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codon usage bias
Alexander C. Roth

Swiss Institute of Bioinformatics, and Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

ABSTRACT

Motivation: The standard genetic code translates 61 codons into
20 amino acids using fewer than 61 transfer RNAs (tRNAs). This
is possible because of the tRNA’s ability to ‘wobble’ at the third
base to decode more than one codon. Although the anticodon-
codon mapping of tRNA to mRNA is a prerequisite for certain
codon usage indices and can contribute to the understanding
of the evolution of alternative genetic codes, it is usually not
determined experimentally because such assays are prohibitively
expensive and elaborate. Instead, the codon reading is approximated
from theoretical inferences of nucleotide binding, the wobble rules.
Unfortunately, these rules fail to capture all of the nuances of codon
reading. This study addresses the codon reading properties of tRNAs
and their evolutionary impact on codon usage bias.

Results: Using three different computational methods, the signal of
tRNA decoding in codon usage bias is identified. The predictions
by the methods generally agree with each other and compare
well with experimental evidence of codon reading. This analysis
suggests a revised codon reading for cytosolic tRNA in the yeast
genome (Saccharomyces cerevisiae) that is more accurate than the
common assignment by wobble rules. The results confirm the earlier
observation that the wobble rules are not sufficient for a complete
description of codon reading, because they depend on genome-
specific factors. The computational methods presented here are
applicable to any fully sequenced genome.

Availability: By request from the author.

Contact: [alexander.roth@isb-sib.chl

1 INTRODUCTION

The standard genetic code consists of 61 sense codons and 3 stop
codons, coding for 20 amino acids and a termination signal. The
molecules that convey this mapping of translation are several types
of transfer RNA (tRNA). To one side of the tRNA, an amino acid
is attached by a designated aminoacyl tRNA synthetase (ARS).
This coupling of each amino acid by ARS to the appropriate tRNA
molecule is a pivotal part for the mapping of the genetic code
(l]_hba_amLSQl], |2m)ﬂ). Located on the other side of the tRNA
is the anticodon that binds to specific codons of the messenger
RNA (mRNA) at the A-site of the ribosome, ensuring that the
correct amino acid is decoded. There are fewer tRNAs than codons,
as non-standard base paring allows one tRNA molecule to read
multiple codons, thereby reducing the number of tRNAs necessary
for reading all codons. Depending on the organism, the number of
different tRNA isoacceptors range from 23 (allowing for a fully
degenerate binding at the third codon position) to 45 (allowing only
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Fig. 1. Mapping of the genetic code. In the standard genetic code, there are
61 mRNA codons that specify the 20 amino acids. The decoding carried out
by 23-45 tRNA molecules, each charged with the assigned amino acid by
an ARS. The mapping of tRNA anticodons to mRNA codons is the focus of
this study

degenerate binding of pyrimidines). This anticodon—codon mapping
of the tRNAs to the mRNA is the focus of this study (see Fig. ).
We first investigate the imprint of the decoding properties of tRNA
in codon usage bias, then we exploit the signal to infer the codon
reading in yeast.

The codon usage bias is the non-random, unequal usage of
synonymous codons. It is shaped by the balance of mutational bias
and selection m @s The mutational biases originating
from DNA processes (replication and repair errors, etc.) generates
a variation in the sequences. These sequence variations are under
various selective pressures. A prominent such pattern of selection
is the co-evolution of tRNA abundance and codon usage bias

, @), Many of the different patterns are induced by
the physiological constraints of translational selection (Plotkin and
Kudla, Ez; i]) The relative strength and importance of all factors
that influence the codon usage bias has not yet been resolved. Given
the central role of tRNA in translation, it is not inconceivable that a
signal caused by the decoding properties of tRNA is detectable by
analysis of codon usage bias.

The decoding properties of tRNA are governed by several
factors. In essence, the ribosome constrains the first and the second
position of the codon to strict cognate (Watson—Crick) binding, but
monitors the third position of the codon less stringently (Ogle and
Ramakrishnan, Ez iz Fa) The third position of the codon and the first
position of the anticodon are thus called the wobble position. Driven
by the necessity for stable protein synthesis, the nucleotides at the
wobble position of the tRNA are often chemically modified to alter
the specificity of the binding ,M). The cell makes a
comparatively large investment into genes for tRNA modifications,
to maintain tRNA stability, aid recognition for the corresponding
ARS and to ensure accurate codon reading (de Crécy-Lagard,[2007).

The assignment of codon reading is important for several
methods in sequence analysis. Some indices of codon usage depend
on knowledge of specific anticodon—codon mapping [e.g. tAl
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Fig. 2. Anticodon—codon mappings. (A) The original wobble rules by
m, M). (B) Possible codon readings observed in experiments

(Eriberg_er_ail, 200d) and TPI dos Reis er all, 2003)]. The

mapping may help to understand the evolution of the genetic code
and to find potential targets for re-engineering the genetic code
to incorporate _non-natural amino_acids into_proteins (Moura et
al., |E:im) The most conclusive way of determining the binding
characterlstlcs (i.e. accuracy and efficacy) is via experiments

,2009; lohansson er all,2008). Unfortunately,
experimental determination of the tRNA properties is expensive
and time-consuming. Therefore, the ability to predict the decoding
properties of tRNA is a highly desirable alternative to experimental
assignment.

