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ABSTRACT

Motivation: Several software tools specialize in the alignment of
short next-generation sequencing reads to a reference sequence.
Some of these tools report a mapping quality score for each
alignment—in principle, this quality score tells researchers the
likelihood that the alignment is correct. However, the reported
mapping quality often correlates weakly with actual accuracy and
the qualities of many mappings are underestimated, encouraging the
researchers to discard correct mappings. Further, these low-quality
mappings tend to correlate with variations in the genome (both
single nucleotide and structural), and such mappings are important
in accurately identifying genomic variants.
Approach: We develop a machine learning tool, LoQuM (LOgistic
regression tool for calibrating the Quality of short read mappings, to
assign reliable mapping quality scores to mappings of Illumina reads
returned by any alignment tool. LoQuM uses statistics on the read
(base quality scores reported by the sequencer) and the alignment
(number of matches, mismatches and deletions, mapping quality
score returned by the alignment tool, if available, and number of
mappings) as features for classification and uses simulated reads to
learn a logistic regression model that relates these features to actual
mapping quality.
Results: We test the predictions of LoQuM on an independent
dataset generated by the ART short read simulation software
and observe that LoQuM can ‘resurrect’ many mappings that
are assigned zero quality scores by the alignment tools and are
therefore likely to be discarded by researchers. We also observe
that the recalibration of mapping quality scores greatly enhances the
precision of called single nucleotide polymorphisms.
Availability: LoQuM is available as open source at http://compbio.
case.edu/loqum/.
Contact: matthew.ruffalo@case.edu.

1 INTRODUCTION
Next-generation genome sequencing (NGS) has quickly become
very popular in life sciences because of its utility in efficiently
generating high-quality sequence data (Meyerson et al., 2010).
Applications of NGS include analysis of gene expression and
alternative splicing (RNA-seq) (Wang et al., 2009), DNA–
protein interactions (chromatin immunoprecipitation sequencing)
(Schmidt et al., 2009), de novo genome sequencing (Li et al.,
2009b), metagenomics and identification of genetic variants
within and across populations (Alkan et al., 2009). Many
computational methods are already available for analyzing genetic
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variants using NGS data. These variants include single-nucleotide
polymorphisms (SNPs) and structural variants such as copy
numbers, insertions, deletions, tandem duplications, inversions and
translocations. Characterization of such variants is useful in many
applications, including genome-wide association studies (Mardis,
2008), identification of driver mutations in cancer (Meyerson et al.,
2010) and comparative genomics (Hudson, 2008).

1.1 Short read alignment is an important problem
The first step in the detection and analysis of genetic variants is
usually the alignment of short NGS reads from an individual’s
(donor) genome to a reference genome. This task poses significant
computational challenges due to the large number of reads
(sometimes tens of millions) and the size of many reference
genomes (generally on the order of billions). Furthermore, because
of sequencing errors, repeats in the reference genome and differences
between the donor and reference genomes, accurate mapping of the
reads to the genome is not straightforward. In recent years, many
software tools have been developed to address these challenges and
efficiently and accurately align short reads to the reference genome
(Ruffalo et al., 2011). These tools include BWA (Li and Durbin,
2009), SOAP (Li et al., 2009c), Novoalign (Novocraft, 2010) and
mr(s)FAST (Alkan et al., 2009; Hach et al., 2010).

