
Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:04 7/8/2012 Bioinformatics-bts417.tex] Page: i438 i438–i443

BIOINFORMATICS Vol. 28 ECCB 2012, pages i438–i443
doi:10.1093/bioinformatics/bts417

SANS: high-throughput retrieval of protein sequences allowing
50% mismatches
J. Patrik Koskinen1 and Liisa Holm1,2,∗
1Department of Biosciences, Division of Genetics and 2Institute of Biotechnology, University of Helsinki, 00014
Helsinki, Finland

ABSTRACT

Motivation: The genomic era in molecular biology has brought
on a rapidly widening gap between the amount of sequence data
and first-hand experimental characterization of proteins. Fortunately,
the theory of evolution provides a simple solution: functional and
structural information can be transferred between homologous
proteins. Sequence similarity searching followed by k-nearest
neighbor classification is the most widely used tool to predict the
function or structure of anonymous gene products that come out of
genome sequencing projects.
Results: We present a novel word filter, suffix array neighborhood
search (SANS), to identify protein sequence similarities in the range of
50–100% identity with sensitivity comparable to BLAST and 10 times
the speed of USEARCH. In contrast to these previous approaches,
the complexity of the search is proportional only to the length of
the query sequence and independent of database size, enabling fast
searching and functional annotation into the future despite rapidly
expanding databases.
Availability and implementation: The software is freely available
to non-commercial users from our website http://ekhidna.biocenter.
helsinki.fi/downloads/sans.
Contact: liisa.holm@helsinki.fi.

1 INTRODUCTION
k-nearest neighbor classifiers are used widely and successfully
to infer the function of newly sequenced proteins. Neighbors are
commonly determined by sequence comparison. Protein sequence
databases have grown so large that retrieving the neighbors of a
query sequence is prohibitive in the exact mode and takes 1–2 min
using popular heuristics [BLAST (Altschul et al., 1990)]. With
several thousand proteins in each new genome, ‘blasting’ consumes
considerable resources in contemporary bioinformatics research.
Strategies for database searching fall into five categories:

1. All versus all pairwise comparisons using exact alignment
[e.g. SSEARCH (Pearson, 1991)] or generating fast
approximate alignments [e.g. FASTA (Pearson, 1991)].

2. Comparison against a representative subset rather than all
proteins (e.g. Holm and Sander, 1998; Li and Godzik, 2006;
Park et al., 2000).

3. Comparison against a library of profile models of protein
families (e.g. Punta et al., 2012; Quevillon et al., 2005).

∗
To whom correspondence should be addressed.

4. Using word filters to eliminate dissimilar sequences from
comparison by exact alignment (e.g. BLAST).

5. Ranking database sequences using a simple feature vector
distance [e.g. USEARCH (Edgar, 2010); this work].

The speed of the methods increases toward the bottom of the
list. USEARCH is orders of magnitude faster than BLAST, and we
report here a novel method which is 10 times faster than USEARCH.
The fast methods are based on word filters. Conserved amino acids
are often ‘clumped’ in homologous protein sequences so that there
is a good probability of finding identical k-mers (Table 1). Many
practical tools combine word filters with explicit alignment of a
filtered subset of the database (Fig. 1).

Very short words obviously occur by chance in unrelated
sequences. Unique occurrences are expected when 20k is greater
than the size of the database, k being the length of the word. On
the other hand, the sensitivity of a word filter decreases with longer
words. Spaced (k,l)-seeds are a special class of word filters with
length l and the selectivity of a k-mer (Ilie and Ilie, 2007; Ma et al.,
2002; Mak and Benson, 2009).

We show experimentally that k =6 is the sweet spot with respect
to the current Uniprot database and that sensitivity/selectivity drop
either side of this value. The choice of k is thus critical for the
performance of a word filter. In this work, we test a novel idea which
dynamically adjusts word size. It is based on suffixes (substrings
starting at position I in a sequence and continuing to the terminator).
A suffix array is a data structure which orders the suffixes of a
text (protein sequence database) in lexicographic order. Neighboring
suffixes share the longest common prefixes. The suffix array is a one-
dimensional representation of sequence space. Our idea is to select
a window around a query suffix from the suffix array to identify
neighbors. The suffix array neighborhood has a constant size. In
contrast, neighborhoods defined in terms of k-mer word vectors
grow larger as the database grows larger.

