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ABSTRACT

Motivation: Mouse embryonic stem cells (mESCs) have developed
into a prime system to study the regulation of pluripotency in stable
cell lines. It is well recognized that different, established protocols
for the maintenance of mESC pluripotency support morphologically
and functionally different cell cultures. However, it is unclear how
characteristic properties of cell colonies develop over time and
how they are re-established after cell passage depending on the
culture conditions. Furthermore, it appears that cell colonies have
an internal structure with respect to cell size, marker expression
or biomechanical properties, which is not sufficiently understood.
The analysis of these phenotypic properties is essential for a
comprehensive understanding of mESC development and ultimately
requires a bioinformatics approach to guarantee reproducibility and
high-throughput data analysis.
Results: We developed an automated image analysis and colony
tracking framework to obtain an objective and reproducible
quantification of structural properties of cell colonies as they evolve
in space and time. In particular, we established a method that
quantifies changes in colony shape and (internal) motion using fluid
image registration and image segmentation. The methodology also
allows to robustly track motion, splitting and merging of colonies
over a sequence of images. Our results provide a first quantitative
assessment of temporal mESC colony formation and estimates of
structural differences between colony growth under different culture
conditions. Furthermore, we provide a stream-based visualization
of structural features of individual colonies over time for the whole
experiment, facilitating visual comprehension of differences between
experimental conditions. Thus, the presented method establishes the
basis for the model-based analysis of mESC colony development.
It can be easily extended to integrate further functional information
using fluorescence signals and differentiation markers.
Availability: The analysis tool is implemented C++ and Mathematica
8.0 (Wolfram Research Inc., Champaign, IL, USA). The tool is freely
available from the authors. We will also provide the source code upon
request.
Contact: nico.scherf@tu-dresden.de

1 INTRODUCTION
Mouse embryonic stem cells (mESCs) are derived from the inner
cell mass of a blastocyst-stage embryo. Under appropriate conditions
these cells can be maintained in a proliferative and undifferentiated
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state over many passages (self-renewal) while retaining the ability
to differentiate into a multitude of different cell types and repopulate
an embryo (pluripotency) (Evans and Kaufman, 1981; Smith, 2001).

Depending on the culture conditions, mESCs reveal different
types and levels of heterogeneity. Conventional culture conditions
that promote self-renewal contain the cytokine leukemia inhibitory
factor (LIF) and serum factors. However, it has been demonstrated
that mESCs in these conditions show substantial variations in the
expression levels of the transcription factors (TFs) Nanog and Rex1
associated with the differentiation propensity of the cells (Chambers
et al., 2007; Toyooka et al., 2008). Replacing LIF/serum conditions
by 2i media, a novel serum-free medium containing two small
inhibitor molecules, mESCs are captured in a pluripotent ground
state without any spontaneous differentiation (Ying et al., 2008). TF
variations are greatly reduced and a rather stable and homogenous
population of mESCs is achieved.

Interestingly, it appears that differences in the state of a cell are
not only detectable on a molecular level, but are also reflected in the
morphology and the spatial arrangement of single mESCs and the
resulting cell colonies. Although mESCs cultured in 2i media form
homogenous, dense clusters of cells, the same cells spread out under
LIF/serum forming rather flat and spatially extended cell colonies.

In order to study the spatio-temporal behavior of mESCs, it
is ultimately necessary to establish a framework allowing for
the ’quantification’ of time-dependent properties of cells and cell
colonies. To systematically analyze these morphological differences
with respect to colony growth, shape, motion, dynamic pattern
formation and structural homogeneity, we established a live-
cell imaging system to continuously monitor mESC colonies
under defined conditions. In the present work, we introduce
a novel bioinformatics approach to automatically quantify the
spatio-temporal structure of such cell cultures based on time-
lapse image sequences. Herein, we focus on the description of
the image-analytical methodology and show a set of potential
measures and visualizations for the quantification of temporal colony
development. We use a preliminary dataset of mESC cultures
to demonstrate the feasibility of our approach and to discuss
further applications. In particular, we argue that such quantitative
measures are a fundamental prerequisite for the establishment of
computational models of tissue organization.