1.2 Current alignment tools do not return reliable
mapping quality scores

As the mapping of a read to a location in the reference genome
may not be accurate, many alignment tools report a mapping
quality score as an indicator of the likelihood that the mapping
is accurate. This score is generally estimated by considering
various factors, such as the number of base mismatches and
the sizes of inserted or deleted regions in the alignment. In
principle, the mapping quality score Qm reflects the log-scaled
probability that the mapping is inaccurate and ranges from 0
(Pr{mapping is inaccurate}=1, i.e. the mapping is most likely
inaccurate) to 40 (40=−10log10Pr{mapping is inaccurate}→
Pr{mapping is inaccurate}<10−4, i.e. the mapping is most likely
accurate). However, for almost all the state-of-the-art alignment
tools, the mapping quality scores do not correlate well with the
actual likelihood that a mapping is accurate and is therefore not
very useful (Ruffalo et al., 2011). This is illustrated in Figure 1.
In the figure, for several alignment tools, the relationship between
the mapping quality reported by the alignment tool and the actual
mapping accuracy (the fraction of accurate mappings among those
that are assigned the respective quality score) is shown. As seen in
the figure, alignment tools generally report many accurate mappings
with quality 0, and many inaccurate mappings with high-quality
scores. We also see that there is very little dynamic range in the
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Fig. 1. Direct comparison of the theoretical accuracy at each quality
score Qm against each tool’s actual accuracy. The mapping quality Qm

is defined as the log-scaled probability P that the mapping is incorrect:
Qm =−10log10 P, giving a theoretical accuracy A for each quality score:
A=1−P =1−10−Qm/10

mapping qualities; even when tools provide many distinct quality
scores, there is little difference in actual mapping accuracy between,
e.g. mappings with quality score 15 and mappings with quality score
30. Underestimated mapping quality scores might cause the user
to discard many accurate mappings because of the conservative
estimate provided by the alignment tool. Overestimated mapping
quality scores, conversely, may contribute to false-positive results
in variant calling and other types of downstream analysis. These
observations call for more accurate assessment of mapping quality
for the mappings provided by these tools. Furthermore, some
methods, e.g. mr- and mrsFAST, do not report any mapping quality
scores, they rather report all possible mappings for a read. For such
tools, assessment of mapping quality would be useful as well, as a
means for choosing from the multiple possible mappings.

1.3 Contributions of this study
In this article, we use a machine learning approach to assess
the quality of the short read mappings more accurately than
available alignment tools. For this purpose, we first identify the
features that are potentially useful in assessing the likelihood
that a mapping is accurate. These features consist of read
statistics provided by an Illumina sequencer (e.g. base quality)
and alignment statistics provided by the aligner (e.g. number of
matches, mismatches, deletions, insertions, number of possible
mappings and mapping quality score). Subsequently, we simulate
NGS runs to generate reads that accurately reflect the characteristics
of available sequencers. We use these simulated reads and the
mappings provided by the aligner for these reads as training data
to fit a logistic regression model that represents the relationship
between read and alignment statistics and mapping accuracy. We
implement this computational pipeline into a software package,
LoQuM (LOgistic regression tool for calibrating the QUality of
short read Mappings), which is available as open source at http://
compbio.case.edu/loqum/. LoQuM can work with a wide range of
alignment tools to run the aligner for the user, compile the mappings

returned by the aligner, calibrate the quality of these mappings
and return the list of mappings with more reliable mapping quality
scores. We test LoQuM by comprehensive cross-validation studies
on the human genome. The cross-validation studies are conducted by
using different simulators to generate the training and testing data.
Namely, we first simulate training reads using the Seal (Ruffalo
et al., 2011) sequencing simulation software, and we use validation
reads generated by the ART (Huang et al., 2012) software. We
also investigate the utility of recalibrating mapping quality scores
in improving genomic variant detection in the context of detecting
SNPs. For this purpose, we implant SNPs into the human genome
and use the SAMtools (Li et al., 2009a) software to compare
the effect of raw and recalibrated mapping quality scores to the
performance of SAMtools in calling these implanted SNPs. Previous
work such as SRMA (Homer and Nelson, 2010) focused on local
re-alignment of short reads to improve the accuracy of SNP calls;
LoQuM’s broader focus also makes it suitable for improving the
accuracy of other types of variant calls.

The results of our experimental studies can be summarized as
follows:

• For most aligners, the mapping quality scores estimated by
LoQuM strongly correlate with actual mapping accuracy.

