the desired number of k-medoids clusters,
KKM, as follows. We already clustered the human PPI network into k-
medoids node clusters and tested many values for KKM: 100, 250, 500, 750,
1000, 1250, 1500, 1750, 2000, 2250 and 2500 (Milenković et al., 2010). The
algorithm could not converge for KKM of 1500 or higher, and it produced
inconsistent clusters over multiple runs for KKM of 750 or lower. Of the
remaining two, KKM of 1000 resulted in the best overall precision–recall
(see (Milenković et al., 2010) for details). Hence, we use KKM =1000 in this
study for k-medoids node clustering. For a fair comparison of node and edge
clustering, we use the same KKM for k-medoids edge clustering.

2.5 Quality of partitions
Yeast. We evaluate a partition with respect to the same measures that were
used by edge-SN: cluster coverage (CC), overlap coverage (OC), cluster
quality (CQ) and overlap quality (OQ). CC is the fraction of nodes that
belong to at least one ‘non-trivial’ cluster of three or more nodes. OC is the
average number of non-trivial clusters that nodes belong to. CQ is the ratio
of the average GO (Ashburner et al., 2000) similarity over all node pairs that
are in the same cluster and the average GO similarity over all node pairs in
the network. OQ is the mutual information between the number of GO terms
and the number of non-trivial clusters that proteins belong to. Raw values for
the four measures do not necessarily fall in [0,1]. Hence, just as Ahn et al.,
2010, we normalize each measure such that the best method has a value of
one. Then, the overall partition quality is the sum of these four normalized
measures, such that the maximum achievable score is four.

We can now note the following. To mimic (Ahn et al., 2010), we would
report the partition with maximum partition density D. However, we find that
CC is strongly negatively correlated with CQ and OQ, and sometimes with
OC, over all of our partitions (Supplementary Fig. S1). Thus, choosing the
partition with low CC would result in high CQ and OQ (and sometimes OC),
hence artificially increasing the overall partition quality. Since in three out
of four yeast networks CC is lower for edge-SN than for the node clustering
methods, it might not be surprising that edge-SN’s overall partition quality
is the highest. Analogously, since edge-SN’s partitions with maximum D
have lower CC than our partitions with maximum D, our partitions may
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have lower overall partition quality simply because of the strong negative
correlation between CC and other measures. Hence, we find the partition
with maximum D among all partitions that have CC less than or equal to CC
of edge-SN’s partition with maximum D. Then, we report either the partition
obtained in this way or the partition with maximum D (independent of its
CC), whichever has better overall partition quality. When we cluster both
adjacent and non-adjacent edges, selecting the partition based on its density,
as just described, might be inappropriate (see above). Thus, in this case, we
also report the partition with the best overall partition quality.

Human. For each cluster, for each pathogen, we measure the enrichment
of the cluster in proteins that interact with the pathogen. If the enrichment
is statistically significant (see below), for each protein in the cluster, we use
leave-one-out cross-validation (Sharan et al., 2007) by ‘hiding’ whether the
protein is known to interact with the pathogen and predicting it as interacting
with the pathogen if the enrichment of the cluster is above a given threshold
k. We vary k from 0% to 100%, in increments of 1%. For each k, we evaluate
the prediction accuracy through precision (a measure of exactness) and recall
(a measure of completeness), combined into F-score. Given our predictions,
precision is the number of true positives out of both true positives and false
positives, recall is the number of true positives out of both true positives
and false negatives, and F-score=2·Precision·Recall/Precision+Recall.
We compute F-scores for all four clustering methods over the entire range
for k. As a combination of precision and recall, F-score makes method
comparison easier.

Statistical significance. When we compute enrichments, we consider as
PI proteins all human proteins (with degrees above three; see above) that
interact with a pathogen that interacts with at least one other human protein
(with degree above three). (Hence, we consider only pathogens that interact
with at least two human proteins. If we considered a pathogen that interacts
with only one protein, we could never predict other proteins to interact with
that pathogen, since we can measure enrichment only when at least two
proteins in the cluster interact with the pathogen; but this one protein would
be lowering recall as a false positive.) There are 936 such PI proteins.

We compute p-value of a given enrichment as follows. There are |N | PI
proteins (as just defined) in the network; |P| out of |N | PI proteins interact
with a given pathogen; |C| out of |N | PI proteins are in a given cluster;
|p| out of |C| proteins in the cluster interact with the given pathogen. The
enrichment is |p|/|C|. The p-value is obtained by the hypergeometric model
for sampling without replacement: p-value=1−∑|p|−1

i=0

(|P|
i

)(|N |−|P|
|C|−i

)
/
(|N |
|C|

)
.