2 APPROACH
Advances in live-cell imaging techniques and long-term cell cultures
provide an opportunity to study the spatial arrangement of mESCs
as well as dynamical pattern formation within cell colonies.
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Since manual analysis of image sequences is time-consuming,
tedious and suffers from intra- and inter-observer differences, we
developed an automated method that allows for a long-term tracking
of mESCs cultures in defined conditions. A number of methods have
been proposed for tracking of individual cells (see e.g. Acton and
Ray (2006) and Meijering et al. (2009) for an overview). However,
these techniques are not directly applicable to the analysis of cell
colonies in a straightforward manner. Since individual cells cannot
be visually separated (in particular for the spherical colonies in
2i medium) and the fact that cell clusters show characteristics
that differ from those of single cells (e.g. frequently occurring
fusion of cell clusters, large inhomogeneities in object structure
and motion, drastic changes in appearance) a more general method
for tracking of deformable tissue structures over time is needed.
The direct tracking of single cells inside a colony is not possible,
consequently, an analysis of the overall changes in the images of
two consecutive time-points (on a single pixel level) is required
to describe the dynamical changes inside a colony. This method
allows for a quantification of the dynamic internal structure of
colonies on different levels of description (sub-cellular structures,
cells, cell ensembles, etc.) For this purpose, we extend our previously
published method for single cell tracking based on nonparametric
image registration (Scherf et al., 2012). In particular, our approach
is based on a fluid image registration to estimate dense deformation
fields describing the displacement of structures between consecutive
images. We decided to use a fluid-like model as it seems appropriate
to describe the shape changes of cells and cell ensembles and,
from a more technical point of view, allows for the mapping of
rather large changes between consecutive images as opposed to
e.g. elastic models (cf. Bro-Nielsen and Gramkow, 1996; Fischer
and Modersitzki, 2004). The classical fluid registration model (Bro-
Nielsen and Gramkow, 1996) has also been used by Hand et al.
(2009) and Tokuhisa and Kaneko (2010) in the context of single-
cell tracking. However, in contrast to these works our registration
approach is able to handle partial fusion of tracked objects, which
is crucial for tracking of colonies, that constantly merge, absorb
and emit cells over time. Furthermore, our method is based on a
variational formulation as introduced by Kuska et al. 2008, which
allows greater flexibility in handling different matching criteria and
regularization constraints.

We performed an initial set of experiments to establish a
reference dataset for the quantification of colony development. In
particular, we obtained sequences of time-lapse microscopy images
(phase contrast images) for a Rex1-GFPd2 mESC line maintained
under 2i and LIF/serum conditions. Cells were monitored for 24 h
with a frequency of one image per hour (Fig. 1). We started
out by quantifying global and colony-specific parameters (e.g.
size, shape and internal structure) as functions of time in order
to morphologically characterize mESC development in different
conditions promoting self-renewal. Furthermore, we used the
obtained estimates of dynamical changes between images from the
fluid image registration to quantify dynamic structural properties
of the colonies (mean value, and standard deviation of internal
motion vectors). Moreover, the heterogeneity of these measures
within and between different culture conditions is analyzed. Finally,
we reconstructed the complete spatio-temporal growth patterns to
visualize spatial spread, merging and splitting of the initial colonies
and dynamic changes in their structural properties to facilitate visual
comprehension of the different experiments.

Fig. 1. Image data. Phase contrast images from the sequence of mESC
colonies cultured under 2i conditions (left column) and LIF/serum conditions
(right column) at three different time points

3 METHODS

3.1 Cell cultures
Mouse embryonic stem cells were cultured without feeders in the presence
of LIF in GMEM containing 10% fetal calf serum or in serum-free N2B27
supplemented with MEK inhibitor PD0325901 (1 μM) and GSK3 inhibitor
CH99021 (3 μM), together known as 2i (Ying et al., 2008).

3.2 Microscopy
A Nikon BioStation IM-Q with a cell incubator, a motorized inverted
microscope and a high-sensitivity CCD camera was used to image the
colonies over time by parallel acquisition of both phase contrast and
fluorescence images of living mES cells (only the phase contrast images
were used for the present study). Images of mESC colonies are taken over
24 h with a frequency of one image per hour at a magnification of 10×. Digital
images with a size of 640×480 pixels were obtained in uncompressed TIF
format for subsequent processing.

