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ABSTRACT

Motivation: Assessing functional associations between an
experimentally derived gene or protein set of interest and a
database of known gene/protein sets is a common task in the
analysis of large-scale functional genomics data. For this purpose, a
frequently used approach is to apply an over-representation-based
enrichment analysis. However, this approach has four drawbacks: (i)
it can only score functional associations of overlapping gene/proteins
sets; (i) it disregards genes with missing annotations; (jii) it does
not take into account the network structure of physical interactions
between the gene/protein sets of interest and (iv) tissue-specific
gene/protein set associations cannot be recognized.

Results: To address these limitations, we introduce an integrative
analysis approach and web-application called EnrichNet. It combines
a novel graph-based statistic with an interactive sub-network
visualization to accomplish two complementary goals: improving
the prioritization of putative functional gene/protein set associations
by exploiting information from molecular interaction networks and
tissue-specific gene expression data and enabling a direct biological
interpretation of the results. By using the approach to analyse
sets of genes with known involvement in human diseases, new
pathway associations are identified, reflecting a dense sub-network
of interactions between their corresponding proteins.

Availability: EnrichNet is freely available at
http://www.enrichnet.org.

Contact: [Natalio.Krasnogor@nottingham.ac.uk}
Ireinhard.schneider@uni.[ul or lavalencia@cnio.esl

Supplementary Information: Supplementary data are available at
Bioinformatics Online.

1 MOTIVATION

The analysis of functional genomics data from high-throughput
experiments often involves the assessment of potential functional
associations between a gene or protein set of interest, e.g.
differentially expressed genes in a microarray study and known
gene/protein sets representing cellular processes and pathways. To
identify and prioritize these putative associations, a wide range
of enrichment analysis tools have been developed in recent years,
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including three basic types of methods (see M) for

a more comprehensive review):

1. Over-representation analysis (ORA) techniques, assessing the
statistical overrepresentation of a user-defined, pre-selected
gene/protein list of interest in a reference list of known
gene/protein sets using a statistical test, e.g. the one-sided
Fisher’s exact test or the hypergeometric distribution.

2. Gene set enrichment analysis (GSEA) methods, which
in contrast to classical annotation enrichment analyses
incorporate expression level measurements from an unfiltered
dataset, including non-parametric approaches such as GSEA

(Subramanian ez afl, 2003), Catmap Breslin er ail, R004),
Erminel (M, ) and GeneTrail dm, M)
and parametric approaches such as PAGE R
2003, MEGO ﬁiﬁ,m), FatiScan ,
2007) and GAGE (Luo er ad], 2009).

3. Integrative and modular enrichment analysis (MEA)

approaches (Huang er all, 2009), which account for

dependencies between genes and proteins inferred from
biological networks and ontology graphs (e.g. Ontologizer
m, 200d) and GeneCodis (Carmona-Sacz et all,
m» or by combining multiple types of annotations (e.g.

DAVID (Dennis Jr ez all, 2003)).

Most of these approaches provide a ranking list of known
gene/protein sets as output, scoring the evidence for their association
with a user-defined target gene/protein list of interest. Although these
prioritized, putative functional associations are a useful starting
point for further experimental validation and analysis, they also have
the following major limitations (among others):

* ORA techniques tend to have low discriminative power (for
a target gene set, several reference gene sets receive the same
or similar significance scores, e.g. see Table 1) and the scores
vary considerably with small changes in the overlap size.

Functional information captured in the graph structure of a
molecular interaction network connecting the gene/protein
sets of interest is disregarded.

* Genes and proteins in the network neighbourhood, in
particular those with missing annotations, are not taken into
account.

e The recognition of tissue-specific gene/protein set
associations is often statistically infeasible.
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These limitations are mutually enhancing, since the combination
of low robustness in the scoring of gene/protein set associations and
low interpretability of the results increases the difficulty of deriving
new biological insights from the analysis. We therefore propose to
tackle all these problems simultaneously by introducing EnrichNet,
a new integrative enrichment analysis method.