Using knowledge of nucleotide chemistry of base pairing, Francis
Crick proposed a scheme for the decoding properties of tRNA
, ). These are the wobble rules, which still remain a
common description for the anticodon—codon mapping. The original
version of the wobble rules can briefly be described as: A:U, C:G,
G:{C,U}, U:{A,G}, and in the case of a adenine modified to inosine:
I:{A,C,U}. The latter being the only known modification when
the wobble rules were devised. This notation is understood in the
following way: the base at the first position of the anticodon is before
the colon while the set of bases at the third position of the codon that
can bind with the first position of the anticodon is after the colon.
For example, U:{A,G} means that a uracil at the wobble position
of the tRNA can bind either an adenosine or guanine. The original
wobble rules are summarized in Figure ZA.

Over time, as new tRNA modifications were discovered, several
cases were found in Wthh the orlgmal wobble rules failed to

response, the original wobb rules were updated several times to
accommodate the newly discovered codon readings. For example,
in the restricted version of the wobble rules for eukaryote, the
I:A wobble is not allowed (Guthrie and Abelsor, [1982). Observed
possibilities of codon reading are summarized in Figure ZB. It turns
out that finding simple ‘rules’ for codon reading is not trivial and
maybe impossible. To date, there is no generalization of the wobble
rules, even when the base modifications are known.
A particular method extending the wobble rules worth mentioning
is the wobble parsimony method (]Rcmud.anj_aml.l,ll&ﬂ;lﬂer_gudani,
). This method infers the codon reading assignment in
eukaryotes from genomic data. It uses the wobble rules and adds
the knowledge of the presence of tRNA isoacceptors for a given

organism, information that can be extracted rather easily from
the complete genome (Lowe and Eddyl, [1997). Wobble parsimony
assumes that a codon with a cognate tRNA present, has only
canonical decoding. Extended codon reading by a tRNA is assumed
if a codon does not have a cognate tRNA. The rules that specify the
wobble parsimony in eukaryotes are (i) codons with cognate tRNAs
are assigned canonical decoding, (ii) codons without cognate tRNA
are assigned following the principle of restricted wobbling (G:U,
A:C) and (iii) extended pairings (A:A, U:G) are assumed for codons
that remain unassigned. Wobble parsimony is only applicable for
eukaryotes and not bacteria, where the tRNAs commonly recognize
more codons than eukaryotes.

Another sequence-based approach to infer trends in codon reading
of tRNA is based on the analysis of tRNA genes and tRNA-
modifying enzymes across species (Grosjean er all, 201d). Four
major decoding strategies over the three kingdoms of life have
been identified by the absence/presence patterns of tRNAs and
genes that are involved in specific nucleotide modifications. It is
assumed that the proteins for nucleotide modifications have evolved
to optimize specificity and efficiency of translation. There are several
exceptions for the standard modes of decoding, in particular for
uracil modifications where it is difficult to distinguish the codon
reading. This is a limitation of the method. For example, in a four-
codon box, there is no need to prevent the U*:U reading, although
it is not clear if this reading is viable or not.

In this study, we use a novel approach to detect the imprint of
tRNA-decoding properties in the codon usage bias and to infer
the codon reading of tRNA. We propose a Hidden Markov Model
(HMM) method and two auxiliary methods: regression (REG) and
codon correlation (CC). The results show that the best predictions
rank high in the distribution of all solutions. Also, the three methods
generally agree on the prediction. The predictions of the methods
outperform the wobble rules on experimentally verified codon
readings.

2 APPROACH

2.1 Prediction of anticodon—codon mapping using
sequence data

The three methods use solely genomic data. In the cases of HMM and
CC, the consecutive synonymous codons are used. The observation
that tRNA abundance is correlated with codon usage bias is exploited
in the regression method. To reduce the vast solution space of
possible codon readings, we make the following assumptions:

(1) We take the amino acid identity of a tRNA as given from
the genomic tRNA data and assume that the aminoacylation errors
by ARS are negligible, because the aminoacylation step of tRNA is
much more accurate than mRNA decoding. Aminoacylation errors
occur at a rate of ~107° dS_Qhulmad, [1991l; @, hg%j), whereas
the estimated average error frequency for mRNA decoding is <
4x10~4 per codon m ). Also, we assume that the tRNA
cross-box reading of other amino acids is negligible (Kramer and
FarabaughM).

(2) We make a distinction between decoding accuracy (optimizing
the codon reading and avoiding errors) and decoding efficacy
(optimizing translation rates). We are interested if a tRNA can read
a codon and are not concerned with the speed of translation. We
assume that the efficacy is orthogonal to the accuracy of reading
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and that rare codon readings can be detected in the codon bias.
Therefore, we apply binary anticodon—codon interaction of the
tRNA and mRNA binding. The assessment of the relative binding
frequencies is not addressed. Codon usage can have a large influence
the rate of translation , ) and unequal reading of
different codons by the same tRNA is known to influence codon
bias (Currad, [1993; IRa,n_a,n_d_H_iggd, [2010). On the other hand,
experimental evidence in yeast shows, that all codons are translated
with similar speed m, M).