3.3 Image analysis
3.3.1 Fluid-like image registration Given a (deformable) source
image S(�x) and a (fixed) template image T (�x), non-parametric image
registration aims at finding a displacement field �u(�x) that maps S(�x) onto
T (�x) such that T (�x)=S(�x−�u(�x)), i.e. that maps each pixel of S to the
corresponding position in image T , such that the gray level intensity of
both images match at each pixels position (typically in the least squares
sense). This formulation of the problem is known to be ill-posed (Horn and
Schunck, 1981), thus requiring additional constraints on the properties of
the transformation to yield a unique solution. Our regularization is based
upon the curvature constraint introduced by Fischer and Modersitzki (2004),
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since it exhibits a number of interesting properties. However, the dynamics
of fluids is better described in terms of the velocity field �̇u rather than in
terms of the displacement field �u itself. Consequently, the regularization is
applied to �̇u to yield a fluid model. This idea has been introduced by Kuska
et al. (2008). We briefly derive the corresponding formulae for this model in
the following.

As stated above, we are interested in a displacement field u that minimizes
the following Lagrangian functional (we use an Eulerian reference frame for
description of the displacement):

argmin
�u

(
L(�̇u,�u)=T [�̇u]−V[�u]

)
(1)

with

V[�u]= 1

2

∫
�

(
T (�x)−S(�x−�u(�x),t)

)2
d�x, (2)

describing the matching of the gray values between the template and the
deformed source image and

T [�̇u]= ρ

2

∫
�

2∑
i=1

(
�u̇i(�x,t)

)2
d�x (3)

for the regularity of the underlying velocity field. The necessary condition
for a displacement field �u to be a minimizer of Equation (1) can be obtained
by the derived Euler–Lagrange equation yielding:

ρ
d2

dt2

(
�2�u

)
− �F =0 (4)

with �F =(
T (�x)−S(�x−�u(�x,t)))∇S(�x−�u(�x,t)). This equation describes an

undamped motion since the Lagrangian L is free of dissipation of energy.
To prevent oscillations in the solution, artificial damping is introduced to
enforce convergence when both images match as closely as possible. By
using a position independent damping γ �̇u and a viscosity term ν�2 �̇u and
formally taking the over-damped limit, one arrives at the final formulation:

γ �̇u+ν�2 �̇u= �F. (5)

For further details regarding the formal derivation, we refer to Kuska
et al. (2008). The resulting partial differential equation has to be solved
numerically to obtain the displacement field �u. Here, we use a fast Poisson
solver to handle the biharmonic operator in space and step-size controlled
Runge–Kutta method (Verner, 1993) for the time dependent part. The method
is implemented in C++ and parallelized using OpenMP and Threading
Building Blocks (TBB) library.

The first row of Figure 2 shows the results of a registration of two images
from the 2i sequence (a zoomed subpart of the image is shown in the second
row). The mismatch between the images before (a) and after (b) registration
is visualized by overlaying the images in different color channels. Non-
matching pixel values between images are visible as colored regions (red and
cyan) while matching pixel values appear as gray values. Panel (c) shows a
plot of the magnitude of the corresponding displacement field (magnitude is
color-coded on a color scale from blue—0 pixel displacement to red—up to
ca. 8 pixel displacement). A deformed grid is further shown as an overlay
in the zoomed part to visualize the displacement field more clearly. The
resulting displacement field is further used to estimate the motion within
colonies between two consecutive observations.

3.3.2 Image segmentation To handle typical problems with phase-contrast
images (e.g. halos around cells and inhomogeneities of signal intensity) we
use a retinex filter to locally adapt the gray values of the image (Land and
McCann, 1971). Next, total variation filtering is applied to reduce noise while
preserving important image structures (Chan et al., 2001). The colonies are
subsequently detected by using the active contour method proposed by Chan
and Vese (2001). Finally, we apply a filling transform to close internal holes
in the segmented colony structures. All these steps are implemented by the
standard methods supplied with Mathematica 8.0 (Wolfram Research Inc.,
Champaign, IL, USA). Figure 3 shows a visualization of the results of the
colony detection for 2i (c) and LIF/serum (d) conditions, respectively. (The
corresponding original images are depicted in the upper row (a,b).)