EnrichNet combines a novel graph-based statistic, developed to
exploit information from the molecular network structure connecting
two gene/protein sets, with a new interactive visualization of
network sub-structures. This combined network analysis and
visualization enables a direct molecular interpretation of how a user-
defined set of genes/proteins is related to a gene/protein set of known
function. Based on a previous work on combining network and
pathway analysis methods (Glaab ez all, [2010d, E) the integrated
data sources (molecular interaction data, cellular pathway data
and tissue-specific gene expression data) and analysis techniques
(graph-based statistical analysis and force-directed layout generation
for sub-networks) have been designed to build on each other to
provide a clearer and more detailed understanding of gene/protein set
functional associations. To further facilitate the analysis, a complete
implementation of the integrative approach is made freely available
as a public web application with an exposed programmatic API
(www.enrichnet.org).

In the following, we explain the EnrichNet methodology in detail
and show example results obtained from its application on gene sets
known to be associated with complex diseases.

2 SYSTEM AND METHODS

2.1 General workflow

A gene/protein list analysis with EnrichNet can be performed in a fully
automated fashion and does not require any parameter settings.

2.1.1 Input The only required input is a list of 10 or more human gene
or protein identifiers and the selection of a database of interest (KEGG

. BioCarta WNishimurd, 2001, WikiPathways (Pico
etal., ). Reactome (oshi-Tope er all, 1(1,2009),
InterPro i l, M) or GO (Ashburner et al., 2002), from which

reference gene/protein sets will be extracted.

2.1.2 Processing After mapping the target and reference datasets onto
a genome-scale molecular interaction network (two default networks are
available, alternatively a user-defined network can be provided, but the
availability of sufficient interaction data for the mapping of the target and
reference datasets has to be ensured, see implementation details in the
Supplementary Materials) a network analysis procedure is applied, consisting
of two basic steps: a procedure to score the distances between the mapped
target gene set and reference datasets in the network using a random walk
with restart (RWR) algorithm and the comparison of these scores against a
background model. This random walk and scoring procedure is explained in
detail in the following section.

2.1.3 Output As a final output, a ranking table of the reference datasets
(e.g. cellular pathways, processes and complexes) is generated, including
their network-based association scores and tissue-specific association scores
across 60 human tissues. For each pathway, a hyperlink enables the user
to generate an interactive graph-based visualization of the sub-network
representing the analysed datasets in the molecular interaction network. The
user can explore this network by zooming into it, searching and highlighting
specific genes/proteins and retrieving additional annotations and topological
information by clicking on a node of interest (see tutorial on the web page
for details).

2.2 Algorithm

To score the association between a user-defined target gene/protein set and
different reference datasets, the target set is first mapped onto a molecular
network (here a connected human interactome graph extracted from the
STRING 9.0 database (Snel ez all, 200d; Won Mering er ail, B003), with
edges weighted by the STRING combined confidence score normalized to
range [0, 1]). The network nodes corresponding to the target genes are then
used as seed nodes for a random walk procedure to score their distances
to all reference datasets. A random walk on a graph is a stochastic process
modelling the iterative transition of an imaginary particle from a seed node
in the graph to randomly chosen neighbour nodes over time. This enables
the estimation of the proximity of a target node ¢ to the seed node s by the
steady-state probability with which the particle remains at node ¢ (Fujiwara
etal. ié;; 3). The motivation for using a random walk procedure as opposed to
simpler distance measures like the shortest path distance is that by accounting
both for the number and length of multiple pathways interconnecting two
nodes, multi-facet relationships between them can be captured. Specifically,
to enable the choice of an optimal trade-off between the exploitation of
local and global network information, EnrichNet uses a random walk variant
known as random walk with restart M ), which allows the
algorithm to restart the walk at the source nodes with probability p in every
iteration (a pseudo-code version of the algorithm is shown in Fig.[[). The
benefits of RWR for node relevance scoring have been discussed extensively
in the literature ,) and are already used in current approaches
for disease-gene prioritization , ). To emphasize local
neighbourhood information, EnrichNet runs the RWR algorithm using a high
restart probability of P=0.9. Importantly, in spite of its name, RWR is a
deterministic procedure modelling a random walk via matrix computations
(see Fig. [[). The random walk starts with equal probability from each of
the genes in the target set and the generated relevance scores obtained for
the nodes of the reference pathways are converted to distance scores by
subtraction from 1, resulting in a distance score vector for each pathway.
To relate these scores to a background model, the single distance score
vectors are discretized into equal-sized bins and their deviations from the
corresponding average distribution across all pathways is quantified by
means of the Xd-distance, a distance measure that has previously been used
in the evaluation of protein contact map predictions , @),
defined as follows:

i-n

n
ZP- —P;
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where P is the percentage of distance scores for the target gene set and the
current pathway ¢ within bin i in relation to the total number of distance
scores for pathway c, Pj, is the analogously defined percentage for the
distance scores obtained across the background model of all pathways, n
is the number of network distance bins (in our experiments, 10 distance bins
provided sufficient sensitivity and are used as the default setting) and the
current bin number i is used in the denominator to down-weight the score
contribution of long distance and high-degree outliers, to prevent biases
resulting from outstanding network properties of single genes/proteins. This
weighting factor also accounts for the supposition that an over-representation
of small distance scores is more likely to reflect strong associations than an
over-representation of large distance scores. Classical statistical tests for
comparing differences in the centre or shape of two distributions, e.g. the
Mann—Whitney U-test or the Kolmogorov—Smirnov test, are not applicable
in this context, because they lack a distance-dependent weighting. Similarly,
random matched-size gene sets do not provide an adequate background
model, since their members can only have similar connectivity properties as
pathway-representing gene sets, if they are allowed to significantly overlap

with real pathways in the network.
Apart from taking into account the information on the distances and the
number of directly and indirectly connecting links between gene/protein sets
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Network-based enrichment analysis

Algorithm 1: Random walk with restart distance scoring

Input: list of target genes/proteins L, list of reference datasets
P, molecular interaction adjacency matrix A for graph
G={V,E}, restart probability p
Output: vector of distance scores for each reference dataset
in P
1 Map pathway sets P and gene/protein list L onto graph G;
2 v:=vector of length |V| with entries for mapped elements of L
set to 1, otherwise 0;
3u=v;
4 u,y, :=vector of length |V| with all entries set to 0;
5 A :=normalize(A); // normalize A so that each column sums to
L
6 while (sum(lu—uyql|)>1E—06) do
7 Upld ‘= U;
u:=1-p)Augg+pv;
9 distance_scores := vector of length |P|;
10 for i <1 to |P| do
1 L distance_scores[i] := 1 —u[P[i]]; // convert to distance
scores;

in a molecular network, this scoring method also enables a straight-forward
computation of tissue-specific association scores by only including the
distances to nodes labelled for the tissue of interest in the reference datasets
in the above calculation (in classical overlap-based enrichment analysis, a
corresponding focussed tissue-specific analysis is often infeasible, because
the intersection sets between the datasets become too small). Although the
entire procedure is more computationally expensive than a classical over-
representation analysis, this does not result in significant limitations for
practical use, since an analysis takes only a few minutes for most pathway
databases, and the web-interface optionally provides an e-mail notification
for completed tasks. EnrichNet is also applicable to unweighted networks
and a corresponding example network, as well as the possibility to upload
user-defined networks, is provided on the web page.

Finally, high observed correlations between the final Xd-distance
association scores and classical over-representation scores for overlapping
datasets, computed using Fisher’s exact test and the method by Benjamini and
Hochberg @) for multiple testing adjustment, are exploited to generate
a regression plot (see Fig.[I) that enables the user to choose a significance
threshold for the XD-scores which matches to a user-defined threshold for the
adjusted P-value. The default threshold corresponds to an adjusted P-value
of 0.05 with an additional increment given by the upper bound of the 95%
confidence interval for linear regression fitting, added to account for the
uncertainty in the fitted model parameters.

2.3 Evaluation method

To evaluate EnrichNet, we compare the approach with a classical ORA using
Fisher’s exact test (see Section[3.2) on all combinations between five labelled
microarray gene expression datasets (p53 wild-type versus mutant cancer

cell lines; [Subramanian et ail, M), two lung cancer datasets with two
outcome groups from a study conducted in Michigan M, )
and an independent study in Boston , M), a colon
cancer_dataset comparing tumour samples versus healthy controls (Alon
et al., ) and a dataset containing lower stage (Stages IA and IB) and
higher stage (Stages IIB and III) cutaneous T-cell lymphoma samples (Shin
etal., ) and two frequently used reference gene set collections, CI and
C2 W, m). These datasets have been studied extensively

in the literature and used to evaluate gene set enrichment analysis (GSEA)
methods that take into account expression data for the estimation of pathway