An enrichment with p-value below 0.05 is statistically significant.
We assess the statistical significance of observing F-scores computed

from data clusters by comparing them with F-scores computed from random
clusters. We create random clusters by randomly assigning nodes to clusters
of the same size as the data clusters. We compute F-scores on such
randomized clusters as described above, averaged over 100 randomization
runs.

3 RESULTS AND DISCUSSION
We cluster edge-GDV-similar edges in PPI networks. We compare
our approach with other methods (Section 3.1). Then, we use it to
identify new pathogen-interacting (PI) proteins (Section 3.2).

3.1 Comparison with other methods on yeast
We evaluate three existing node clustering methods and one existing
edge clustering method against three versions of our method (Table
1) on four yeast PPI networks (Y2H, AP/MS, LC and ALL), with
respect to four partition quality measures (cluster coverage – CC,
overlap coverage – OC, cluster quality – CQ and overlap quality –
OQ) that are combined into the normalized overall partition quality;
see Section 2. Results are shown in Fig. 3 for AP/MS network and
in Supplementary Fig. S2 for Y2H, LC and ALL networks.

Fig. 3. Method comparison for AP/MS yeast PPI network

We gain by using edge-GDV-similarity for clustering: eGDV-
A-D outperforms all node clustering approaches on all networks.
(This includes node clustering by using node-GDV-similarity, as
shown in Supplementary Fig. S3.) Also, it outperforms edge-SN
on Y2H and AP/MS. Although edge-SN is slightly better than and
comparable to eGDV-A-D on LC and ALL networks, respectively,
eGDV-NA-D outperforms edge-SN on these two networks, as well
as on AP/MS. Hence, we gain further by clustering non-adjacent
edges in addition to adjacent ones. The only exception is Y2H, for
which edge-SN is slightly better than eGDV-NA-D. However, as
already noted, eGDV-A-D outperforms edge-SN on Y2H network.
Hence, we are always superior, with either eGDV-A-D or eGDV-
NA-D or both eGDV-A-D and eGDV-NA-D. With eGDV-NA-B,
we further demonstrate our superiority over all other methods on all
networks.

3.2 Prediction of pathogen-interacting human proteins
Motivation. Of all pairs of PI human proteins that both interact
with the same pathogen, 96.8% are not adjacent in the network:
3.2%, 25.8%, 55.8%, 14.8% and 0.4% of them are at the shortest
path distance of 1, 2, 3, 4 and 5, respectively. In addition, topologies
around PI proteins that interact with the same pathogen are different
than topologies around PI proteins that interact with different
pathogens, as well as than topologies around non-PI proteins. That is,
PI proteins that interact with the same pathogen are more node-GDV-
similar to each other than to PI proteins interacting with different
pathogens or to non-PI proteins (Supplementary Section S1). Thus,
we cluster topologically similar but not necessarily adjacent network
regions to predict new PI proteins from clusters enriched in known
PI proteins. To study how the choice of the clustering method
affects the predictions, we cluster both edge-GDV-similar edges
and node-GDV-similar nodes, with both hierarchical and k-medoids
clustering. We denote hierarchical node clustering as node-HIE, k-
medoids node clustering as node-KM, hierarchical edge clustering
as edge-HIE and k-medoids edge clustering as edge-KM.

Cluster properties. Cluster sizes, numbers of connected
components, and average shortest path distances are shown in
Supplementary Fig. S4. With node-HIE, cluster sizes follow a
‘power-law’: many nodes are in small clusters (e.g. 1144 (18.7%) of
the nodes are in trivial clusters of size 1 or 2), but there exist some
large clusters (e.g. there are four clusters with more than 200 nodes).
On the other hand, with node-KM, only 121 (2%) of the nodes are
in trivial clusters, the majority of clusters have size 3–20, only two
have size 21–50, and there are no larger clusters. With edge-HIE and
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Table 1. Different clustering approaches evaluated in this study on the yeast PPI networks

Method Description

CliqPerc Clique percolation (Palla et al., 2005)
GreedMod Greedy modularity optimization (Newman, 2004)
Infomap Infomap (Rosvall and Bergstrom, 2008)
Edge-SN Edge - shared neighborhood (Ahn et al., 2010)
eGDV-A-D Our method when clustering adjacent edges only and reporting the partition with the maximum density
eGDV-NA-D Our method when clustering adjacent and non-adjacent edges and reporting the partition with the maximum density
eGDV-NA-B Our method when clustering adjacent and non-adjacent edges and reporting the partition with the best overall quality

CliqPerc, GreedMod and Infomap are existing node clustering approaches. Edge-SN is an existing edge clustering approach. See Section 2 for details.

edge-KM, almost no nodes are in trivial clusters. Non-trivial cluster
sizes follow a ‘power-law’ for edge-HIE. For edge-KM, they follow
a ‘normal-like’ distribution, with the majority of clusters having size
26–150. Since edge-KM results in more larger clusters than edge-
HIE, it is not surprising that the average node membership in clusters
is twice larger for edge-KM (Supplementary Fig. S5).