(3) We divide all possible binary mappings into two mutually
exclusive subsets of codon readings. This is necessary because
highly degenerated amino acids can have a large number of
mappings (in the order of billions). The large number of possibilities
can lead to implausible readings randomly having a higher score
than the true reading. Therefore, we restrict the solution space to
a set of mappings that are plausible, that is, mappings that have
been observed experimentally (Fig. EB). The other subset of non-
plausible solutions is used for reference to estimate the distribution
of the scores and to assess their significance. The plausible readings
consider alternative solutions for the A and U nucleotides (and
modifications) at the wobble position of the tRNA. The C nucleotide
can only assume cognate binding (C:G) and the G nucleotide
constitutively read the pyrimidine bases (G:{U,C}). This is reflected
in the genetic code where all two-box pyrimidine codons have one
single tRNAy - Together with the one-box codons, these cases
have only one trivial solution.

3 METHODS
3.1 HMM for the tRNA states

In this study, the primary method to infer the codon reading is a discrete,
finite HMM. The hidden states of the HMM are the unknown tRNAs that are
used to decode the codons. The observable output of the tRNA states is the
sequence of consecutive synonymous codons for one amino acid regardless
of the interval size. An HMM for the codon reading of a particular amino acid
is described by the initial starting probabilities r, the transition probabilities
t and the emission probabilities e of the tRNA states. Figurelﬂillustrates an
example, of the structure of the HMM for alanine. For each amino acids, there
can be several models, each defined by a different set of probabilities, The
goal is to determine which model has the highest probability of observing
the codon sequences given the parameters. From the highest scoring model,
we infer the anticodon—codon mapping. The parameters of a given model are
defined by the hypothetical codon reading being evaluated. No parameters
of the HMM are optimized during evaluation, instead all parameters are
predetermined as follows.

The matrix of emission probabilities E contains zero or non-zero elements.
The rows represent the tRNAs for a given amino acid, and the columns
represent the codons that code for that amino acid. For example, of alanine
in yeast (two tRNAs and four codons), the matrix has two rows and four
columns. A matrix element is positive if the tRNA can be used to decode
that codon or zero otherwise. For the matrix to express probabilities, the rows
of the matrix are normalized to sum to one (Z/e,-j =1), and the probability is
equally distributed over all allowable codons. For example, if the first tRNA
reads the two first codons out of four, the probabilities in the first row of E
will be [0.5,0.5,0,0].

The transition matrix 7 is a square matrix of probabilities changing
between the tRNA states, where the sum of all transitions leaving or staying in
a state is one (Zj tjj=1). The transition probabilities are predetermined from
the tRNA frequency vector, such that probability of staying in, or moving to,
a state is proportional to the tRNA abundance. We assume that the underlying
tRNA dynamics is the same for the different models of codon reading and

T is constant for all models. In agreement with observations, intra-specific
codon usage bias dﬂmmmzzmaﬂ,m;[ﬂuﬂgmmd,m), the probability
of staying in the same state is higher. We capture this by adding a linear term
to the diagonal, which puts more weight on the reuse of rare tRNA. The reuse
term is pre-estimated from data, with the intercept o =0.065, and the gradient
B=—0.087, by an iterative procedure that can be described as follows.
Starting with an initial guess of transition probabilities (bases on tRNA
frequencies), the Viterbi algorithm computes the most likely sequence of
states, given the observed sequences of codons. From the inferred states, we
count the number of transitions and the parameters are updated accordingly,
and the procedure is repeated until the transition probabilities converge. By
this procedure, we found that reuse appears to be more pronounced for tRNA
coding for rare codons and therefore the weight is linearly increased for
these. The values of the transition probabilities are evaluated by introducing
normally distributed noise and verifying the degree of reproducibility of the
results.

The initial state vector m =[mm]T is computed from the eigen
decomposition of the transition matrix, which gives the limiting tRNA usage.
Decomposition of the transition matrix is chosen over the alternative of using
the codon, or the tRNA frequency vector, because we assume that translation
is an ongoing process where several ribosomes are engaged in translating
the same mRNA repeatedly ,m). Hypothetically, the
tRNA concentration profile around the ribosome is different from the global
average tRNA content. However, it turns out choosing either of the two
alternatives have little impact of the final result.

Now that we have described how to determine the probabilities and we
want to find the model that has the highest probability of describing the
observed sequence of consecutive codons. All models have identical starting
and transition probabilities, but the emission probabilities are different. To
evaluate the match of a model A ={E,T,x} and an observed sequence O, we
need to find the probability of the codon sequence given the model P(O|L).
This involves considering all possible paths through the HMM, which can
be solved efficiently by the forward procedure m, @).

The measure that is used to compare the models for different codon reading
possibilities is the combined probabilities of the HMM for all observed
sequences.

Po= ) 1ogP(0i[2).

ieseqs

The model that gives the highest total probability is the inferred codon
reading. It should be noted that we use the likelihood P(O|)), rather than
the posterior probability P(A|O). Because we consider all models to be
equally likely (i.e. the prior probability P(M) is the same for all models), the
likelihood and the posterior are effectively equal. Likewise, the probability
of the evidence P(O) is equal for all evaluations.