associations, but which (in contrast to the two methods compared here)
are not applicable to gene and protein lists provided without additional
expression measurements. Importantly, EnrichNet and ORA methods are
designed specifically for the analysis of gene/protein lists that are not
accompanied by any additional expression or activity measurements, and
microarray data are used only for validation purposes. Specifically, the
consensus of GSEA-derived pathway rankings is used as an external
benchmark pathway ranking, exploiting the capability of GSEA methods
to capture information from gene expression levels and combining two
diverse GSEA approaches (see below). Similar evaluation techniques, using
the combined evidence from multiple analysis methods and/or exploiting
additional data sources to address the absence of a gold standard pathway
ranking, have been used before, e.g. a recently introduced approach scored
the extent to which gene sets ranked as significant by a method of interest
are reproduced by other methods m, M). Here, we obtain the
benchmark pathway rankings by first normalizing all the gene array datasets
listed above using the ‘Variance Stabilizing Normalization” approach (Huber
et al.,IEZi; H) and applying two recent GSEA methods, SAM-GS 1] 5;;;; EZ EZ],
M) and GAGE (m, M), on all combinations of the microarray
datasets with the reference gene set collections C/ and C2. The resulting
GSEA pathway rankings are then combined by computing the intersection
sets between the 100 top-ranked pathways for each microarray/gene set
collection pair (the specific number of pathways was chosen to obtain an
equal-sized benchmark set across all datasets and reflects the observation
that the estimated numbers of significant pathways at a g-value significance
score cutoff of 0.05 across all methods and datasets cluster roughly around
100). To compare the EnrichNet and ORA pathway rankings against these
benchmarks, first the top 100 most significantly differentially expressed
genes (DEGs) according to the empirical Bayes moderated z-statistic dm,
) are extracted for each microarray study and the significance scores
adjusted for multiple testing according to [Benjamini and Hochbergd (@)
(again, the specific number of DEGs was chosen to obtain equal-sized target
gene sets for all datasets and lies in between estimates for the number
of significant DEGs at a g-value cutoff of 0.05). Next, the association
scores between these DEGs and the gene set collections are computed using
EnrichNet and ORA, providing two ranking lists for each microarray/gene
set collection pair. The final evaluation scores are obtained by computing
a running-sum statistic across the EnrichNet and ORA ranks for all gene
sets from each reference collection, with positive score contributions for
benchmark pathways and negative contributions for all other pathways, using
the normalized Kolmogorov—Smirnov test as defined in[Mootha er all ).

3 RESULTS AND DISCUSSION

3.1 EnrichNet scores compared to over-representation
analysis scores

A common biological application of enrichment analysis methods
is the ranking of associations between a set of known disease-
related genes and pre-defined gene/protein sets representing cellular
pathways. To highlight the wide spectrum of potential biomedical
applications, we assessed EnrichNet on two gene sets representing
different tumour types (genes mutated in bladder and gastric cancer;
Bammmﬁmﬂ,lﬁg%l;mw,m;lﬂmmm,m) and
one gene set representing a neurological disease (genes associated
with Parkinson’s disease; , ) and compared the results
with a conventional over-representation analysis on all pathway
databases.

In agreement with prior expectations, due to the dependency of
both scores on the dataset overlap sizes, the network-based and the
over-representation-based association scores (here using the Fisher’s
exact test) were highly correlated, with absolute Pearson correlations
between 0.50 and 0.95 for the different datasets compared (see Fig.[Il
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Fig. 1. Regression plot: Xd-scores versus significance-of-overlap scores
(Fisher’s test, g-values), computed for the comparison of gastric cancer
mutated genes against gene sets from the BioCarta database (absolute
Pearson correlation: 0.93). Non-overlapping dataset pairs, for which a
meaningful scoring is only possible with the XD-distance, are highlighted
on the right. See also Table 1 for a list of the 20 top-ranked pathways in
this plot

for example; lower correlations can mainly be attributed to cases in
which multiple pathways receive the same over-representation score
but different Xd-scores, see Table 1 for the top 20 pathways in the
correlation plot and paragraph below). Similar qualitative results
were obtained with the Spearman correlation, with high absolute
correlations overall, but lower absolute correlations in comparison
to the Pearson measure.

