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ABSTRACT

Motivation: Next-generation sequence analysis has become an

important task both in laboratory and clinical settings. A key stage in

the majority sequence analysis workflows, such as resequencing, is

the alignment of genomic reads to a reference genome. The accurate

alignment of reads with large indels is a computationally challenging

task for researchers.

Results: We introduce SeqAlto as a new algorithm for read alignment.

For reads longer than or equal to 100 bp, SeqAlto is up to 10� faster

than existing algorithms, while retaining high accuracy and the ability

to align reads with large (up to 50 bp) indels. This improvement in

efficiency is particularly important in the analysis of future sequencing

data where the number of reads approaches many billions.

Furthermore, SeqAlto uses less than 8 GB of memory to align against

the human genome. SeqAlto is benchmarked against several existing

tools with both real and simulated data.

Availability: Linux and Mac OS X binaries free for academic use are

available at http://www.stanford.edu/group/wonglab/seqalto

Contact: whwong@stanford.edu
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1 INTRODUCTION

Resequencing with next-generation sequencers has become a

popular method for characterizing genetic variation between in-

dividuals. A critical step in a typical resequencing workflow is

accurate alignment of genomic reads to a reference genome. The

resulting variants called from the aligned reads strongly depend

on the accuracy of this initial alignment stage. In this article, we

introduce SeqAlto, a fast and accurate read alignment tool that

reliably align reads with large insertions and deletions (indels).
Next generation sequencers, such as HiSeq2000� from

Illumina, are generating ever increasing volumes of data.

Simply aligning these reads to a reference genome is a daunting

task. The computational cost of sequencing is rapidly approach-

ing the experimental cost. In the recently published 1000 gen-

omes pilot article (The 1000 Genomes Project Consortium,

2010), it was stated that a 199 node cluster was used to align

all of the reads to the reference genome with MAQ (Li et al.,

2008). This kind of computational resource is not available to

most laboratories or is not feasible in a clinical setting. At over

1 billion reads generated per run for a Illumina HiSeq2000 se-

quencer, the computational capacity required to align such large

datasets in a reasonable amount of time far exceeds the capabil-

ity of small laboratories or clinics. This is especially true if any

analysis needs to be repeated with different parameters.
In addition to increases in the throughput of each sequencer,

maximum read lengths of all sequencing platforms are steadily

increasing beyond 100 bp. This poses a problem for many popu-

lar short-read aligners as shown in Section 3. On the other hand,

SeqAlto is able to exploit this increased read length to improve

the speed as well as accuracy of the alignment process. In fact,

SeqAlto is not suitable for read lengths much less than 100 bp

when aligning to the human genome. This is not a significant

limitation as the majority of future sequencing platforms are able

to output read lengths4100 bp and we expect this length to only

increase in the future.
There are numerous read aligners available to researchers

today. They can be broadly grouped into four classes: hashing

the genome, hashing the reads, FM-index (Ferragina and

Manzini, 2000) or sorting. Snap (Zaharia et al., 2011), Stampy

(Lunter and Goodson, 2011), Novoalign (http://novocraft.com/),

BFAST (Homer et al., 2009), GASSST (Rizk and Lavenier,

2010) and SHRiMP2 (David et al., 2011) index the genome

with a hashtable of k-mers. BFAST and SHRiMP2 use large

spaced seeds to improve sensitivity. GASSST uses a large array

of filters to improved alignment speed. Snap follows a similar

approach to SeqAlto by using large continuous seeds. MAQ

(Li et al., 2008) and SeqMap (Jiang and Wong, 2008) hash the

reads. This approach is useful when the reference is small such as

a transcriptome. Bowtie2 (Salzberg, 2012), BWA (Li and

Durbin, 2009), BWA-SW (Li and Durbin, 2010) and SOAP2

(Li et al., 2009) rely on the Burrows–Wheeler Transform

(BWT) (Burrows and Wheeler, 1994) and FM–index. This ap-

proach has been shown to be very efficient for short reads and

large genomes. However, we will see that it is problematic for

longer reads (Section 3). BWA-SW stands out as it finds local

alignments of the read rather than global alignments. Slider

(Malhis et al., 2009) and Syzygy (Konagurthu et al., 2010) use

a sorting and merging approach. This approach places a high

demand on the storage system to be fast.