Fig. 2. Fluid-like image registration. Example showing the result of the
fluid registration for a sample of the 2i sequence. Shown is the mismatch
before (a) and after (b) registration. Unmatched structures between two
consecutive images show up as colored regions (cyan and red) whereas gray
areas correspond to areas with matching gray values. The magnitude of the
vectors of the resulting displacement field are visualized in (c), see inset for
scaling of color function. (d-f) show a zoomed subpart of the image

Fig. 3. Segmentation of colonies. Example results of automated detection of
individual cell colonies for (c) 2i and (d) LIF/serum conditions. Colonies are
colored randomly. (a) and (b) show the unprocessed images for comparison

3.3.3 Colony tracking For the tracking of colony development, we
extended the method recently introduced in Scherf et al. (2012). Briefly,
the initial mask of objects is obtained by a segmentation of the first image of
the sequence. We use the automated segmentation described above to detect
the colony shapes. The algorithm then proceeds by iterating the following
steps:

• At first, the displacement between images t and t+1 is obtained by
the fluid registration described above. The label masks Lt containing
the detected and labeled objects from time t are then propagated to
time t+1 by applying the resulting displacement field �ut to the label
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mask resulting in an estimate of new label positions L̂t+1(�x)=Lt(�x−
�u(�x,t)).

• These masks are used as an initialization for the active contour
segmentation (see above) to obtain a second label mask Mt+1(�x)
of the actual image data at t+1.

• Then both masks, L̂t+1(�x) (obtained by propagated labels from t)
and the newly segmented Mt+1(�x) are fused to achieve a consistent
labeling for the current time point. In particular, the following cases
are considered:

– one-to-one matching between L̂t+1(�x) and Mt+1(�x): In this
case, the segmented mask Mt+1(�x) is used, and the label is
taken from the propagated L̂t+1(�x).

– merging of objects: Here, L̂t+1(�x) predicts a number of
separated objects, where only one single cluster could be
detected by the segmentation. In this case, the propagated masks
of L̂t+1(�x) are kept and the segmentation result is discarded.

– splitting of objects: Since the fluid registration typically
preserves the topology of the masks, a connected mask will
be predicted from the deformation in L̂t+1(�x) even if a colony
splits (or a cell is separated from the colony). On the other hand,
the segmentation Mt+1(�x) will provide a number of separated
objects. In this case, the masks from Mt+1(�x) are used and new
labels for the substructures are introduced (indicating clonal
inheritance of subcolonies or cells).

– newly occurring objects: To handle objects entering the field
of view or to start a new track if the old one has been lost, we
simply provide new labels in Mt+1(�x) for objects that have not
received a label from L̂t+1(�x) by the propagation process.

These steps are then repeated for each time point. The method needs 30∼40 s
to process one frame, where most of the time is needed to calculate the fluid
registration. The speed can be optimized at the cost of registration quality if
needed. For the present study of colony development, we applied the tracking
method in a backward fashion by reversing the image sequence. This is
advantageous since the handling of object splitting results in better masks
(obtained from segmentation) than in the case of object fusion (where one
has to rely on the masks deformed by the registration step) and counteracts
deterioration of the masks over time. If image analysis should be done in
real-time during image acquisition, the method can also be applied in the
usual forward manner. A validation of the method regarding its performance
for automated single cell tracking was reported in Scherf et al. (2012) for
several experimental and synthetic data sets.

3.4 Growth statistics
To analyze a wide range of structural properties of colony growth in space and
time, we determine the following measurements describing certain aspects
of mESC cell colonies.

3.4.1 Global measurements of colony growth The total (surface-) area
covered by all cell colonies over time is the simplest measure to address
overall colony growth. This measure is obtained by dividing the total area
covered by detected cells and cell colonies by the total image size (in pixel)
for each frame.

3.4.2 Shape parameters of individual cell colonies In order to obtain a
more detailed analysis of the morphological differences between cell cultures
and to address the variability of spatial structures over time, we calculate the
following features for each individual colony at each time point:

• the area covered by the colony (counted in image pixels)

• the elongation of the colony: ξ =1−λ1/λ2 where λ1 and λ2 are the
major and minor axis of an ellipse that best matches the shape of

the colony. This provides an estimate of the roundness (ξ ∼0) or
elongation (ξ ∼1) of the corresponding colony.

• the circularity of the colony defined as: γ =4πa/p2, where a denotes
the area and p the perimeter of the object, respectively. This ratio
equals one for a circle and approaches zero for structures of increasing
irregularity.