3.2 Regression of tRNA abundance and codon usage

The regression method (REG) exploits the systematic, positive correlation
of codon usage, and tRNA abundance m, @; ,m). That is,
tRNA abundance in the cell is correlated with the codon usage bias, such that
the most abundant tRNAs correspond to the most frequent cognate codons.
For our purpose, the tRNA gene copy number is used as a proxy for the
tRNA abundance (Dong ez af], [1996; [kemurd, [1981)).

Experiments show that the tRNA abundance varies with the square of
the codon frequencies 5 @). There are theories that propose
other dependencies (Ehrenberg and Kurland, [1984; [Liljenstrom er al] [1983).
However, we find that the quadratic dependence fits better with known codon
readings and hence this dependence is used in the model.

The regression method predicts codon reading by evaluating which of
all plausible solutions give the best fit for the relationship between codon
frequency and tRNA abundance. An example of evaluating a codon reading
for alanine in yeast is illustrated in Figure E(the fit of other amino acids are
shown in Supplementary Fig. S1). For each potential binary codon reading,
the codon frequency is computed as the sum of all occurrences of the codons

i342



Decoding properties of tRNA

Fig. 3. HMM for alanine in yeast. The gray arrows represent the transition
probabilities ¢ of changing between the unknown tRNA states. Associated
with the model are the tRNA starting state probabilities 7z. The black arrows
represent the emission probabilities e of observing the codon given the
tRNA states. The transition and start probabilities are estimated from the
tRNA abundances and a tRNA reuse parameter. Each model has different
emission probabilities derived from the codon reading being evaluated. The
model with the highest probability given the sequences is the predicted codon
reading

that can be read by a given tRNA. The sum of codon counts x; that is read
by the ith tRNA is computed by

Xi= E necodon,,
cetRNA;

where n. is a normalization factor to account for multiple codon reading by
tRNA,. The tRNA is allocated a fraction of codon counts based on the total
number of different synonymous codons the tRNA can read so that each
tRNA pick up the correct proportion of codon counts. The normalization
factor is computed by

e

Y’
where r is the fraction of different codons that the tRNA can read. For
example, codon c is read by tRNA; that can read four codons. Codon ¢ can
also be read by another tRNA that reads three codons. Consequently, the
normalization factor then becomes n.=(1/4)/(1/4+13)=3/7.

Now, we have the summed codon counts x; for a specific codon reading
and the corresponding tRNA counts tRNA; as given from the genomic data.
According to the assumed dependence, the fit of a codon reading matrix is
computed by the regression model

ne

tRNA; ~ yxl-z +€;.

The model uses only the quadratic term and the intercept always passes
through the origin. The value of the shape parameter y is estimated from the
data during the regression. Thus, there is only one degree of freedom and it
is possible to fit two points, as in the case for amino acids with two tRNA
isoacceptors. The error term ¢; represents the deviations of the observed
values from the expected value (i.e. the residual variance that is not explained
by the model). Here, we have chosen to evaluate the fit of the model by the
coefficient of determination R

3.3 Autocorrelation of synonymous codons

There is a strong preference for using an identical codon at the next
consecutive instance of an amino acid. This stems from several prominent
biases, such as a codon bias toward optimal codon and variable GC content
over the genome. As a result of these evolutionary forces, there is positive
autocorrelation of these codons. Here, we exploit this phenomena for
analyzing codon reading. This method is from now on referred to as CC, not
to be confused with the correlation of codon usage and tRNA abundance.
Figure Bl shows a matrix of codon correlation for alanine in yeast (other
amino acids are shown in Supplementary Fig. S2). This matrix is constructed

Codon count

GCU  GCC  GCA  GCG = 7 R-squared - 0.9995 nackoc
p-val= 0.0102 -
tRNA |58952 |35580 | 47988| 18336| < P
P4 -
count $ g -
ace 1 1] o] o et
oA -5
UGC 0 0 1 1 Ala-UGC
T T
Codon-reading 47988 + 18336 €T 58952 + 35580
= 66324 =94532

Fig. 4. Description of the regression method. The regression method
described for alanine in yeast. The reading matrix maps the tRNA gene
copy number to the codons. In this example, tRNAﬁ'(‘;‘C has 11 copies in the
yeast genome and can read the codons { GCU, GCC}, which have frequency
of 58952 and 35 580 respectively, and transforms to 94 532 (based on the
codon reading in the example). The summing can conveniently be performed
by multiplying the codon vector by the reading matrix. This gives the point
(94532, 11) and similarly for tRNAﬁlGZ‘C that read {GCA, GCG} has the
point (66 324, 5). The predicted codon reading is the matrix that gives the best
linear regression fit of a quadratic term of the codon usage (tRNA~ yx? +e).
The regression is intercepted through the origin and the shape parameter of
the quadratic term is estimated from the regression. The fit of a particular
codon reading is measured by the coefficient of determination R?

from the counts of consecutive synonymous codons at the instances of
the amino acid regardless of the distance between them for all sequences
meeting the requirements (see below). The counts are measured in z-scores,
that is, they are compared with expected usage of codon occurrences. This
is done by subtracting the expected value from the observed counts and
dividing by the standard deviation, Z=(X —E[X])/ox, assuming that the
codon counts are independent events and follow a binomial distribution. The
z-transformed matrix give the observations in standard deviations away from
the mean. As expected, the diagonal has large positive values as expected
from prevalent biases (e.g. codon usage bias, nucleotide distribution,
etc.). More interesting are the positive entries at the off-diagonals. These
entries often coincide with known codon reading of isoacceptor tRNA
and codons read by the same tRNA appear as block structures in the
matrix (Fig. B). These block structures are exploited to predict the codon
reading.