With node-HIE, even the smallest non-trivial clusters consist of
multiple connected components. As the cluster size increases, so
does the number of connected components in the cluster. The same
is observed for node-KM. With edge-HIE, many of the smallest
non-trivial clusters consist of a single connected component, but
then again the number of connected components in the cluster
increases with the increase in cluster size. Surprisingly, there are
some edge-HIE clusters of size more than 200 that consist of a single
component. Even more surprisingly, with edge-KM, larger clusters
(26–200 nodes) tend to consist of single connected components more
often than small clusters (6–25 nodes). However, there exist larger
edge-KM clusters that consist of multiple components. Importantly,
multi-component clusters would be missed by approaches that can
deal with adjacent edges only (e.g. edge-SN). 1-component edge-
HIE clusters tend to have smaller average shortest path distances
than 1-component edge-KM clusters. This is not surprising, since 1-
component edge-HIE clusters are mostly small (3–5 nodes), whereas
1-component edge-KM clusters are mostly large (26–150 nodes).

Predicting new PI proteins. When we measure prediction
accuracy of the four methods, we define precision as the number
of known protein–pathogen associations out of all predicted
associations and recall as the number of known associations that
we predict out of all known associations. We combine precision
and recall into F-score. Comparison of the methods with respect
to their F-scores over the 0-100% enrichment range (see Section
2) is shown in Fig. 4. The larger the enrichment k, the higher the
prediction confidence. For all k above 40%, edge-HIE is the best,
followed by node-KM and edge-KM, which are tied, and by node-
HIE, which performs poorly. F-score trends are different for edge
clustering and for node clustering: with edge-HIE and edge-KM,
F-scores increase up to a certain k and then start decreasing; with
node-HIE and node-KM, F-scores are somewhat ‘uniform’ up to a
certain k and then suddenly drop.

To assess the statistical significance of these F-scores, we
compare them with F-scores for randomized clusters (see Section 2).
In general, the F-scores are higher for data clusters than for
randomized clusters (Supplementary Fig. S6). The exception is
node-HIE: its F-scores are higher for randomized clusters for k
above 60%.

Fig. 4. Prediction accuracy for the four clustering methods (node-KM, node-
HIE, edge-KM and edge-HIE) in the human PPI network

Since each clustering method has its (dis)advantages, the choice
of the most appropriate method is application-dependent (Fortunato,
2010). Hence, instead of producing predictions only with the most
accurate method (edge-HIE), we produce predictions with each of
the methods, except node-HIE, which shows random-like behavior.
Since we predict a protein to interact with a pathogen if the
enrichment of its cluster is above a given k, the choice of k is
crucial. We decide to use as high k as possible while decreasing
F-score as little as possible. We choose k of 66%, since for all three
clustering methods, F-scores increase or remain relatively ‘uniform’
up to k =66% but then start decreasing. At this k, F-scores are 23%,
17% and 16% for edge-HIE, node-KM and edge-KM, respectively.
These translate into precision of 18% at recall of 30% for edge-HIE,
precision of 36% at recall of 11% for node-KM and precision of
16% at recall of 16% for edge-KM. Hence, precision is higher for
node-KM than for edge-HIE and edge-KM. However, edge-HIE and
edge-KM have higher recall, which might not be surprising, given
that they allow for the node overlap between clusters.

Relatively lower F-scores should not be alarming for the
following reasons. Since the number of known PI proteins will
increase in the future, precision, recall and F-scores are likely to
increase as well. Our predictions are already statistically significant;
since we removed clusters with random enrichment in PI proteins,
the number of possible predictions is automatically decreased, thus
decreasing the F-scores. F-scores are higher for data clusters than
for randomized clusters: for k =66% at which we make predictions,
data F-scores of 23%, 17% and 16% for edge-HIE, node-KM, and
edge-KM are higher than those of 17%, 6% and 12% for their
random counterparts, respectively. We demonstrate the superiority
of our approach over others (Section 3.1). Finally, our clusters are
enriched in biological pathways, unlike their random counterparts,
which further validates our approach (Supplementary Section S2).
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Supplementary Table S1 lists protein–pathogen associations
predicted by edge-HIE, edge-KM and node-KM. Supplementary
Fig. S7 shows the overlap of their predictions. Together, they
predict 1677 out of 3728 known protein–pathogen associations,
resulting in combined recall of 45%. They make the total of 10 190
predictions. Precision is 14% for predictions produced by a single
method, 41% for predictions produced by any two methods and 50%
for predictions produced by all three methods. Since precision is
higher for predictions produced by multiple methods, they could be
considered of higher confidence.Asmall overlap of all three methods
(54 predictions) confirms that there is no single ‘best’ method and
justifies our decision to use all three methods to produce predictions.