3.4.3 Structural parameters within cell colonies Cell colonies show an
inherent level of heterogeneity, e.g. with respect to cellular orientation,
brightness, etc. In order to quantify these structural characteristics, we
propose the following quantity:

• the entropy of the image values quantifies the level of spatial
inhomogeneities within a particular colonies. Precisely, we calculated
the base e entropy of the respective gray values within the image
region inside colony j, i.e. Hj =−∑

i p(gi)log(p(gi)) where the sum
is taken over each possible gray level gi. The samples are taken at
spatial positions �x if χj(�x)=1, where χj is the characteristic function
for the mask j.

3.4.4 Dynamical changes within cell colonies The displacement fields
obtained by the registration of subsequent images facilitate an analysis of the
dynamic changes within each individual colony. For this purpose, we analyze
the region of the displacement field lying inside the respective colonies
(χj(�x)=1, see above) from one time point to the next. In particular, the
following measures appear most suitable (in light of subsequent mechanistic
modeling):

• the mean displacement comprises the dynamic changes (caused by
motion of cells within the cell clusters) in the colony. It is calculated
over the norm of the displacement field vectors within the respective
area covered by the colony.

• the standard deviation of the displacement addresses heterogeneity
of the displacement field vectors within the respective colony.

Both measures address dynamical changes of individual colonies between
subsequent image frames in a holistic manner. Thus, they have the advantage
of being applicable even if no single cell measurements are directly available.

3.5 Visualization of spatio-temporal patterns of colony
growth

The illustrated tracking method allows us to follow individual colony
development over multiple images. Akin to single cell tracking, we use a kind
of genealogical information to generate novel visualizations of colony growth
in space and time. Topological changes in the population and the dynamics of
each individual colony are depicted by means of a stream-like metaphor. The
general principle is the following: individual colonies are placed horizontally
where the one-dimensional extension is plotted proportional to a chosen
feature (here the area covered by the circularity). A color-coding visualizes
the state of the colony with respect to a second feature (here the circularity).
The temporal dimension is plotted in vertical direction pointing downwards,
i.e. the dynamic changes of each colony are visualized as a downward stream.
Merging and/or splitting of colonies is visualized by converging or diverging
streams. Taken together, we can illustrate how the individual colonies grow,
deform, merge and split over time. Since all colonies can be displayed in
parallel, the population nexus is preserved for each individual colony (i.e.
its relation to the whole population at time t). A representative example is
provided below in Figure 5.

4 RESULTS AND DISCUSSION
We have established a novel algorithm for the identification,
quantification and temporal tracking of mESC colonies. In the
following, we show the general applicability of the method and use
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Fig. 4. Application of structural measures for colony development.
(a) overall colony growth measured as the fraction of covered surface (2i—
blue, LIF/serum—red) over time (h), (b–d) plots illustrating the distribution
(median as thick line and respective 0.25 and 0.75 quantiles as dashed lines)
of colony-based measures for each image frame in chronological order [(b) -
circularity, (c) - entropy, (d) - mean displacement]

a selection of the measures (as introduced above) to demonstrate
the descriptive power of our approach. In particular, we rely on
a preliminary dataset obtained for self-renewing mESCs cultured
either under 2i or LIF/serum conditions. We did preliminary
statistical tests on the pooled data (over temporal dimension) to test
for differences in the median of the distribution of the respective
features between both conditions. A non-parametric Wilcoxon rank
sum test showed differences between the conditions for all proposed
features at a level of significance below 0.01. However, it should
be pointed out that the primary aim was to test the applicability
of features that are meaningful in the context of further spatial,
mathematical modeling approaches rather than pure classification.
A number of obtained results are discussed in the following.

Figure 4a illustrates overall growth curves for both conditions
(2i- blue, LIF/serum - red). The graphical representation supports
and verifies the naive impression that mESCs in LIF/serum tend
to grow in more flattened, space-consuming monolayers. After
24 h almost the whole surface area is covered by cells under
LIF/serum conditions whereas for 2i cells, the covered area increases
only slightly. This effect indicates underlying differences in the
proportion of cell–cell to cell-surface adhesion in 2i as compared
to LIF/serum, leading to differences in colony spreading and shape.