A selection of these read aligners is compared to SeqAlto

in this article. Both real and simulated sequencer reads are

used for the comparison. In addition to comparing the align-

ments generated, the variants called from the alignments are

also compared.*To whom correspondence should be addressed.
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2 APPROACH

SeqAlto takes the genome hashing approach but uses large con-

tiguous seeds and adaptive stopping to achieve efficiencies much

greater than all read aligners tested in this article. Hashing of the

reference genome is a common approach also used in Snap,

Stampy, Novoalign, BFAST etc. SeqAlto differs from all aligners

surveyed except Snap as it is possible for all overlapping seeds to

be indexed from the reference genome. SeqAlto also improves

upon Snap by aligning reads with a banded affine-gap penalty

Needlenam–Wunsch. As a result, SeqAlto is able to make use of

longer reads to improve the alignment of reads with larger indels.

We will show that the large seeds do not hurt alignment sensi-

tivity when the targeted read lengths are greater than about

100 bp. In general, using large contiguous seeds requires huge

amounts of memory to store the index. In order to overcome

this difficulty, a novel sub-sampling approach is designed to fit

the entire genome into under 8 GB of memory. The other feature

of SeqAlto, adaptive stopping, declares each read to be aligned

based on the current best alignment and the number of seeds

examined. This approach works well for Illumina reads where

the majority of errors are due to substitutions rather than gaps. It

also offers users the ability to trade alignment accuracy for effi-

ciency. Overall, the approach taken by SeqAlto targets

high-quality reads with low number of gaps as errors. When

aligning reads satisfying these criteria, SeqAlto is extremely fast

and is able to accurately place reads with large insertions or

deletions.

3 RESULTS

SeqAlto is compared to Snap, Bowtie2, SOAP2 BWA,

Novoalign and Stampy in terms of alignment accuracy and effi-

ciency. Snap is a new read aligner that follows a similar approach

to SeqAlto, but puts its emphasis on alignment speed. Bowtie2,

SOAP2 and BWA are based on the BWT and are among the

most popular tools for read alignment. Novoalign is a commer-

cial read alignment package not based on the BWT and is among

the most accurate read aligners. Stampy is a relatively new align-

ment tool that is targeted towards resequencing with Illumina

reads similar to SeqAlto. Stampy was run in hybrid mode, as

recommended by the documentation, where a combination of

BWA with a hash-based approach is used. SeqAlto is run in

two modes, one with only a sub-set (Section 5.1) of seeds in

the genome indexed (SeqAlto) and the other with all seeds

indexed (SeqAlto-all).

A simulated dataset (Section 4) with single and paired-end

reads is used to compare each algorithm. The algorithms sup-

porting gapped alignment are compared at aligning reads with

various indel sizes. The algorithms are also compared with real

Illumina HiSeq 2000 data (Short Read Archive, accession

number SRX100628). Alignment accuracy does not always indi-

cate variants called will be accurate and comprehensive. For ex-

ample, an aligner may place many reads very accurately, but fail

to place a few polymorphic reads. This could result in increased

confidence in already confident variants, while missing other

variants. Hence, variants are called from simulated paired-end

reads and also the real dataset to directly evaluate the effect of

each aligner on the variants called. All simulations were run with

a single thread on an 8-core 2.27 GHz Intel Xeon X7560 unless

otherwise specified. An alignment is called correct if its start

location is within 50 bp of the simulated location not counting

bases inserted or deleted. The effect of varying this correctness

criteria is discussed in the Supplementary Material. For SeqAlto,

22-bp and 28-bp seeds were used for 100-bp and 200-bp reads,

respectively. For Snap, 20-bp and 22-bp seeds were used for

100-bp and 200-bp reads, respectively as suggested by the

author. Exact parameters used for each program can be found

in the Supplementary Material. The %Err given in each table

refers to the percentage aligned incorrectly among the reads sat-

isfying each uniqueness criteria. The elapsed time recorded for

Novoalign and Stampy includes the index loading time since they

do not provide an option to record only the alignment time.