A potential codon reading is evaluated as follows. The sum s of the counts
of codon pairs read by the same tRNA is computed by summing the elements
of the matrix of observed counts X, according to the codon reading being
evaluated. If an element of the matrix is read by the same tRNA, the count
is added, if not, it is subtracted. The diagonal that represents the bias for
reusing the same codon at consecutive instances is ignored. This procedure

is described by
s=> > CiXi. i#.
i

where Cj; is +1 if the codons are read by the same tRNA and —1 if not.

The same procedure is performed for the matrix of ‘expected’ counts of
consecutive codons. Thereafter, the z-transformation gives the total score
by subtracting the total expected count from the total observed count and
dividing by the total standard deviation. This provides the procedure to
evaluate different reading matrices. The codon reading matrix that gives
the highest total z-score is the predicted anticodon—codon mapping.

3.4 Sources and preparation of data

The comparisons in this study all use the same sources of sequence data.
The data for the tRNA gene copy number come from the ‘Genomic tRNA
database’ , ). Codon usage frequencies are taken
from published genome sequences , m). In the process of
assembling codon usage frequencies, the sequence data are filtered to remove
sequences that have non-conforming codons, such as: internal stop codons,
programmed frame-shifts and undetermined nucleotides. Sequences shorter
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Consecutive codon

GCU GCC GCA GCG

GCU | 11.0 1.3 -8.7 | -6.9

GCC 0.8 6.8 -6.2 | -0.8

GCA | -82 | -64 11.5 4.8

Leading codon

GCG | -71 -1.4 5.4 5.7

Fig. 5. Codon correlation of consecutive synonymous codons. Matrix of
the correlation of consecutive codons for alanine in yeast. The numbers are
the standardized normal transformed deviations from the mean (Z-scores).
For example, the observed count of GCU followed by another GCU is 11.0
standard deviations more frequent than expected. Two blocks of positive
Z-scores (shaded) coincide with the codon reading of the two tRNAs. This
observation is exploited to infer codon reading

than 50 amino acids are discarded. For the synonymous codon pair counts
of an amino acid, sequences with less than three instances of that amino
acid are excluded. Other experimental reference data compiled from various
sources are mentioned in the respective parts of the sections below.

4 RESULTS AND DISCUSSION

In this section, we will validate the methods and benchmark them,
first by checking where the most plausible codon readings are in
the solution space. Then, we use a consensus procedure to see how
often the three different methods agree with each other. Finally,
we compare the predictions against experimental evidence. Using
these methods and experimental evidence, we suggest an improved
prediction for codon reading in yeast.

4.1 Plausible codon readings rank high in the solution
space

To investigate the evolutionary signal in the codon usage bias due
to the physiological constraints of tRNA decoding, we look at
how the subset of plausible codon readings rank in comparison
with other binary codon readings. The plausible codon readings
are based on arguments of nucleotide chemistry and on trends
in the observed anticodon—codon mappings (the possibilities are
depicted in Fig. PIB). The distributions of the scores of the three
methods for alanine in yeast are illustrated in Figure [6] where
the subsets of plausible codon readings are indicated by black
squares and the other implausible solutions by gray points. The
scores are normalized to range from O (lowest) to 1 (highest)
by sp =(s—mins)/(maxs—mins). The best plausible solution for
alanine ranks in the top of the distribution for all three methods. For
REG and HMM, all plausible solutions are in the upper half of the
distribution, whereas in the CC methods have a larger spread.
Repeating this for all non-trivial amino acids in yeast shows that
the highest scoring plausible codon readings tend to be at the top
of the distributions (see Fig. S3). For CC, REG and HMM, all the
plausible solutions are in 25, 58 and 75% of the upper half part of
the distribution, respectively. The method of codon correlation has
the largest variation and the subset is often spread through the rest

1.0 B B o
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Q ]
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s 3 :
g osf a
©
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o
o
0.0 t
HMM REG CC

Fig. 6. The relative distributions of the scores of the three methods for
alanine in yeast. Each point represents the relative score on the y-axis of all
the possible binary codon readings. The scores are scaled to range from 0 to
1. The values have randomness added to the x-coordinate to better visualize
the distribution. The subsets of codon readings that are plausible, are drawn
as black squares. These codon readings rank high among the other solutions,
drawn as gray points

of the distribution. Of the three methods, the HMM has plausible
solutions that generally rank high in the distribution.