• The quality scores computed by LoQuM provide a reliable
criterion for selecting the high-quality mappings among those
that are assigned zero quality scores or not scored at all by the
aligner.

• The features that are most useful in assessing mapping quality
are the raw mapping qualities provided by the alignment tools
and (except for Novoalign) the rate of degradation of base
quality for a read. For tools that report multiple mappings for
reads (e.g. mrFAST), the number of mappings for a read is
also highly informative.

• Mapping quality scores computed by LoQuM greatly improve
the precision of SNP calling at the cost of moderately lower
recall.

1.4 Outline
In the next section, we describe our classification framework for
calibrating the quality of short read mappings. Subsequently, in
Section 3, we present the results of comprehensive cross-validation
studies performed on three different aligners (BWA, SOAP2 and
Novoalign) using the human genome and the impact of these results
on SNP calling. In Section 4, we interpret our findings, discuss how
LoQuM can be useful in a range of applications and outline avenues
for future research.

2 METHODS
The proposed machine learning framework is shown in Figure 2. As seen in
the figure, the reads are generated by the sequencer from the donor genome
and are aligned to the reference genome using an available alignment tool.
Both the sequencer and the aligner provide certain statistics on the read and
the alignment, which are used by LoQuM to recalibrate the mapping quality
scores.

In the proposed framework, we first derive features for each read-mapping
pair from the read statistics provided by the sequencer and the alignment
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Fig. 2. The machine learning framework for recalibrating mapping quality scores. Rectangles represent data, blue rounded rectangles represent available
hardware and software and green ellipses represent computational methods implemented within LoQuM

statistics provided by the aligner. Subsequently, we generate a large set of
reads for training, by simulating reads from the reference genome. We then
feed these reads to the aligner to generate a set of training mappings. We
derive classification features for the training read-mapping pairs based on the
model used for generating reads and the alignment statistics. As we know
exactly where each simulated read is supposed to be mapped on the reference
genome, we label each read-mapping pair in the training set as ‘accurate’ or
‘not accurate’. Using this training data set, we fit a logistic regression model
that represents the relationship between the accuracy of a mapping and the
features derived from the read and alignment statistics. Finally, we use this
logistic regression model to predict the accuracy of each mapping in the test
dataset. As logistic regression makes a quantitative prediction for mapping
accuracy between 0 and 1, we use this figure directly as a measure of mapping
quality.

In this section, we first discuss the features that are used in assessing
the quality of short read mappings. Subsequently, we describe the proposed
classification framework for recalibrating mapping quality scores using these
features.

2.1 Selection of Features
We classify the features we use into three categories: (i) alignment-
independent features, (ii) alignment statistics and (iii) aligner-specific
features. We discuss the features in each category later.

2.1.1 Alignment-independent features These features consist of read
statistics reported by the sequencer. In particular, most types of sequencing
hardware provide a quality score Qb for each base call in the read. In other
words, the hardware reports its confidence in assigning a specific nucleotide
to each base (e.g. the base is a G with 99.9% confidence or a C with 80%
confidence). The raw quality value, also called Phred score, is the log-scaled
probability that the base call is incorrect:

Qb =−10log10 Pr{base is incorrect} (1)

The base quality scores reported by sequencers range from 0 (least
reliable) to 40 (most reliable).

Figure 3 shows base quality statistics for a real RNA-seq data set. In the
figure, the distribution of base quality across a random sample of 33 million
reads is shown as a function of the position of the base on the read. As seen
in the figure, mean base quality decreases in an almost linear fashion as more
bases are read.