Empirically, the index loading time is independent of the

number of reads aligned and not more than 100–200 s.

3.1 Simulated single-end reads

One million single-end reads with parameters as described in

Section 4 were generated. The command-line parameters used

for each tool can be found in the Supplementary Material.

Novoalign is not able to align 200-bp reads so it was excluded

from the simulation for that read length.
Table 1 shows the results for 100-bp and 200-bp single-end

reads. For both read lengths, SeqAlto is significantly faster

than all of the other tools except Snap while retaining excellent

accuracy. Snap is very fast, but not as sensitive as SeqAlto.

Stampy and Novoalign are both highly accurate. However,

both take much longer to align the reads. SOAP2 and Snap do

not report MAPQ. In addition, SOAP2 was not able to be run in

gapped mode, hence it only outputted ungapped alignments.

3.2 Simulated paired-end reads

1 million paired-end reads with the same parameters as in the

single-end case were generated. The template size was chosen

from a normal distribution with mean 250 bp and 450bp for

read lengths 100 bp and 200 bp, respectively. A standard devi-

ation of 50 is used for both read lengths. A read is called correct

if both pairs are within 50 bp of the simulated location.
Table 2 shows the results for 100-bp and 200-bp paired-end

reads. SeqAlto takes advantage of the longer effective read

length of paired-end reads to further improve alignment sensitiv-

ity and accuracy. For 100-bp reads, SeqAlto is on par with

Stampy and Novoalign in terms of accuracy while being about

10� faster. When aligning paired-end reads, BWA tends to

output partial alignments more frequently compared to the

other algorithms, hence its accuracy drops as the read length

increases.

3.3 Simulated large indel reads

Detection of large indels in the genome is of particular interest to

researchers performing resequencing. Although indels larger

than about 25 bp can potentially be detected from pairing infor-

mation, indels that are moderate in size pose a problem to many

aligners. One million 100-bp single-end reads with a single

deletion or insertion of fixed size and a 1% substitution rate

are generated from the human genome. Results for a 2%
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substitution rate and larger (up to 50 bp) indels can be found in

the Supplementary Material. This test examines the ability of

each algorithm to reliably place insertions and deletions of vari-

ous sizes. A read is aligned correctly if it is within 50 bp of the

simulated location.

Figures 1 and 2 show the alignment sensitivity and accuracy

for insertions and deletions ranging from 1 to 25 bp. SeqAlto

maintains consistent alignment accuracy and sensitivity across a

wide range of indel sizes. Stampy is also highly sensitive to a wide

range of indel sizes. However, its accuracy suffers for larger sized

indels. This will become particularly evident when variant calling

is performed on the aligned reads. The other tools are only able

to align single-end reads with smaller indels. Although paired-

end reads should improve the alignment of these reads for all

algorithms, Section 3.4 shows that this is still inadequate for

variant calling.

3.4 Simulated variant calling

The end results of resequencing are the variants called. SeqAlto,

Snap, Bowtie2, BWA, Stampy and Novoalign are evaluated as

the aligner for the GATK (DePristo et al., 2011) variant caller.

Variants with a distribution as described in Section 4 are simu-

lated on Chromosome 1 of the human genome. The location of

these variants are recorded. Forty million 100 bp paired-end read

pairs (about 32� coverage) are then simulated from this per-

turbed Chromosome 1 with a 2% error rate. In total, there are

422 120 Single Nucleotide Polymorphisms (SNPs) and 22 255

indel variants. The reads are aligned to Chromosome 1 then,
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Fig. 1. 100-bp single-end reads with deletion in random location.