Next, we compare how the predictions compare against random.
Randomizing the codon usage using the global codon usage of the
organism removes the signal of codon reading. The randomization
for CC and HMM is produced by taking the original amino acid
sequences and drawing random synonymous codons according to
the codon frequencies. The REG method is randomized by drawing
from a skewed normal distribution based on the codon usage of
the genome. The best plausible solution is compared with the best
plausible solutions of randomized data.

To compute the significance of our solutions, we compare 99
randomized sample points with the real solution. We use empirical
P-values based on a Monte Carlo procedure, which is based on rank
and do not rely on assumptions of the distribution. The P-values
are calculated by p=(r+1)/(n+1), where n is the total number
of simulations and r is the number of simulations that are equal
or greater to the actual, non-randomized data value. Table [ lists
the empirical P-values of the solutions for amino acids in yeast.
The solutions for the HMM method are all significant with P-values
from 0.01 to 0.02, which express that the solutions of HMM ranks
first or second in comparison with the simulated data. This is not the
case for CC and REG, which produce only a few solutions that are
significantly different from random assignment. In particular for the
atypical codon reading of arginine, the CC method performs poorly
where the majority of the simulated solutions have better scores then
the actual data. Although the block structures of the CC method
often agree with known cases, CC tend to have less predictive
power than REG and HMM, likely from the inherent limitations
of the CC method to predict cases broad codon readings where the
tRNAs can read multiple codons. In summary, these observations
are indications of the signal of tRNA decoding properties in coding
sequences.
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Table 1. Results of randomization for non-trivial amino acids in yeast

Amino acid CC REG HMM
Alanine 0.01 0.10 0.01
Arginine 0.97 0.48 0.01
Glycine 0.20 0.31 0.01
Leucine 0.12 0.31 0.02
Proline 0.40 0.15 0.02
Serine 0.25 0.22 0.01
Threonine 0.06 0.06 0.01
Valine 0.04 0.07 0.02

The best solution for each method is compared against solutions using randomized
codon usage. The HMM method compares favorably, because all the solutions are
significant (P-values: 1-2%).

4.2 The three different methods often agree on the
result

Agreement among the predictions by the methods may give an
indication of the ability of the methods to detect the signal.
To examine this, we count how the predictions of each method
coincide for the codon reading of non-trivial amino acids with codon
degeneracy larger than three in 241 genomes. This yields a total
of 1583 predictions. Each of the predicted solutions is compared
with the distribution of the best plausible solution from several
randomized sequence data (generated as described above). The result
of the comparison is summarized as a Venn diagram in Figure 7] In
205 cases, all three predictions agree, which is 26 cases more than
the expected value of 179. This result is statistically significant with
the P-value = 0.012, computed using the Monte Carlo procedure as
described above. From the other perspective, the instance where all
three methods disagree has a count of 428, which is 115 less than
expected (P-value < 10~10). For 73% of the 1583 predictions, at
least two methods are in agreement. The HMM and REG methods
have the highest number of agreements, 419 times, which is slightly
more than REG and CC (412). HMM and CC have only 119
predictions that agree, which is 168 less than expected by chance.
This is somewhat unexpected, because HMM and CC both use codon
pair frequencies for their predictions. This discrepancy is possible
due to the inherent shortcoming for CC to capture broad codon
readings. In summary, the observation that the methods agree with
each other more often than expected by random supports the notion
that codon reading can be detected from codon usage bias.

4.3 Validation shows significant agreement with
experimental data

To further evaluate the performance of the methods, we compare the
predictions with experimentally determined codon readings. This is
to establish which of the methods perform best and to compare
sequence-based methods with the simplistic method of wobble
parsimony that is commonly used for yeast. The experimentally
verified codon readings and the predictions are listed in Table
The wobble parsimony rules describe the codon reading correctly
in 2 out of 11 cases (18%) in yeast. A result that is worse than
a random assignment, pointing out the limitations of specialized
rules. In fact, generalizing codon readings is not viable even where
the tRNA modifications are known, because the influence of base

. . Pro
modifications depends on the context. For example, tRNAncms UGU

Number of predictions , 4 S
Diffr. to random +/— // \\
/ \

! Y 428
HMM

REG cC

Fig. 7. Consensus among the sequence-based methods. The black numbers
show the number of predictions that coincide from the different methods. The
gray number below the black numbers indicate the difference to random. For
example, in the middle intersection there are 205 predictions where all three
methods agree, which is 26 more than what is expected by random. All values
are significantly different from random

can read the entire codon box, whereas the same modification in
serine tRNAISIEIrnSUG , only reads the purine ending codons {TCA
TCG}. Hence, four-box codon families can have the same base
modifications at the wobble position, with different codon reading.
Wobble parsimony is only applicable to eukaryotes, and if applied
to bacteria in Table 2] not a single case would be correct.

Of the sequence-based methods, the HMM performs best, where
nine (of 18) of the predicted codon assignments are correctly
assigned, followed by CC (8 of 18) and REG (7 of 18). A random
assignment will be correct on the average five times and HMM is the
only method that is significantly different from a random assignment
(P-value = 0.04), based on a binomial distribution of the subset of
plausible solutions. Note that with only 18 data points, it is difficult
to get significant results, because the lack of experimental data limits
the power of the test and that the data may itself contain errors.