Suffix arrays are used a lot in the analysis of nucleotide sequences
(short read mapping, contig assembly, genome alignment, EST
clustering) (e.g. Burkhard et al., 1999). The analysis of protein
sequences differs from that of nucleotide sequences in that the
range of interesting similarities extends to much higher levels of
mismatches. Suffix trees/arrays and related indices have been used
previously to organize (Gonnet et al., 1992), search (Califano and
Rigoutsos, 1993) and align (Bejerano and Yona, 1999) protein
sequences, but they have not supplanted popular tools like BLAST.

This article is organized as follows. We present comprehensive
benchmark tests using real-world data from metagenome samples
(6 million proteins), a bacterial genome (4000 proteins) and
the uniprot database (18 million proteins). We compare BLAST,
USEARCH and many variants of word filters. We characterize

© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

liisa.holm@helsinki.fi.

Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:04 7/8/2012 Bioinformatics-bts417.tex] Page: i439 i438–i443

SANS: high-throughput retrieval of protein sequences

Table 1. Longest run of identically aligned amino acids in optimal alignment

Pairwise
identity (%)

95th
percentile

90th
percentile

50th
percentile

Number
of pairs

<30 2 2 3 23 383 124
30–50 2 3 5 15 795 276
50–70 5 6 12 1 405 454
70–90 12 14 26 633 947
>90 19 27 58 88 588

Pairs with e-value <1 from the genome benchmark dataset were categorized based
on the sequence identity in optimal pairwise alignment by SSEARCH. Longer word
lengths increase the selectivity of a filter at the cost of a drop in sensitivity. For example,
12-mers would detect 95% of all pairs with 70–90% overall sequence identity but only
half of those with 50–70% identity.

Fig. 1. A classification of approaches used by representative application
programs for protein sequence retrieval. This work focuses on word filters
based on suffix arrays or k-mer counting. Related approaches or data
structures are shown in gray and not expanded. SANS is simple and fast
but has a limited application range. Other fast programs calculate explicit
alignments for a filtered subset of database proteins. SSEARCH calculates
the optimal alignment between the query and all database proteins

the feasible regime for word filters and report the fastest known
mapping tool for proteins. Finally, we discuss potential applications
in function inference (Fig. 2).

2 SYSTEM AND METHODS

2.1 Protein datasets
We selected real datasets to get a realistic distribution of protein
lengths, composition and protein family sizes (Table 2).

Uniprot is the major collection of protein sequences. It
consists of two parts, swissprot and trembl. Swissprot contains
manually curated, well annotated sequences. Trembl contains
protein sequences that are translated from nucleotide sequences and
automatically annotated.

The metagenome dataset is a collection of proteins detected in
environmental samples and was downloaded from NCBI (env_nr).
Metagenomic sequences typically come from uncultured organisms
that are not present in the protein databases.

Fig. 2. Problem formulations with typical application domains in italics

Table 2. Protein datasets

Name Proteins Total length Average
length

Maximum
length

Genome 4173 1 405 725 337 6078
Swissprot 533 049 189 597 274 356 35 213
Metagenome 6 050 065 1 219 427 250 202 7557
Uniprot 18 748 263 6 165 066 274 329 36 805

The genome dataset contains the proteins predicted in a newly
sequenced bacterium of the family Dickeya. It was chosen as a query
set because it belongs to a small clade of Dickeya and Pectobateria.
Although thousands of bacterial genomes have been sequenced,
other bacteria typically have ∼50% or lower sequence identity to
Dickeya. Thus, we get a representative distribution of sequence pairs
at different ranges of sequence identity (Table 1).

2.2 Evaluation
The benchmarks test the ability of tested methods to retrieve
acceptable hits to proteins in the query set from the protein database.
Our methods are designed to output the top-H hits. The metagenome
benchmark evaluates the best hit (H =1) and the genome benchmark
evaluates 1000 best hits (H =1000).