If we use base quality scores directly as features for classification, we
would have k base quality features for a read of length k, causing problems

Fig. 3. Boxplots of per-base quality statistics provided by the FastQC tool
(Andrews, 2010) for the MDAMB468 cell line (Sun et al., 2011) across a
random sample of the 33 million reads. The x-axis is the base position in
each read, and the y-axis is the base quality score Qb. The blue line shows
the mean base quality

with high dimensionality. An alternate approach is to use the mean base
quality for a read; however, the mean does not capture the base position-
dependent nature of base quality scores. For these reasons, we fit a linear
regression model to each read’s quality scores and use the regression
parameters as features for classification:

• Intercept: The quality of the first base in the read.

• Slope: The rate of decline of base quality as more bases are sequenced
on the read.

• R value (correlation coefficient): How well a line fits the read’s base
quality scores. A low R value may signify, e.g. a read whose base
quality values show a very sharp drop and then ‘bottom out’ at 0 for
the remainder of the read.

Another potentially useful alignment-independent feature is the number of
bases that could not be called (N count) in each read. When the sequencing
hardware cannot identify the base at a certain position, it reports an N (instead
of A, C, G and T) for that base, along with a zero base quality score. The
N count should correlate with base quality statistics, but this may not be
completely captured in the linear regression parameters described earlier.
An N in the middle of a read should cause a sharp downward spike in
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base quality, with quality scores more-or-less resuming their previous value
immediately afterward.

2.1.2 Alignment statistics Alignment tools report a few standard values,
including the number of matches, mismatches, insertions and deletions in a
mapping. These statistics together provide a direct measure of how well a
read is aligned to a position in the reference genome. We use the raw counts
of each of these values as classification features.

2.1.3 Aligner-specific features Alignment tools typically report their
output in the standard SAM (Li et al., 2009a) file format, which defines
a mapping quality field that aligners can use to signify whether an alignment
is likely to be correct. The SAM format defines this mapping quality Qm to
be analogous to the base quality Qb:

Qm =−10log10 Pr{mapping is inaccurate} (2)

However, as discussed in the previous section, these mapping quality
scores do not accurately characterize the reliability of a mapping. Among
popular modern alignment tools, BWA and Novoalign provide the most
meaningful quality scores (Ruffalo et al., 2011), though we see that these
tools still assign quality 0 to many accurate mappings (Fig. 1). As these
quality scores are informative to a certain extent, we expect them to be
useful as features for classification. However, we seek to improve on the
false negatives—the accurate mappings that have low quality—and the false
positives—the inaccurate mappings that have high quality.

Furthermore, some alignment tools (e.g. mrFAST and mrsFAST) may
return multiple possible mappings for a read. The number of possible
mappings for a read may be an indicator of the reliability of each of these
mappings, as at most one of the mappings can correspond to the read’s
position in the genome. For this reason, for these tools, we also use the
number of mappings returned for each read as a feature for classification.

2.2 Classification
We choose logistic regression as a classifier to learn the relationship between
accuracy of mapping and the features derived in the previous section,
for multiple reasons. First, as we are interested in accurately calculating
the likelihood that a mapping is correct, a probabilistic classifier is a
natural choice. Second, logistic regression makes no assumptions about the
independence between features, which is appropriate in this setting. Many
of the features described in Section 2.1 are not likely to be statistically
independent of each other; at the very least, the mapping quality returned by
the aligner should have some correlation with the other features. Finally,
logistic regression is a simple classifier that provides insights on which
features are most useful in predicting the dependent variable (here, accuracy
of mapping), facilitating interpretation of how each feature affects mapping
quality.

We seek to accurately model the probability p that a mapping is correct.
Logistic regression represents this in terms of the log odds ratio ln p

1−p and
models this quantity as a linear combination of numeric features xi and
coefficients βi (with a constant intercept term β0):

ln
p

1−p
=β0 +β1x1 + ...+βk xk (3)

Our xi values are the features described earlier, e.g. mapping quality score,
base quality slope and number of mappings.