Reported results are for MAPQ� value in parentheses. Data points

with530% of the reads aligned correctly were removed due to erratic

behavior of the percent correct value, (a) percent of reads aligned (b)

percent of aligned reads correct.

Table 1. Results for simulated Illumina single-end reads of length 100-bp

and 200-bp

Aligner Time %Aln %Unique

(%Err)

%Q10

(%Err)

(a) 100-bp single-end reads

SeqAlto 175 93.94 89.23 [0.167] 88.83 [0.090]

SeqAlto-all 195 94.38 89.67 [0.132] 89.28 [0.066]

Snap 51 94.07 87.09 [0.020] *

Bowtie2 528 92.69 90.74 [3.477] 83.91 [0.071]

SOAP2 635 91.39 86.18 [0.233] *

BWA 1182 90.37 85.96 [0.119] 85.81 [0.068]

Novoalign 2092 94.39 92.23 [1.620] 88.84 [0.009]

Stampy 2645 94.53 90.12 [0.403] 89.75 [0.176]

(b) 200-bp single-end reads

SeqAlto 264 94.47 91.25 [0.033] 90.93 [0.019]

SeqAlto-all 282 94.48 91.28 [0.031] 90.95 [0.017]

Snap 92 92.97 87.03 [0.007] *

Bowtie2 1116 94.02 93.11 [2.240] 87.87 [0.020]

SOAP2 2767 75.68 72.68 [0.066] *

BWA 3165 89.15 86.24 [0.044] 86.19 [0.028]

Stampy 6890 94.55 91.64 [0.234] 91.42 [0.082]

Time measured is elapsed time (seconds) Unique refers to MAPQ� 1 if MAPQ

available. Q10 refers to MAPQ� 10.

Table 2. Results for simulated Illumina paired-end reads of length 100 bp

and 200 bp

Aligner Time %Aln %Unique

(%Err)

%Q10

(%Err)

(a) 100-bp paired-end reads

SeqAlto 473 94.57 91.01 [0.044] 90.77 [0.034]

SeqAlto-all 493 94.58 91.10 [0.041] 90.86 [0.032]

Snap 115 94.08 90.49 [0.030] *

Bowtie2 852 93.36 92.45 [2.159] 87.32 [0.015]

SOAP2 2753 88.77 85.42 [0.113] *

BWA 2470 93.89 90.82 [0.134] 90.60 [0.111]

Novoalign 3899 94.45 91.19 [0.033] 90.85 [0.009]

Stampy 6398 94.58 91.53 [0.294] 91.02 [0.068]

(b) 200-bp paired-end reads

SeqAlto 529 94.55 92.15 [0.021] 92.09 [0.020]

SeqAlto-all 579 94.55 92.15 [0.021] 92.09 [0.020]

Snap 157 88.20 85.96 [0.014] *

Bowtie2 1712 94.32 93.94 [1.850] 89.25 [0.010]

SOAP2 13 219 46.55 45.43 [0.066] *

BWA 5691 93.81 91.68 [0.167] 91.60 [0.160]

Stampy 14 059 94.56 92.44 [0.255] 92.08 [0.054]

Time measured is elapsed time (seconds) Unique refers to MAPQ� 1 if MAPQ

available. Q10 refers to MAPQ� 10.
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the BAM file is passed to the GATK. Finally, each variant called

is evaluated for correctness. The results for the Samtools mpileup

(Li, 2011) variant caller and results with other parameter settings

can be found in the Supplementary Material.
Table 3 shows the SNPs and indels called by the GATK. A

SNP is called correct if it is in exactly the same location. An indel

is called correct if is within 15-bp of the true location.
Overall, SeqAlto finds more real indels compared to all other

algorithms. SeqAlto is more accurate than Stampy, which is the

only algorithm that matches SeqAlto in number of variants

called. For aligning SNPs, SeqAlto is competitive with all the

other algorithms despite taking much less time to align the reads

compared to Stampy and Novoalign. This simulation clearly

highlights SeqAlto’s ability to accurately align reads from com-

plex variants.