We used SSEARCH to compare ‘genome versus uniprot’ and
generate a reference of truth for the genome benchmark. True (T)
hits are those pairs that have an e-value <1 by SSEARCH. We
assume that method X returns a ranked list of hits (ordered by the
method’s native score, best hits at the top). TP is the number of true
hits in the top-P hits by method X. We define precision = TP/P and
recall = TP/T. Both precision and recall range from 0 to 1. Plotting
precision against recall yields a curve. The area under that curve is
AUC and its maximum value is 1. We compute AUC separately for
each query protein and use the average to compare the performance
of different methods.

The benchmark set has 41 million TRUE pairs (e-value < 1) of
which 3.6 million rank in the top-1000 by SSEARCH. Different
methods need not report identical sets of top-1000 hits. The largest
family isABC transporters (59 988 hits to one query) and the average
number of hits per query is 9991.

The metagenome benchmark compares ‘metagenome versus
swissprot’. We used BLAST to compute a reference of truth for
the metagenome benchmark. Comparison of BLAST to SSEARCH
on the genome benchmark showed that BLAST gives a very
good approximation of SSEARCH. The whole metagenome dataset
consists of 6 million queries. Of these, 3.6 million queries belong to

i439

Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:04 7/8/2012 Bioinformatics-bts417.tex] Page: i440 i438–i443

J.P.Koskinen and L.Holm

Fig. 3. Schematic illustration of suffix array (SA) and inverse suffix array
(ISA) on text ‘BANANAS$’. For example, the suffixes ‘ANANAS$’,
‘ANAS$’ and ‘AS$’ are adjacent in the lexically ordered suffix array

small families for which BLAST reported the complete set of TRUE
hits (e-value < 1). Small families have less than 250 members. The
evaluation tests whether the top hit reported by method X belongs
to the TRUE set.

2.3 Database search programs
We compare three published programs to two methods implemented
in this work (cf. Fig. 1). SSEARCH computes the optimal alignment
between every sequence in the query set and every sequence in the
database. BLAST uses a sophisticated set of word filters to eliminate
dissimilar sequences from comparison and computes the optimal
alignment. The results of SSEARCH and BLAST are sorted on
e-value. USEARCH (Edgar, 2010) sorts database sequences by the
number of 5-mers they share with the query sequence and tests a
few top hits. The search terminates after α accepts (e-value � 1) or
r rejects (e-value > 1). We used the program with the default values
α =1, r = 8. Section 3.2 describes suffix array neighborhood search
(SANS) and KSEARCH which we implemented in-house.

3 ALGORITHM

3.1 Database indexing
A suffix array is an array of integers giving the starting positions
of suffixes of a text in lexicographic order. The suffix array SA and
inverse suffix array ISA enable jumping between the lexicographic
order (l) and sequential order (s) as follows: SA[l] = s and ISA[s] = l
(Fig. 3). In this work, the text TXT is a concatenation of protein
sequences in alphabet S. The implementation uses FASTA files
as input. These are stripped of annotation to create sequence
text files (TXT, TXTQ) and protein pointers (START, STARTQ).
Subscript Q refers to the query set, the database is without subscript.
Using Python-like syntax, the sequence of the ith protein is the
substring TXT[START[i]:START[I + 1]]. Suffix arrays (SA, SAQ)
are created on the texts using the recursive sais-lite algorithm (Nong
et al. 2009). The inverse index ISA is generated by a linear scan of
SA using the relation ISA[SA[l]] = l. We generate an auxiliary index
SAP that holds the protein labels of suffixes in lexicographic order.
SAP is generated using the relation SAP[ISA[s]] = xprot where
START[xprot] < s� START[xprot + 1]. In order to compare TXTQ
to TXT, we determine the places in SA where suffixes from TXTQ
should be inserted. Let q be a query suffix starting at position sQ
in TXTQ. We find ISAmapped[sQ] = l such that TXT[SA[l]:] �

q < TXT[SA[l] + 1:]. SA and SAQ are combined using the merge-
sort algorithm knowing that SA and SAQ are already sorted which
results in a linear-time algorithm.

3.2 Sequence comparison
SANS and KSEARCH use simple scores to sort the list of database
proteins and return the top H hits or all hits with a score above a
threshold T. SANS estimates similarity using a SANS, introduced
here [Equation (1)]. KSEARCH estimates similarity based on k-mer
composition [Equation (3)].