As an example for the shape parameter of individual cell colonies,
we show a plot of the median (thick line and respective 0.25 and 0.75
quantiles as dashed lines) of the distribution of colony circularity in
Figure 4b. Although a direct comparison for the individual time
points is not in place given the initial differences, e.g. in local cell
densities, it appears evident that colonies under 2i are more regularly
shaped (round) as compared to more diverse and complicated
structures found in colonies under LIF/serum. This observation
supports the visual impression obtained in Figure 1 and is further
visualized in Figure 5.

Furthermore, we analyzed the homogeneity of the gray levels
within the colonies under both conditions using the outlined entropy

Fig. 5. Stream-like visualization of colony development. The frame number
is given on the y-axis, while the thickness of lines corresponds to area of
colony. Color coding is according to circularity (red—round, blue—irregular;
color scale is given below the plot). Merging and branching of streams depicts
merging and splitting of colonies. Width of plot is normalized with respect
to complete area of the observed region (a value of 1 would correspond to
complete confluency)

measure. Figure 4(c) indicates that 2i colonies are much more
homogeneous as compared to colonies under LIF/serum. These
differences in the phase contrast images most likely derive from
differences in the cell–cell and cell–substrate adhesion as well as
the cell shape. Cells cultured under LIF/serum conditions are more
attached to the surface and less adhesive to each other leading to a far
more heterogeneous distribution of grey levels since more individual
cells and sub-cellular structures are visible. 2i cells, on the other
hand, form rather compact, three-dimensional spheres.

As an example addressing the dynamical changes within cell
colonies we show the distribution of the mean displacement between
subsequent images in Figure 4d. It appears that colonies under
LIF/serum conditions have an increased dynamical remodeling
ability. The plot indicates that there is a higher tendency to find
colonies with larger displacements under LIF/serum as compared
to 2i conditions. However, a rigorous statistical analysis of these
results requires a more solid and extensive dataset.
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Finally, we present an example of our stream-like visualization
introduced above, to demonstrate its use for explorative data
analysis. Figure 5 shows the resulting plots, where the area of the
individual colonies is used to code the width of the lines and the color
indicates one of the shape parameters (circularity) of the colony at
the respective time point. A reddish coloring corresponds to a round
colony shape and blue to irregular structures. This visualization
clearly highlights the structural differences between both conditions.
Both experiments start from a comparable distribution of colonies
(with respect to size and shape). Although the growth and the
topological changes (merging, splitting) of colonies is rather
homogeneous under 2i, the picture radically differs under LIF/serum
conditions. Here, the initial cell distribution soon spreads out over
time (note the variations in size and color) in a less ordered fashion,
with an emerging large cluster and scattered smaller parts.

5 CONCLUSION
We have established a sophisticated framework for the automated
image analysis, quantification and visualization of spatio-temporal
patterning in mESC colonies. Apart from standard image analysis
methods, our approach uses a fluid-like image registration to assess
the temporal development of cell colonies and to extract the
developmental history of individual cell colonies. This approach
is applicable at different levels of granularity (individual cells and
clusters of cells), depending on the underlying image data.

Applying this methodology to a preliminary dataset, we
demonstrate in a proof-of-principle that mESCs show a distinctly
different growth pattern under 2i and LIF/serum conditions, which
are both used to maintain stem cell pluripotency. Although our
analysis was initially focused only on a rather short sequence of
phase contrast images, we can deduce that mESCs under LIF/serum
conditions are more volatile and more heterogeneous as compared
to culturing these cells under 2i conditions. These initial results
demonstrate the feasibility of our approach and call for analysis
of further image sequences to improve statistical power. It also
appears very interesting to compare the results to growth patterns
under other different seeding densities (e.g. starting from clonal
density) and higher image frequencies. As the next step, we will
establish a thorough benchmark for our system by analyzing a
larger number of experiments under different conditions and create
manually validated reference data. We will further explore more
complex measures of colony shape and structures, e.g. Zernike- or
Fourier decompositions and PCA or ICA as discussed in Pincus and
Theriot (2007).

Our approach establishes the general framework to analyze colony
development of mESCs under various conditions. The approach can
be extended to incorporate further available information as it is
contained in fluorescence images or under differentiation inducing
conditions. This will reveal possible correlations between internal
cell states and spatio-temporal structure of colonies. In the long run,
we aim to use this data to develop a mathematical model of mESC
organization representing both intra-cellular and inter-cellular
regulations. In particular, we will extend a previous established
TF network model (Glauche et al., 2010) by a spatial dimension,
thus including the concept of spatial heterogeneity among mESCs.
The presented methods for tracking, analyzing and visualizing the
structural features of cell colonies over time will be indispensable

to bridge the gap between phenomenological measurements and
mechanistic principles in the context of mathematical modeling
approaches.