2.3 Simulation of Reads
Our evaluation of LoQuM uses simulated 50 bp reads from the human
genome, provided by the ART (Huang et al., 2012) sequencing simulation
package. ART uses empirical base quality profiles to accurately mimic the
characteristics of Illumina hardware, and we use these base quality values
to calibrate the machine learning framework. Each read is annotated with its
original position in the reference genome, which allows for easy evaluation
of whether an alignment tool mapped it to the correct location.

2.4 Cross-validation framework
We perform a standard 5-fold cross-validation procedure: we build the
classifier on 80% of the training set and evaluate the accuracy on the
remaining 20%. For demonstration purposes, figures in this document
represent one of the five training/validation folds.

2.5 SNP calling evaluation
Our evaluation of SNP calling used 100 artificial SNPs inserted into random
locations in human chromosome 1. We created a new reference sequence
containing these SNPs, then simulated reads from the altered sequence
with ART. We then aligned these reads to chromosome 1 with BWA and
adjusted these reads’ mapping quality scores with LoQuM. We identified
significant SNPs with the SAMtools mpileup variant calling program, both
with BWA’s original mapping quality scores and with LoQuM’s recalibrated
scores. Using the locations of the artificial SNPs, we evaluated the number
of true-positive, false-positive and false-negative SNP calls with each set of
mapping quality scores.

3 RESULTS
We evaluate our classification framework by considering the
relationship between precision and recall as one varies a threshold
on prediction output. In calculating these measures, we consider a
true positive (TP) as a read that is correctly mapped and whose
score exceeds this threshold. A false positive (FP) is a read that is
incorrectly mapped but whose score exceeds this threshold, and a
false negative (FN) is a read that is correctly mapped but is discarded
because its score is less than the threshold. We then use the standard
definition of precision as TP

TP+FP. Similarly, recall is defined as
TP

TP+FN .
We evaluate the performance of LoQuM on multiple alignment

tools and compare the classifier output with the raw mapping
quality (if provided). We then examine the relationship between
our prediction scores and actual mapping accuracy and the effect of
these recalibrated mapping quality scores on SNP calling with the
SAMtools (Li et al., 2009a) mpileup variant caller.

3.1 BWA
Figure 4 shows precision versus recall for the BWA alignment tool,
with Figure 4a showing the raw mapping qualities and Figure 4b
showing the output of LoQuM. We see that the raw mapping
qualities provide relatively little information about reads that are
incorrectly mapped—even at the highest mapping quality of 25,
BWA provides high recall and precision of ≈0.5. LoQuM, however,
identifies these high-quality incorrect mappings and provides much
higher precision at comparable recall values.

3.2 SOAP
Figure 5 shows SOAP2’s precision and recall as a function of a
threshold on mapping quality or logistic regression output. From
the raw mapping quality precision/recall in Figure 5a, we see
that SOAP’s quality scores have very low dynamic range and
discriminative power. In fact, SOAP only reports mapping qualities
of 0 or 30, and all quality-30 mappings are at the top of the red
line (precision≈0.5) with all quality-0 mappings represented as an
invisible blue dot under the red line at precision 0.45. Nonetheless,
this logistic regression framework can accurately classify reads
as correctly or incorrectly mapped. This is shown in Figure 5b—
LoQuM provides higher area under the precision/recall curve, and
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Fig. 4. Precision versus recall for the alignment tool BWA, using the raw
mapping qualities in (a), and the output of LoQuM in (b). The color of the
curve denotes a threshold on mapping quality or prediction output; decreasing
this threshold typically increases recall but decreases precision

a score threshold of 0.5 sits at the ‘elbow’ of the curve (the point at
which mappings become less trustworthy).

3.3 Novoalign
Again, Figure 6 shows precision versus recall for Novoalign’s
mapping qualities and LoQuM’s output. From Figure 6a, we see
that Novoalign provides the most dynamic range in its mapping
quality, though still with a maximum precision of ≈0.5. This
logistic regression model produces a great accuracy improvement
on the output of Novoalign; we see a smoothly decreasing curve
in Figure 6b. This suggests that LoQuM captures a significant
amount of information about Novoalign’s mappings beyond what
is represented in its quality scores.