The SANS gives a positive score to those database proteins
(sprot), which have the longest common prefixes with a query suffix.
The score is accumulated over all suffixes of the query protein (qprot)
as follows:

SANS(qprot,sprot)=
START (qprot+2)∑
z=START (qprot)

+w∑
i=−w

id (sprot,SAP

×[ISAmapped[S]+i]), (1)

where the width of the window W is a parameter and the identity
function id (a,b) is

id (a,b)=
{

1, if a=b
0, if a �=b

. (2)

The top H matches with the highest SANS scores are output. We set
W = H by default. Whether the best matching suffixes are lexically
smaller or greater than the query suffix, at least H such matches will
be included in the window.

KSEARCH score is the dot product of the feature vectors F:

KSEARCH (qprot,sprot)=
||s||k∑
m=2

F(sprot,n)F(qprot,n) (3)

where the feature vectors F(x,n) say how many times a given k-mer
n occurs in the protein x. |S| is the size of the alphabet. We note that
the use of suffix arrays allows the user to freely set the word length
parameter k.

Short tandem repeats can give rise to artificially high scores. We
mask query suffixes which have the same character in positions
(1,2,3) or positions (1,3,5). Masked suffixes are ignored and do not
contribute to the SANS score or KSEARCH score.

3.3 Complexity analysis
Sais-lite is a light-weight suffix array construction algorithm that
takes linear time and space (Nong et al., 2009). The merge-sort step
is also linear O(|TXT|+|TXTQ|). Treating the width of the window
as a constant, the search step of SANS does O(|TXTQ|) lookups
in the suffix array SA. The overall time complexity of the SANS
algorithm is thus O(|TXT|+|TXTQ|). The KSEARCH algorithm
checks all instances of k-mers in the database, and the number of
these instances grows proportionally to the size of the database.
The overall time complexity of the KSEARCH algorithm is thus
O(|TXT| * |TXTQ|).

i440

Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:04 7/8/2012 Bioinformatics-bts417.tex] Page: i441 i438–i443

SANS: high-throughput retrieval of protein sequences

3.4 Greedy approximate alignment
Sequence alignment is slow. We implemented a greedy procedure
which processed a few million pairwise alignments per hour. The
procedure is faster for highly similar sequences. It starts similarly to
BLAST looking for diagonals with two hits of closely spaced 3-mers
(at distances up to 40 amino acids). If a two hit is found, the algorithm
tries to extend the alignment without gaps, resulting in a high-
scoring segment pair (HSP). HSPs are scored using BLOSUM62
substitution scores. The query sequence is scanned for two hits from
beginning to end. If an HSP is detected, the scan jumps to the end
of the HSP. In other words, potential 3-mer seeds already within an
HSP are not tested. When the end of the query sequence has been
reached, all HSPs are sorted based on their scores.Acompatible set is
selected so that the HSPs form a sequential alignment. Gap penalties
are not used. Greedy alignments can be generated optionally for the
hits detected by the SANS or KSEARCH algorithms.

4 IMPLEMENTATION
Suffix arrays were computed using the recursive SAIS algorithm
(Nong, 2009). The in-house programs were written in Fortran-95 and
compiled using gfortran. Evaluations were done using Perl scripts.
All computations were done on Linux computers with 64 or 500 Gb
RAM.

5 RESULTS AND DISCUSSION
Traditionally, word filter heuristics are used to speed up database
searches. The suffix array gives access to seed words of arbitrary
length. We performed a comprehensive set of benchmark tests to
evaluate both fixed size patterns and suffix array neighborhoods.

5.1 Metagenome benchmark
The metagenome benchmark is chosen to represent new sequences
not yet present in the database. When a mapping exists, the median
identity between the metagenomic and the closest database proteins
is ∼50%. This is suitably challenging, as detecting exact matches is
trivial and exact filters can be formulated for very high levels, i.e.
>90% of sequence identity (Holm and Sander, 1997).