3.5 Real illumina reads

All algorithms are used to align real Illumina sequencing data

(Short Read Archive, accession number SRX100628). These

reads came from an Illumina HiSeq 2000 sequencing run of

HapMap individual NA19200. For the single-end benchmark,

the first read in each pair was used. Since there is no ground

truth for real data, the total number of reads aligned is used to

judge the alignment sensitivity of each algorithm. For comparing

alignment accuracy, 1 million reads were randomly sampled

without replacement from the total reads and aligned to the

human genome (hg19). The full dataset (75 630 683 read pairs)

is also aligned to the human genome and used to call variants on

Chromosome 1 with the GATK. The variants called are then

compared to dbSNP (build 135) variants as a rough guide to

the accuracy of variants discovered.
Table 4(a) shows the results for single-end reads. For

single-end reads, SeqAlto is able to align more reads in much

less time compared to the faster algorithms. Stampy is able to

align significantly more reads compared to the other algorithms.

However, the additional reads can potentially cause false posi-

tives in the variant calling as shown in Section 3.4. Table 4(b)

shows the results for paired-end reads. Again, SeqAlto is faster

than all aligners except Bowtie2 and Snap while being able to

align more reads.
The entire dataset (5� coverage) was aligned to the human

genome. The same GATK pipeline as in Section 3.4 was used to

call variants with the alignment results. The variants called are

compared to dbSNP (build 135). The results of the comparison

are shown in Table 5. SeqAlto is slightly less accurate than the

other methods when calling SNPs. For indels, SeqAlto calls more

indels compared to all other algorithms except Stampy and does

so with relatively good accuracy.

4 SIMULATION METHODS

Accurate simulation of high-throughput sequencing reads is a

challenge. SeqAlto includes a simulation mode where a new hap-

loid genome with indels and substitutions is generated from a

reference genome. In order to determine the relationship between

locations on this new genome to locations on the reference, an

exact mapping between the locations is generated simultan-

eously. Reads are then generated from this new genome with

an error profile that can be tailored to a particular sequencing

platform. Each read is tagged with the location that it was gen-

erated from and after alignment to the reference genome, the

stored mapping is used to determine whether each read is aligned

to the correct location. Other approaches to simulating sequen-

cing reads include (Huang et al., 2011).
Following publication of the 1000 genomes pilot project (The

1000 Genomes Project Consortium, 2010), there is a better

understanding of the distribution of indel lengths in the human

genome. Indels generated by the SeqAlto read simulator have

lengths that follow a power law distribution similar to what

was observed in the 1000 genomes project. The indel length is

sampled from the exponent of an exponential distribution with

mean one. This results in the largest indel simulated to be on the

order of 100 000 bp to 1 000 000 bp. SNPs and indels are simu-

lated independently. The SNP mutation rate is set to 0.25% and

the indel mutation rate to be 0.01%. For Illumina reads, we used

a uniform error rate across the read of 2%. The results for reads

with other error rates can be found in the Supplementary

Material.
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Fig. 2. 100-bp single-end reads with insertion in random location.

Reported results are for MAPQ� value in parentheses. Data points

with530% of the reads aligned correctly were removed due to erratic

behavior of the percent correct value, (a) percent of reads aligned (b)

percent of aligned reads correct.
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5 METHODS

SeqAlto searches for the global alignment of sequencer reads to a refer-

ence using the commonly known seed and extend approach. There are

three phases to the alignment process: index construction, ungapped

alignment and Needleman–Wunsch extension.

Define a k-mer (seed) to be a sequence of nucleotides of length k. Each

nucleotide must come from the set fA, C, T, G}. Hence, each k-mer is

encoded as an unsigned integer with 2 bits per nucleotide. On a 64-bit

system, this allows for k-mers of size of up to 32 bp. If the a k-mer has a

nucleotide other than fA, C, T, G}, such as N, it is replaced with a uni-

form random nucleotide since there is only a 2-bit alphabet available.