ACKNOWLEDGEMENTS
We are deeply indebted to Jens-Peer Kuska, whose ideas and
contributions incomparably influenced our research in image
processing and visualization. To our greatest regret, he passed away
on July 1, 2009 at the age of 45.

Funding: The European Commission project EuroSyStem (200270),
the German Ministry for Education and Research, BMBF-grant
on Medical Systems Biology HaematoSys (BMBF-FKZ 0315452),
the DFG Priority Program: SPP 1356 Pluripotency and Cellular
Reprogramming (RO3500/2-1) and the Human Frontier Science
Program (HFSP-grant RGP0051/2011).

Conflict of Interest: none declared.

REFERENCES
Acton,S.T. and Ray,N. (2006) Biomedical image analysis: tracking. Synthesis Lectures

on Image, Video, and Multimedia Processing, Morgan & Claypool Publishers, Vol. 2.
Bro-Nielsen,M. and Gramkow,C. (1996) Fast fluid registration of medical images.

Visualization in Biomedical Computing. 4th International Conference, VBC ‘96
Proceedings, pp. 267–276.

Chambers,I. et al. (2007) Nanog safeguards pluripotency and mediates germline
development. Nature, 450, 1230–1234.

Chan,T.F. et al. (2001) The digital TV filter and nonlinear denoising. IEEE Trans. Image
Proc., 10, 231–241.

Chan,T.F. and Vese,L.A. (2001) Active contours without edges. IEEE Trans. Image
Proc., 10, 266–277.

Evans,M.J. and Kaufman,M.H. (1981) Establishment in culture of pluripotential cells
from mouse embryos. Nature, 292, 154–156.

Fischer,B. and Modersitzki,J. (2004) A unified approach to fast image registration and
a new curvature based registration technique. Linear Algebra Appl., 380, 107–124.

Glauche,I. et al. (2010) Nanog variability and pluripotency regulation of embryonic
stem cells—insights from a mathematical model analysis. PLoS One, 6, e11238.

Hand,A.J. et al. (2009) Automated tracking of migrating cells in phase-contrast video
microscopy sequences using image registration. J. Microsc., 234, pp. 62–79.

Horn,B.K.P. and Schunck,B.G. (1981) Determining optical flow. Artificial Intelligence,
17, 185–203.

Kuska,J.P. et al. (2008) Fast fluid extensions for image registration algorithms. IEEE
International Conference on Image Processing, 2008. pp. 2408–2411.

Land,E. and McCann,J. (1971) Lightness and retinex theory. J. Opt. Soc. Am. 61, pp. 1–
11.

Meijering,E. (2009) Tracking in cell and developmental biology. Semin. Cell Dev. Biol.,
20, 894–902.

Pincus,Z. and Theriot,J. (2007) Comparison of quantitative methods for cell? shape
analysis. J. Microsc., 227, pp. 140–156

Scherf,N. et al. (2012) Fluid tracks—Combining nonlinear image registration and active
contours for cell tracking. Proc. Bildverarbeitung fuer die Medizin 2012, Springer,
pp. 57–62.

Smith,A.G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev.
Biol., 17, 435–462.

Tokuhisa,S. and Kaneko,K. (2010) The time series image analysis of the HeLa cell using
viscous fluid registration. Computational Science and Its Applications, ICCSA 2010,
Springer, 189–200.

Toyooka,Y. et al. (2008) Identification and characterization of subpopulations in
undifferentiated ES cell culture. Development, 135, 909–918.

Verner,J. (1993) Differentiable interpolants for high-order Runge-Kutta methods. SIAM
J. Num. Anal., 30, pp. 1446–1466.

Ying,Q. et al. (2008) The ground state of embryonic stem cell self-renewal. Nature,
453, 519–523.

i561


	Imaging, quantification and visualization of spatio-temporal patterning in mESC colonies under different culture conditions
	1 Introduction
	2 Approach
	3 Methods
	4 Results and Discussion
	5 Conclusion