More importantly, gene set pairs with equal over-representation
scores (i.e. data points lying on the same vertical line in Fig.[T)) can be
differentiated using their Xd-distances. Both the datasets that share
none of their genes/proteins with a pathway of interest (overlap
size is zero) and cannot be scored with the over-representation
approach (see right margin in Fig.[I) and those with large overlap-
sizes and the same or similar overlap-based scores (see left part of
Fig.[I) mostly receive different Xd-scores, enabling a more sensitive
and comprehensive ranking of gene set pairs. For example, when
scoring the BioCarta pathway associations of the gastric cancer
mutated genes, seven different pathways receive the Fisher’s exact
test overlap score 0.01, whereas all their corresponding Xd-scores
differ (see pathways highlighted in blue in Table 1). Although
reference sets with empty or small intersection set with the target
gene set will reach significant Xd-scores less frequently than datasets
with large overlaps, cases with small or no overlap are particularly
interesting for biological data interpretation, because they represent
novel functional associations reflecting dense sub-networks of
interactions rather than known associations of overlapping datasets
(corresponding examples are shown in Section 3.3 and Figs 2 and 3).
The Supplementary Materials provide additional tables with detailed
molecular relations for further pathway/disease combinations across
different databases.

3.2 Comparative validation on benchmark gene
expression data

In order to evaluate EnrichNet quantitatively, pathway/gene set

rankings were computed on all combinations of five benchmark

microarray datasets and two gene set collections and compared

against the results for a conventional ORA using Fisher’s exact
test, as described in Section 2. A set of high confidence benchmark
pathways for each microarray/gene set collection pair was obtained
by applying the recent gene set enrichment analysis methods SAM-
GS and GAGE and computing the intersection set of between
the 100 top-ranked pathways for each method. Table 2 shows the
enrichment scores obtained when testing the over-representation
of the benchmark pathways among the top-ranked entries in
the EnrichNet and ORA rankings for all dataset combinations.
Additionally, the table provides P-value significance score estimates
for the enrichment scores, obtained in a non-parametric fashion
using 1000 random permutations of the input rankings. In all
cases, EnrichNet provides higher enrichment scores than the ORA
approach and its P-value estimates are either lower or below the
detection limit (0.001) for both methods. Considering the ‘No Free
Lunch Theorem’ MQI,QQ];Laud_Mma_dJ, ll_‘l‘zﬂ), these results do
not prove a general superiority of the EnrichNet approach, but
show that on common real-world datasets EnrichNet can reduce the
gap in sensitivity between expression enrichment analysis methods
like SAM-GS and GAGE and more generally applicable annotation
enrichment analysis techniques, which are required in cases where
only gene/protein lists and no expression data are available (see
biological examples in the next section).

3.3 Identification of novel functional associations

In spite of the high correlations between the results for the network-
based and the over-representation-based association measure (see
Fig. ), the Xd-score ranking identifies several new associations
missed by the classical approach. Rather than studying the top-
ranked pathways that receive both significant ORA scores and
Xd-scores, the following examples therefore focus on dataset
pairs with zero or insignificant overlap size (Fisher’s exact test
Q-value >0.05), which receive Xd-scores above the significance
threshold obtained from the linear regression fit (see Section 2),
since these results point to functional associations that reflect
dense networks of interactions between the target and reference
datasets, and are overlooked by approaches scoring only shared
genes or proteins. Moreover, the used target gene sets all correspond
to lists of genes that are mutated in different diseases without
additionally available expression level data, i.e. they could not
be analysed with microarray-specific gene set enrichment analysis
techniques.

Two of these gene set associations detected by the EnrichNet
methodology are visualized in Fig. &l On the left (Fig. Bh), the
largest connected component is displayed for the network structure
obtained when comparing the gastric cancer mutated gene set against
the pathway ‘Role of Erk5 (Extracellular signal-related kinase 5)’
in Neuronal Survival (h_erk5Pathway) from the BioCarta database,
describing a signalling cascade which induces transcriptional events
promoting neuronal survival. These datasets have an intersection
of only three genes (HRAS, NRAS and KRAS—see green nodes
in Fig. Bh) and would therefore not have been considered as
significantly associated by an over-representation analysis using
the Fisher’s exact test (Q-value: 0.08). However, the obtained
Xd-score (0.26, which matches with the regression fit based
significance threshold), highlights functional associations reflecting
the abundance of molecular interactions between the corresponding
proteins for these gene sets and their shared network neighbourhood
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Table 1. Xd-score ranking table for the top 20 functional associations between genes mutated in gastric cancer and pathways in the BioCarta database (see

also the correlation plot for the same dataset in Fig. [

BioCarta pathway (identifier)