We compared SANS and KSEARCH to USEARCH on the
metagenome versus swissprot benchmark (Fig. 4). The 32-bit
version of USEARCH, which is available academically, ran out
of memory on larger databases than swissprot (a 64-bit version is
available commercially). We evaluate a mapping as successful if
the top hit is found in the BLAST list for the query. KSEARCH
shows the worst performance. The performance of SANS is close
to the performance of USEARCH although SANS is 10 times faster
and USEARCH has the advantage of multiple testing. USEARCH
generates explicit alignments of the top hits until it finds an ‘accept’
with e-value <1 or eight ‘rejects’ (Edgar, 2010).

SANS generated top-hit mappings of the metagenome set against
swissprot in 2 h compared to 20 h by USEARCH (Table 4). SANS
also scales well to the larger Uniprot database. We note that the time
taken to generate greedy alignments actually went down. This is
because there are more close hits to be found in Uniprot which are
quicker to align.

Fig. 4. Correctness of mappings in metagenome benchmark. The top hit of
3.6 million queries were evaluated using BLAST (e-value < 1) as reference
of truth. USEARCH was run with default parameters (a=1, r =8). SANS
was run with window size 1. KSEARCHx were run with word size x

Fig. 5. Relative sensitivity of SSEARCH, BLAST, SANS and KSEARCH
on the genome benchmark. The top-1000 hits per query are evaluated.
Sensitivity is calculated for different bins of sequence identity. Sensitivities
within each bin are scaled linearly so that BLAST sensitivity is one. Sequence
identities of the TP hits were taken from SSEARCH. SSEARCH and BLAST
hits are sorted by e-value. SANS was run with W =H =1000. SANS+greedy
was run with W =H =2000 and the top-2000 hits were reranked by greedy
alignment score, keeping the top-1000. KSEARCH(k) were run with word
length k

5.2 Genome benchmark
SSEARCH was used to generate a reference of truth for the genome
benchmark, enabling the evaluation of selectivity and sensitivity in
different ways. Precision and recall are used synonymously with
selectivity and sensitivity.

Word filters are as sensitive as BLAST in the 50–100% regime
of sequence identity (Fig. 5). The best method (SANS+greedy)
has relative sensitivities of 96–100% in this regime. k = 6
consistently gives the optimum performance for KSEARCH. The
largest differences between methods emerge in the 30–50% regime.
We tried a number of variations but only reached ∼70% sensitivity
relative to BLAST in the 30–50% regime. The tested variations
included (i) rescoring hits according to an alignment score, (ii)
varying the width of the window in SANS, (iii) hybrids combining
the SANS and KSEARCH scores (sum performed best), (iv) a two-
hit filter like that in BLAST and (v) distance-dependent id function
(cf. Equation 2). The best method (SANS+greedy) took the top-2000

i441

Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:04 7/8/2012 Bioinformatics-bts417.tex] Page: i442 i438–i443

J.P.Koskinen and L.Holm

Fig. 6. Distribution of AUC values from 4173 query-specific precision-
recall plots of the genome benchmark. The top-1000 hits per query were
evaluated. AUC values are binned into 10 evenly spaced intervals between
one (bottom, perfect result) and zero (gray at top, total failure). KSEARCH
runs are labeled with word size (k). SANS runs are labeled with the window
size (w). SANS(1000) has the highest average

hits by SANS and rescored the hits by greedy alignment. In the 30–
50% identity range this improved sensitivity to 63%, up 9% points
from SANS. Rescoring KSEARCH hits generally brought but little
improvements. In the low sequence identity range (<30–50%), all
methods except BLAST miss a large fraction of true hits.

In terms of a precision–recall plot, Figure 5 tests the sensitivity
at 1000 ‘positives’. Figure 6 compares the SANS and KSEARCH
scores in terms of the area under the curve (AUC) until 1000
positives. Higher AUC corresponds to better internal ranking of the
true positives above false positive hits. All methods have large peaks
at AUC values near zero (bad) and near one (good). The overall
average of SANS is the highest (Table 3). KSEARCH performance
peaks at k = 6 and greedy alignment rescoring always improves
performance (Table 3).