4.4 A better description of the codon reading in yeast

Here, we summarize what is known about codon reading for
cytosolic tRNA in the yeast S.cerevisiae based on experimental
results and the predictions from the sequence-based methods. The
HMM method performs the best and is therefore used for the bulk
of the predictions. When there are ambiguities in the predictions,
we rely partly on manual curation. For example, when CC an
REG both agree on a solution that coincides with the second best
HMM prediction, we choose this prediction. Regardless of the
predictions, we trust the experimental data and these assignments
take precedence (].LQb,a.nsmaLa_lJ, |2£)Dﬂ).

The codon reading assignment for all tRNAs in yeast is depicted
in Figure[8 overlaid onto the genetic code (see also Supplementary
Table S1). In summary, in yeast there are 42 different tRNA
isoacceptors, of which 23 tRNAs have trivial solutions, 11 have
previously been experimentally determined (Iohansson et all, [2008)
and 8 are predicted by the methods herein. The predictions
have substantial differences compared to the prediction using the
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Table 2. Evaluation of methods

Anticodon Org Read WP CC REG HMM

Arg mem’UCU  S.c R v
Gln  mem’s2UUG*  S.c R v v
Glu  mem’s?UUCY  S.c A v v v v
Gly mem’UCC?  S.c R v
Leu UAG* S.c N v
Pro nem’UGGY  S.c N v v
Ser IGA*  S.c D v v
Ser nem®UGA?  S.c R v
Thr nem’UGU?  S.c R v
Val IAC*  S.c Y v v v
Val ncm’UACY  S.c R v
Ala cmo’UGC®  S.e N NA v
Thr cmo’UGU¢  S.e \% NA v
Val cmo’UAC®  S.e N NA v
Leu cmnm’UAA?Y  Ec R NA v v
Leu cmo’UAG  E.c D NA
Val emo’UAC?  E.c N NA
Val mnm’UUU Tt R NA v v

Total correct assignments: 2 8 7 9

Four methods are evaluated against experimental evidence. The methods are WP =
wobble parsimony, CC = codon correlation, REG = regression and HMM = hidden
Markov model. The parentheses indicate that the codon is read by the tRNA when
the tRNA is over-expressed, which here is considered to be a true codon reading.
The experimental data originate from the following publications: ,

itra or /] [1977)% . { ner ¢/).12009)¢, (Takai er d(Niisval]et
[Murphy er gl )f The organisms (Org) are: S.c: Saccharomyces
cerevisiae, S.e: Salmonella enterica, E.c: E.coli and T.t: Thermus thermophilus. The
experimentally determined codon reading of the tRNA (Read) are indicated by standard
IUPAC names (e.g. R={A,G}, D={U, A, G}, etc.). Agreement of a prediction with
experimental evidence is indicated by a checkmark (v). The total number of correct
predictions for the different methods are given in the last row. The HMM method
produces the best results and is the only method that significantly agree with the
experimentally determined codon readings. Wobble parsimony performs poorly for
yeast (S.cerevisiae) and is not available for bacterial genomes (NA).

wobble parsimony method, where 12 of the 19 non-trivial tRNAs
have different assignments than ours. The common feature of the
discrepancy is that the base modification at the wobble position allow
broader specificities to promote a functionally redundant decoding
system than the codon readings predicted by wobble parsimony.
Inspection of the codon reading in yeast shows cases that depart
from the common pattern in eukaryotes. For the amino acids,
alanine, proline and leucine, the tRNA with C at the wobble position
is absent. The NNG codons can therefore only be decoded via
wobble reading. Another deviation from the anticipated decoding
strategy is arginine, which lacks the common tRNA to decode codon

CGA. This implies that this codon is read by the tRNA?Cré (adenine
modified to a inosine at the wobble position). The CGA codon is
not rare in yeast, suggesting that the I:A reading is not inefficient,
contrary to Escherichia coli ,M). This decoding strategy
for arginine is seen in several other fungi. Glycine is another special
case for eukaryotes in that it does not use tRNASgC (or any of

the derivatives), although the cognate GGT is often a frequent
codon. Furthermore, tRNASIIC);n5 is a modification that in yeast
is otherwise only observed for purine 2-codon family boxes, which

hints toward special properties for this codon box. The tRNAbi’G

in yeast is uncommon for eukaryotes in that it has an unmodified
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Fig. 8. The genetic code and decoding abilities of individual tRNA species
in yeast. Symbols connected with a line indicate that the codons are read by
the same tRNA. Square symbols indicate codons with a cognate tRNA and
circles are codons without. The symbols in gray color are the codon readings
that are experimentally determined and those in white are computationally
predicted from sequence data. Black symbols indicate cases where the codon
reading is trivial, that is, there is only one tRNA to decode the codons

U at the wobble position, allowing the uracil to read all four
nucleotides. The decoding of the 2-codon family boxes follows the
expected pattern of one tRNA to decode pyrimidines and two tRNA
for purines, although the codon reading for purines differs among
amino acids. Finally, the tRNA that reads the isoleucine ATA codon
contains the modification to pseudouridine tRNAE/eA v preventing
cross reading of the AUG codon coding for methionine.