This encoding is the same approach used in BWA and many other tools.

Let the index be defined as a list of tuples recording the k-mer and the

location in the reference of that k-mer. The index is sorted by the numeric

value of each k-mer for fast searching. SeqAlto achieves its high speed

first by using much larger k-mer sizes compared to existing approaches,

examining less repetitive k-mers first and by adaptively stopping the

k-mer search. Large contiguous k-mers greatly reduce the number of

locations of each k-mer in the reference to mostly unique hits. In general,

large k-mers would reduce the sensitivity of the alignment. However, for

longer reads this choice of k-mer size does not reduce sensitivity as shown

in the simulation results. Furthermore, a novel sub-sampling approach is

used to reduce the amount of memory required for the index to under

8 GB. Compared to BWT-based approaches for large k-mer search, our

approach requires less random access to memory per index lookup re-

sulting in significantly improved performance.

5.1 Index construction

A genome index ideally contains the location of all overlapping k-mers in

the genome. Naively storing all k-mers of size between 17 bp and 32 bp in

one strand of the human genome requires about 36 GB of memory. Using

a combination, of two strategies, we can reduce the size of the index to

under 8 GB with only a minor penalty on the sensitivity. This

enables SeqAlto to be run on almost all desktop computers. These stra-

tegies can be tuned for more powerful computers as they become

available.

At the first stage of the index construction, each overlapping k-mer

together with its location is extracted from the genome and stored in an

array W. This array of tuples is then sorted by the k-mer value. Then the

leadingm bits are removed from each k-mer such that (2k –m) is less than

32. These m bits are stored in a prefix array P that records the start and

end locations in W of k-mers tuples prefixed with the same m bits. Since

W is sorted, k-mers with the same prefix exist next to each other. Now,

only the (2k – m) remaining bits of each k-mer needs to be stored in W.

This array of tuples W together with the prefix array P form the genome

index. Considering only genomes with less than 4 billion nucleotides, this

two-level index reduces the size of each (k-mer, location) tuple in the

index to 8 Bytes instead of 12 Bytes. Hence, for small prefix table sizes

the entire human genome index will only take about 24 G to store. This

index construction also greatly improves the lookup speed over a naive

binary search.

Table 4. Results for real Illumina reads of length 101 bp

Aligner Time %Align %Unique %Q10

(a) 101-bp real single end reads

SeqAlto 545 94.970 88.927 88.339

SeqAlto-all 656 95.015 88.944 88.357

Snap 49 93.661 85.261 *

Bowtie2 521 96.122 94.347 86.213

SOAP2 1261 90.985 85.575 *

BWA 1056 91.826 86.803 86.655

Novoalign 3128 95.582 89.499 89.214

Stampy 1851 98.634 92.866 91.123

(b) 101-bp real paired-end reads

SeqAlto 1394 96.122 91.117 90.794

SeqAlto-all 1627 96.136 91.127 90.803

Snap 172 88.692 88.692 *

Bowtie2 1075 94.579 93.746 87.733

SOAP2 2935 89.128 85.857 *

BWA 2024 93.815 90.494 90.109

Novoalign 4982 93.846 90.421 90.239

Stampy 5003 96.274 92.640 91.623

A 22-mer seed was used for SeqAlto Time measured is elapsed time (seconds).

Unique refers to MAPQ� 1 if MAPQ available. Q10 refers to MAPQ� 10.

Table 5. Summary of the SNPs and indels called by GATK on

Chromosome 1 after alignment of real data with each algorithm

Aligner Called %dbSNP %Discovered

(a) GATK SNPs Called

SeqAlto 252965 91.212 87.780

Snap 305281 75.623 87.830

Bowtie2 203508 95.973 74.304

BWA 241084 93.324 85.595

Stampy 218289 93.620 77.747

Novoalign 227350 92.932 80.380

(b) GATK Indels Called

SeqAlto 9729 76.986 82.808

Snap 7399 70.915 58.010

Bowtie2 8794 80.964 78.718

BWA 8838 80.878 79.027

Stampy 10408 73.770 84.887

Novoalign 9386 78.329 81.282

%Discovered refers to percentage of the known variants in dbSNP found.