5.3 Speed
SANS searches scale independent of database size. The search time
scales roughly O(WN) where W is the width of the suffix array
neighborhood and N is size of the query set. Alignment is the rate-
limiting step of many fast filters. The SANS score can be used
for ranking hits without alignment. These advantageous properties
make SANS the fastest word filter that we know. Concretely (Table
3), SANS was 10 times faster than USEARCH in the metagenome
benchmark. The genome benchmark showed that scanning a new
genome against uniprot takes only 1 h. This is 100 times faster than
BLAST though it must be said that, in practice, BLAST is often run
in parallel.

5.4 Memory
The proliferation of suffix tree/suffix array applications has been
hampered by their excessive memory usage in the past. Our
implementation of SANS is light-weight in terms of memory. This
is achieved by computing the suffix arrays separately for sections of
the database and by searching the database in sections so that only
a section of the indices need to be loaded in memory at one time.

Table 3. Average AUC values per query in genome benchmark

Score for sorting KSEARCH SANS BLAST

k =5 k =6 k =7 k =8 w=1000 w=2000

Native 0.51 0.55 0.49 0.44 0.56 0.54
Alignment 0.52 0.56 0.49 0.44 0.60 0.62 0.95

The amount of memory used by the program can be set by the user
(MEMORY parameter). The minimum requirement is one byte per
amino acid. The current Uniprot database is ∼8 Gb. The program
runs comfortably on Uniprot with MEMORY set to 10–16 Gb. The
ISAmapped and SAP indices used by the search step occupy 8m+4n
bytes of disk space, where n is the total length of database sequences
and m is the total length of query sequences.

5.5 Conclusions
We have investigated the use of word filters to speed up protein
sequence database searches. The principal conclusions from our
extensive benchmarking can be summarized as follows:

1. word filters are as sensitive as BLAST in the feasible regime
of 50–100% sequence identity,

2. many variants of word filters perform about equally well in
the feasible regime but SANS is the most robust to parameter
variation,

3. suffix array supports the fastest known word filter algorithm,

4. methods incorporating explicit alignment are necessary <50%
identity.

We introduced the SANS which has attractive scaling properties. It
processes millions of queries in a matter of hours and scales to large
protein sequence databases with billions of amino acids. It supports
alignment-free mapping and is 10 times faster than the fastest known
program for protein mapping. SANS makes the database comparison
problem local which gives it good speed. In comparison to traditional
word filters, we found that SANS behaves more robustly with respect
to parameter variation. For example, varying window width had little
effect on SANS, whereas varying word size k had a large effect
on KSEARCH (Fig. 5). The complexity of the SANS algorithm is
O(n+m). The program is the more efficient, the larger the batch of
query sequences is. For single queries, BLAST remains the best
option.

BLAST is a widely used, general purpose homology search tool.
SANS has more restricted use. It is designed for the comparison
of protein sequences and it only reports a user-specified number of
nearest neighbors. It provides useful input to any kNN classifier,
including applications in EST mapping, ortholog mapping, protein
function assignment and family membership assignment.

We observed that word filters get very close to the sensitivity of
BLAST when sequence identity is 50–100%. Similar observations
have been made previously on simulated data and domain segments
(Edgar, 2010). The feasible regime of protein sequence retrieval by
word filters coincides with the regime of reliable function transfer.
Minimum sequence identities above the 40% to 70% level have been

i442

Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:04 7/8/2012 Bioinformatics-bts417.tex] Page: i443 i438–i443

SANS: high-throughput retrieval of protein sequences

Table 4. Comparison of running times

Query set Database Program Parameters Time

Indexinga Search Alignment

Uniprot uniprot SANS W = 100 3 h 22 m 30 h 4 m 2 h 19 m
Metagenome swissprot BLAST −b 250 380 d

USEARCH a = 1 r = 8 19 h 55 m
SANS W = 1 57 m 13 m 48 m

uniprot SANS W = 1 4 h 52 m 28 m 32 m
Genome uniprot SSEARCH –s BL62 –f -11 –g –1 –E 1.0 –m 9C –z 3 –d 0 640 d

BLAST −b 1000 100 h
parallel BLAST 10 processors, −b 1000 max 13 h / processor
SANS W = 100 3 h 57 m 12 m 10 m

W = 1000 23 m 52 m
W = 2000 33 m 1 h 40 m

aIndexing time includes indexing both the query set and database from scratch.

recommended by various researchers (Devos and Valencia, 2000;
Friedberg, 2006; Lee et al., 2006; Rost, 2002).