Literature validation. We perform literature search for ‘high-
scoring’ predictions selected as follows. Of all new predictions,
we exclude HIV-related predictions, which would, due to their
large number, make literature search difficult. We also exclude
predictions involving proteins that could not be found in any
article. Of the remaining predictions, we focus on those with cluster
enrichment of 100%, resulting in 18 predictions. We validate 44%
of the predictions. We link TGFBR2 with vaccinia virus. TGFBR2
transduces TGFB1 signal from the cell surface to the cytoplasm, thus
regulating many pathological processes (The UniProt Consortium,
2012) and TGFB1 has explicitly been linked to vaccinia virus
(PubMed ID (PMID): 11859112, 16210663). We link BCL-2-like 11
(BCL2L11), BCL-2-like 1 (BCL2L1) and BCL-2 modifying factor
(BMF) with vaccinia virus. F1L protein with BCL-2-like structure
inhibits apoptosis in vaccinia virus (PMID: 21698224, 18551131).
In addition, IL-21 protein, which is related to upregulation of BCL-2
molecules, is critical for response to vaccinia viral infection (PMID:
21257966). We link MCM complex components MCM6, MCM7
and MCM8 with influenza A virus. MCM complex has a role in
regulating genome replication of influenza virus (PMID: 17932485).
We link NCOA6 with herpes simplex virus. It harbors a potent N-
terminal activation domain, which is as active as the herpes simplex
virus activation domain (PMID: 10866662).

4 CONCLUSION
We introduce edge-GDV-similarity, a sensitive topological measure
of edge similarity. When we hierarchically cluster edge-GDV-
similar edges in yeast networks, we outperform existing node and
edge clustering methods. When we cluster the human network,
edge-HIE is better than node-HIE, while edge-KM and node-KM
are comparable. Thus, we gain by clustering edges compared to
clustering nodes with hierarchical but not k-medoids clustering.

We apply our approach to prediction of new PI proteins in human.
This is important, since it could suggest candidates for therapeutic
intervention. We validate many of our predictions through literature
search, which confirms the correctness of our approach.

Funding: This work was supported by the National Science
Foundation CCF-1243295 grant.
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Milenković,T. and Pržulj,N. (2008) Uncovering biological network function via graphlet

degree signatures. Cancer Inform., 6, 257–273.
Newman,M.E.J. (2004) Fast algorithm for detecting community structure in networks.

Phys. Rev. E, 69, 066133+.
Palla,G. et al. (2005) Uncovering the overlapping community structure of complex

networks in nature and society. Nature, 435, 814–818.
Parrish,J. et al. (2007) A proteome-wide protein interaction map for Campylobacter

jejuni. Genome Biol., 8, R130.
Peri,S. et al. (2004) Human protein reference database as a discovery resource for

proteomics. Nucleic Acids Res., 32 (Database issue), D497–501, 1362-4962.
Pržulj,N. (2007) Biological network comparison using graphlet degree distribution.

Bioinformatics, 23, e177–e183.
Radivojac,P. et al. (2008) An integrated approach to inferring gene-disease associations

in humans. Proteins, 72, 1030–1037.
Rosvall,M. and Bergstrom,C.T. (2008) Maps of random walks on complex networks

reveal community structure. Proc. Natl Acad. Sci. USA, 105, 1118–1123.
Sharan,R. and Ideker,T. (2008) Protein networks in disease. Genome Res., 18, 644–652.
Sharan,R. et al. (2007) Network-based prediction of protein function. Mol. Syst. Biol.,

3, 1–13.
Simonis,N. et al. (2009) Empirically controlled mapping of the Caenorhabditis elegans

protein-protein interactome network. Nat. Methods, 6, 47–54.
Stelzl,U. et al. (2005) A human protein-protein interaction network: a resource for

annotating the proteome. Cell, 122, 957–968.
The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein

Resource (UniProt). Nucleic Acids Res., 40, D71–D75.
Vanunu,O. et al. (2010) Associating genes and protein complexes with disease via

network propagation. PLoS Comput. Biol., 6, e1000641.
Watts,D. and Strogatz, S. (1998) Collective dynamics of ‘small-world’networks. Nature,

393, 440–442.
Yu,H. et al. (2008) High-quality binary protein interaction map of the yeast interactome

network. Science, 322, 104–110.

i486

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts376/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts376/DC1

	Graphlet-based edge clustering reveals pathogen-interacting proteins
	1 Introduction
	2 Methods
	3 Results and Discussion
	4 Conclusion