3.4 Overall
Figure 7 shows similar data as 1 but uses the output of LoQuM
instead of the raw mapping quality. Mappings are divided into 10
groups based on their prediction score, and the average accuracy
for each group is plotted against the theoretical accuracy at that
score. We see that LoQuM’s output generally matches the theoretical
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Fig. 5. Precision versus recall for the alignment tool SOAP2, using the
raw mapping qualities in (a), and the output of LoQuM in (b). The color
of the curve denotes a threshold on mapping quality or prediction output;
decreasing this threshold typically increases recall but decreases precision

accuracy much better than the raw mapping quality shown in
Figure 1.

3.5 SNP calling
Our SNP calling results are listed in Table 1. We see that
the SAMtools mpileup variant calls are dominated by false
positives; raw mapping qualities provide a recall score of 0.83 but
precision of only 0.163. The recalibrated mapping quality scores
provided by LoQuM result in lower recall (0.63) but a substantially
higher precision of 0.589. These results are consistent with the
precision/recall curves shown above—alignment tools report many
incorrect mappings with high mapping quality, and LoQuM’s more
conservative quality scores indeed reduce false-positive SNP calls.

4 DISCUSSION
As shown in the above figures, this logistic regression model
provides higher precision at various recall values. This framework
also provides better dynamic range than the raw mapping quality
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Fig. 6. Precision versus recall for the alignment tool Novoalign, using the
raw mapping qualities in (a) and the output of LoQuM in (b). The color
of the curve denotes a threshold on mapping quality or prediction output;
decreasing this threshold typically increases recall but decreases precision

Table 1. SNP calling results for 100 artificial SNPs inserted into human
chromosome 1

Raw Map. Qual. LoQuM scores

True positives 83 63
False positives 427 44
False negatives 17 37
Precision 0.163 0.589
Recall 0.83 0.63
F score 0.136 0.304

The F score is defined as the harmonic mean of precision and recall: F =1/(1/prec+
1/rec).

values provided by most tools, suggesting that it may be valuable
for researchers who desire more granularity in their data analysis.

Most importantly, LoQuM correctly identifies many correctly
mapped reads with lower mapping quality. This is evident in the
precision/recall plots; a classifier output threshold of 0.5 sits exactly
at the ‘elbow’ of each curve (the point at which precision starts to

Accuracy vs. Prediction, LoQuM
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Fig. 7. Comparison of reported accuracy versus theoretical accuracy for
ART’s simulated reads. The x-axis is the output of the logistic regression
classifier p after inversion and negative log-scaling: Q=−10log10(1−p).
This corresponds to the mapping quality score Qm in Equation (2)

significantly decrease). LoQuM’s scores therefore provide a reliable
way to discriminate between correct and incorrect mappings across
different alignment tools—one may consistently use 0.5 as a quality
score threshold. This suggests that researchers can use a tool of this
type to use more of their data and get better yields out of sequencing
experiments.

The differences in feature significance between alignment tool
classifiers also highlight the characteristics of these tools and the
information that is likely to be represented in their existing quality
scores.

5 CONCLUSION
In this article, we show that a machine learning framework that uses a
combination of read and alignment statistics as classification features
and simulated reads as training data to predict mapping accuracy
can improve on mapping quality scores reported by available
tools. These improved mapping quality scores might be particularly
useful in improving the identification of genomic variants, since
they can ‘save’ potentially informative mappings that would be
conservatively assigned low-quality scores by the assignment tools.
Additionally, LoQuM’s recalibrated mapping quality scores can
reduce false-positive variant calls due to overestimated mapping
accuracy. Assessment of the effect of mapping quality scores on
identification of more genomic variants remains an important and
interesting problem for future studies.
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