Modern function annotation tools are designed to make an optimal
choice between conflicting candidates for function assignment. They
take a ranked list of sequence neighbors as input, group neighbors
with similar functional descriptions and calculate an aggregate
weighted support for each candidate prediction outcome (Kankainen
et al., 2012; Koskinen et al., unpublished). Assuming that false
positives hits generate a low random background, it may be possible
to use SANS in its fastest, alignment-free mode to generate hit lists
for assigning functions to new genomes.

Our benchmark gives a realistic picture of the challenges
in metagenome or genome research. The following calculation
suggests that putting a word filter in front of BLAST to eliminate
‘easy’ queries would significantly reduce the work load in genome
annotation. One BLAST run against Uniprot takes 1 or 2 min. The
default number of hits returned by BLAST is 250. In our bacterial
genome benchmark, 53% of the queries produce at least 250 hits
(ordered by e-value) which are all >50% identical to the query. The
genome benchmark was purposely selected from a phylum with
relatively few known sequences. There are phyla with hundreds of
closely related strains and species sequenced, and in these cases the
word filter could do all the work.

ACKNOWLEDGEMENT
The authors thank Pasi Korhonen and Kimmo Mattila for technical
assistance.

Funding: Biocentrum Helsinki.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Bejerano,G. and Yona,G. (1999). Modeling protein families using probabilistic suffix
trees. In: The Proceedings of RECOMB 1999, ACM Press, Lyon, France, pp. 15–24.

Burkhard,S., et al. (1999) q-gram based database searching using a suffix array
(QUASAR). RECOMB ’99 Proceedings of the third annual international conference
on Computational molecular biology, Lyon, France, pp. 77–83.

Califano,A. and Rigoutsos,I. (1993) FLASH: A fast look-up algorithm for string
homology. In Hunter,L. et al. (eds). In: Proceedings of the first International
Conference on Intelligent Systems for Molecular Biology, Bethesda, Maryland,
USA, pp. 56–64.

Devos,D. and Valencia,A (2000) Practical limits of function prediction. Proteins, 41,
98–107.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26, 2460–2461.

Friedberg,I. (2006) Automated protein function prediction–the genomic challenge.
Brief. Bioinform., 7, 225–242.

Gonnet,G.H. et al. (1992) Exhaustive matching of the entire protein sequence database.
Science, 256, 1443–1445.

Holm,L. and Sander,C. (1998) Removing near-neighbour redundancy from large protein
data sets. Bioinformatics 14, 423–429.

Ilie,L. and Ilie,S. (2007) Multiple spaced seeds for homology search. Bioinformatics,
22, 2969–2977.

Kankainen,M. et al. (2012) BLANNOTATOR: enhanced homology-based function
prediction of bacterial proteins. BMC Bioinformatics, 13, 33.

Lee,D. et al. (2007) Predicting protein function from sequence and structure. Nat. Rev.
Mol. Cell Biol., 8, 995–1005.

Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive HomologySearch.
Bioinformatics, 18, 440–445.

Mak,D.Y.F. and Benson,G. (2009) All hits all the time: parameter-free calculation of
spaced seed sensitivity. Bioinformatics, 25, 302–308.

Nong,G. et al. (2009) Linear Suffix Array Construction by Almost Pure Induced-Sorting.
DCC, Snowbird, Utah, USA, pp. 193–202.

Park,J. et al. (2000) RSDB: representative protein sequence databases have high
information content. Bioinformatics, 16, 458–464.

Pearson,W.R. (1991) Searching protein sequence libraries: comparison of the sensitivity
and selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 11,
635–650.

Punta,M. et al. (2012) The Pfam protein families database Nucleic Acids Res., 40,
D290–D301.

Quevillon,E. et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res.,
33, W116–W120.

Rost,B. (2002) Enzyme function less conserved than anticipated. J. Mol. Biol., 318,
595–608.

i443

	SANS: high-throughput retrieval of protein sequences allowing 50% mismatches
	1 INTRODUCTION
	2 SYSTEM AND METHODS
	3 ALGORITHM
	4 IMPLEMENTATION
	5 RESULTS AND DISCUSSION