Xd-score Fisher Q-value Target size Reference size Overlap size

Trka receptor signaling pathway

Telomeres, telomerase, cellular aging, and immortality

Calcium signaling by HBx of hepatitis B virus

Transcription factor CREB and its extracellular signals

Role of EGF receptor transactivation by GPCRs in cardiac hypertrophy
CBL mediated ligand-induced downregulation of EGF receptors
Inhibition of matrix metalloproteinases

Cadmium induces DNA synthesis and proliferation in macrophages
Regulation of transcriptional activity by PML

EGF signaling pathway

CCR3 signaling in eosinophils

Tumor suppressor arf inhibits ribosomal biogenesis

mCalpain and friends in cell motility

RB tumor suppressor/checkpoint signaling in response to DNA damage
TGF beta signaling pathway

Trefoil factors initiate mucosal healing

Sprouty regulation of tyrosine kinase signals

VEGEF, hypoxia, and angiogenesis

Phosphorylation of MEK1 by c¢dk5/p35 down-regulates the MAP kinase pathway
PDGEF signaling pathway

2.59 0.01 95 13 5
2.13 0.00 95 21 7
1.83 0.04 95 10 3
1.83 0.01 95 20 6
1.78 0.01 95 17 5
1.58 0.05 95 11 3
1.58 0.05 95 11 3
1.53 0.03 95 15 4
1.50 0.02 95 19 5
1.46 0.01 95 27 7
1.38 0.01 95 24 6
1.38 0.05 95 12 3
1.38 0.03 95 16 4
1.38 0.05 95 12 3
1.38 0.03 95 16 4
1.29 0.01 95 25 6
1.25 0.03 95 17 4
1.25 0.03 95 17 4
1.20 0.06 95 13 3
1.20 0.01 95 26 6

Pathways with the same Fisher Q-value 0.01 but different Xd-scores are highlighted in blue colour.

(b)

Fig. 2. Protein—protein interaction sub-networks (largest connected components) for target and reference set pairs with small overlap, predicted to be
functionally associated by EnrichNet: (a) gastric cancer mutated genes (blue) and genes/proteins from the BioCarta pathway ‘Role of ErkS in Neuronal
Survival’ (magenta, the shared genes are shown in green); (b) bladder cancer mutated genes (blue) and genes/proteins from Gene Ontology term ‘Tyrosine
phosphorylation of Stat3’ (GO:0042503, magenta; the only shared gene NF2 is shown in green). An over-representation analysis approach would have missed
these associations, since only few of the cancer mutated genes are members of the corresponding processes

(instead of only their directly shared genes/proteins). This dense in ma,,i%nant brain tumours 1) by a reduced ERKs activity (Kang

network of interactions corroborates previous findings linking et al.,

extracellular signal-related kinases (ERKs) to gastric cancer via an

).

More interestingly, Xd-scores meeting the significance criterion

induction of the putative tumour suppressor gene DDMBT] (deleted were also obtained for dataset pairs with fewer shared genes or
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Table 2. Enrichment scores and P-value estimates for the comparative
validation of EnrichNet and ORA using Fisher’s exact test across all
combinations of five microarray gene expression datasets and two gene set
collections

Fisher’s exact test EnrichNet
Microarray Gene set Enrichment score Enrichment score
dataset collection (P-value) (P-value)
p53 Cl 13.5 (P=0.225) 36.9 (P <0.001)
Cc2 45.6 (P <0.001) 65.2 (P <0.001)
Lung (Boston) Cl 2.6 (P=0.936) 40.0 (P <0.001)
Cc2 15.0 (P=0.302) 43.7 (P <0.001)
Lung (Michigan) CI1 21.2 (P=0.028) 40.8 (P <0.001)
Cc2 9.1 (P=0.634) 40.5 (P=0.001)
Colon Cl1 6.85 (P=0.673) 70.1 (P <0.001)
Cc2 22.8 (P=0.075) 94.9 (P <0.001)
Lymphoma Cl 8.0 (P=0.569) 65.2 (P <0.001)
Cc2 0.94 (P=0.985) 69.8 (P <0.001)