4.5 Sequence-based methods for codon reading
prediction

In this section, we discuss the two auxiliary methods (CC and REG)
and the main sequenced-based method (HMM).

4.5.1 CC A striking example of the tRNA imprint in the codon
usage bias is the occurrence of block structures in the z-transformed
tables of codon pairs for the CC method (Supplementary Fig.Bland
Supplementary S2). Several factors are likely to contribute to the
off-diagonal cross correlation of codons. There is a strong variation
in codon frequencies between low and high expression genes,
where highly expressed genes have a codon usage that is biased
toward codons corresponding to frequent tRNAs. Consequently, the
next codon is more likely to be more frequent than average. In
fact, there is a positive correlation between synonymous codons
on the same gene, whether or not they are successive. There is
a higher abundance of rare codons at the beginning of the gene
for slowly loading the ribosomes, to avoid translational congestion
m, ). Also related to the dynamics of translation
is the preferential reuse of the tRNAs dﬂa.nnamzzj_maﬂ, |2£)_1ﬂ).

The relative concentrations of different tRNAs depend on growth
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conditions of the cell (m, @). Genes expressed under
different conditions might have different codon usages and different
tRNA pools that they are adapted to , ). Together,
the codon usage is shaped by these tRNA-related effects and their
decoding properties. There are two cases where the CC method is
not able to handle. One is in the hypothetical case where all tRNAs
can read all codons for an amino acid. The other is that the method
is of limited use for amino acids that are decoded by two codons.

4.5.2 REG The regression method is an intuitively appealing
method based on the correlation of tRNA abundance and codon
usage bias M, ). However, there are some potential
shortcomings of the REG method. Transfer RNA is not constitutively
expressed and the abundance levels may fluctuate depending on
regulation, which is ignored. Also, some organisms that have
low-tRNA copy numbers, which decreases the resolution of the
prediction. Like for all methods, the binary matrix that have the
highest score constitute the predicted codon reading for an amino
acid. Thus, the data determine positive cases of codon readings.
For example, a codon reading that is experimentally observed only
during tRNA over-expression may still leaves a trace in the codon
bias. Consequently, it is considered to be viable codon reading.

4.5.3 HMM The HMM is a versatile approach that is based on
establish statistics m, @). As for CC, the HMM is based
on the assumption that there is a signal in the successive pairs of
synonymous codons. Although the HMM is appealingly mimicking
the physical process of elongation by suggesting reuse of tRNA, this
is no requirement. The main problem with the HMM is the large
solution space for the parameters defining the model. The amount
of possible solutions is reduced to a computationally, feasible
size by making crucial assumptions (as mentioned above). The
predetermined values of the transition probabilities are evaluated by
introducing random noise. It turns out that the model is dominated
by the emission probabilities, rater than the transition and the
start probabilities, which can tolerate mis-specifications to at least
10%. Although, in ambiguous cases, where the first and the second
plausible solutions are very close, the robustness of the parameters
are lower. These are cases that require additional evidence and
manual curation.

Finally, which applies to all methods, a natural question is to
ask how the analysis changes using only highly expressed genes. It
is well established that the degree of codon usage bias increases
with expression level. Therefore, the signal might be stronger
using sequences with the expression levels estimated from protein
abundance data. It turns out that it does not improve on the results.
A possible reason for this it that in the subset of highly expressed
genes other effect than decoding dominates the selection on codon
bias. Also, these sequences contain the few instances of rare codons,
which weakens the signal of rare codon readings. This highlights the
multiple underlying causes of codon bias and that the strength of
selection is different among genes. Including as much information
as possible in the analysis strengthen the signal of codon reading.

5 CONCLUSION

In this study, we investigate the mapping of anticodons to codons. We
examine the weak, yet detectable, imprint in codon bias of selection
from tRNA-decoding properties. We show that we can detect a

signal that coincides with known codon reading of tRNAs. For this,
we are using three sequence-based methods: an HMM, regression
and CC. The predicted codon—anticodon mappings often agree with
experimental results, in particular for the HMM method, which
is better than the other two methods and outperforms the method
of wobble parsimony. Furthermore, all three different methods
significantly agree on the predictions and the predictions generally
rank high in the solution space.

Associated with the methods are crucial assumptions made to
aid the prediction, because the solution space is enormous. As we
show, the results based on these assumptions are sufficient to make
predictions that agree with experimental results. This provides a
valuable basis for further studies which can improve both the model
and the assumptions.

‘We proceed to exploit the detectable patterns of tRNA decoding to
predict codon reading in yeast. We use experimentally determined
codon readings, sequence-based predictions and manual curation.
These novel assignments are more accurate than the wobble
parsimony mappings that are conventionally used. We advise against
solely using the wobble parsimony, because organisms tend to use a
functionally redundant broad recognition of codons. Cases where
the predicted anticodon—codon mapping deviates from common
decoding patterns are interesting targets for further experiments and
theoretical investigations. With the HMM, we present a statistically
sound method for identifying these targets.

Conflict of Interest: none declared.
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