EnrichNet provides higher enrichment scores and lower or equivalent P-value estimates
in all cases.

proteins. For example, Figure Bb shows the largest connected
component in the network structure for two datasets, bladder cancer
mutated genes (blue) and the genes for the Gene Ontology (GO)
term ‘tyrosine phosphorylation of Stat3 (GO:0042503)’, which share
only a single gene (NF2) and for which no association can be
inferred from an over-representation analysis. The high Xd-score
for this gene set pair (0.80, the significance threshold is 0.45)
points to a functional association via multiple connecting molecular
interactions, which is confirmed by the visualization. This result is in
agreement with the previously reported observation that the down-
regulation of STAT3 phosphorylation by means of silencing the Rho

GTPase CDC42 is linked to the suppression of tumour growth
in bladder cancer , ). Rho GTPases like CDC42

are known to frequently participate in carcinogenic processes (del
Pulgar et al., EE ;Z i%) and their involvement in bladder cancer is also
reflected by a high Xd-score of 0.71 for the GO biological process
‘regulation of Rho GTPase activity’ (G0O:0032319), which also
shares only one gene with the bladder cancer mutated genes (7SC1).

For the third gene set, containing genes implicated in Parkinson’s
disease (PD) ,M), EnrichNet found a strong association
with the ‘regulation of interleukin-6 biosynthetic process’ from the
Gene Ontology database (GO:0045408, see Fig.[Bl The pathway is
ranked with a significant XD-score (0.77, significance threshold:
0.73) and shares only one gene (ILI/B) with the PD dataset,
preventing the identification of a functional association by means
of a conventional over-representation analysis (Fisher’s Q-value:
0.55). The visualization of the corresponding sub-network (see
Fig. B) reveals a dense cluster of interactions that interlink
the PD gene set with the interleukin-6 pathway. This gene set
association corroborates previously identified links between PD and
inflammation m, M) and reports of elevated levels of
interleukin-6 in the cerebrospinal fluid of PD patients (Blum-Degena
etal., ).

In summary, these example applications of the network-based
scoring methodology illustrate the utility of the approach for
identifying novel functional associations between gene/protein sets,
which reflect known direct and indirect molecular interactions

Fig. 3. Protein—protein interaction sub-network (largest connected
component) for the PD gene set (blue) and genes/proteins from GO term
‘Regulation of interleukin-6 biosynthetic process’ (magenta, GO:0045408;
the only shared gene /LB is shown in green)

between their members rather than only the size of their overlap.
Further novel associations identified for these cancer datasets and
PD are presented in the Supplementary Materials.

3.4 Evaluation of the tissue specificity of gene set
associations

The Xd-distance is capable of computing tissue-specific association
scores (see Section 2). Although tissue-specific analyses can
also be realized with other enrichment analysis techniques, in
particular methods that enable the consideration of non-overlapping
genes/proteins through additional expression level measurements or
an extension of the target and reference gene sets, a corresponding
analysis is in practice often infeasible for conventional ORA
methods, which are applicable to fixed gene/protein lists without
complementary expression measurements. This practical limitation
results from the typically small size of the intersection set between
the target and reference dataset, because the subset of genes with
available tissue-specific annotations within the intersection set of
genes/proteins is often too small for at least some of the analysed
tissues to obtain reliable over-representation statistics. EnrichNet
alleviates this limitation of ORA approaches by additionally taking
tissue specificity annotations into account for all non-overlapping
gene/protein pairs, which are connected through paths of interactions
in a molecular network. We illustrate the informative value of
EnrichNet’s tissue-specific scores using a comparative analysis of
brain and non-brain tissues (see the details on the tissue grouping for
60 human tissues in the Supplementary Materials). Specifically, we
apply EnrichNet on a set of genes with known implications in PD
(&Fﬁ, M) and measure the tissue-specific associations with
the high-scoring KEGG ‘Neurodegenerative Diseases’ (hsa01510)
pathway. As expected, high Xd-scores were over-represented
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in the group of brain tissues, whereas the centre of the Xd-
score distribution was significantly lower in the non-brain tissues
(P =0.004, Mann—Whitney test). This example highlights the
utility of the scoring scheme in providing information to identify
tissue-specific associations between genes/proteins in molecular
interaction networks and to rule out associations with low Xd-scores
in a tissue of interest.
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