Table 3. Summary of the SNPs and indels called by GATK after align-

ment with each algorithm

Aligner Called %Correct %Discovered

(a) GATK SNPs called

SeqAlto 429 949 96.688 98.481

Snap 432 023 96.078 98.332

Bowtie2 412 753 98.250 96.070

BWA 426207 97.466 98.409

Stampy 427 137 97.290 98.446

Novoalign 430 906 96.674 98.686

(b) GATK Indels called

SeqAlto 22 057 99.941 98.477

Snap 25 563 93.319 90.303

Bowtie2 20 750 99.918 91.809

BWA 21228 99.915 95.174

Stampy 22 696 99.277 98.288

Novoalign 20 899 99.947 93.610
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SeqAlto has the option to not store every k-mer in the reference. In

order to reduce memory consumption without greatly impacting align-

ment, quality and speed of alignment we only store a k-mer if it satisfies a

hash function f(x), where x is the numeric value of the k-mer. The hash

function f(x) is chosen so that there is approximately uniform coverage of

the genome. In SeqAlto, (1) is used.

fðxÞ ¼ ðx ðmod 7Þ ¼ 5ÞORðx ðmod 17Þ ¼ 7Þ

OR ðx ðmod 19Þ ¼ 13ÞORðx ðmod 53Þ ¼ 31Þ

OR ðx ðmod 71Þ ¼ 47Þ:

ð1Þ

Equation (1) was selected so that memory usage for the human

genome is under 8 GB and for Chromosome 1, the median gap size is

3 bp and the largest gap apart from the centromere is 131 bp. Empirically,

there is little loss in sensitivity from using this approach as seen in the

Section 3. In principle, this expression can also be easily tuned for ma-

chines with more memory, as any expression of similar form is adequate.

On machines with 32 GB or more memory, this second step is not

required and a larger index can be constructed for improved sensitivity

and accuracy.

The index is essentially a large sorted list. Hence, it is easy to add

arbitrary additional k-mers to the index with negligible cost to both the

construction and search. k-mers overlapping known SNPs and indels

could easily be added to the index to improve the sensitivity of alignment.

This change would only moderately increase the size of the index.

5.2 Ungapped alignment

The first stage of the alignment process is the ungapped alignment stage.

This stage is separate from the gapped stage since we expect that most

gapped reads will not align anywhere in the genome as high-quality

ungapped alignments. This separation also allows for easy interfacing

with a hardware accelerator for the gapped alignment.

Each read is treated separately in the alignment process. All overlap-

ping k-mers are extracted from each read. k-mers satisfying the function

f(x) as defined in (1) are retained and the other k-mers are discarded.

Highly repetitive k-mers are also discarded.

Each k-mer is then searched for in the index according to the following

order. Starting with the non-overlapping k-mers, the number of locations

the k-mer exists in the genome is computed from the index. If this number

is less than a predefined variable MAX_LOC, all of the locations are

examined for an ungapped alignment of the read. Once all k-mers with

number of locations less than MAX_LOC have been examined, the other

k-mers are examined. Due to the large k-mer size, many k-mers either

align uniquely to the genome or do not align at all. Hence, the ungapped

alignment stage proceeds very quickly.

Similar to the idea in Baeza-yates and Perleberg (1992), it is not ne-

cessary to examine all k-mers in a read. For instance, reads with no

mismatches should be unambiguously identified after examining just

one non-overlapping k-mer. By the pigeon hole principle, reads with m

mismatches only require examination of (mþ 1) non-overlapping k-mers.

Additional k-mers are examined in order to determine if a read is from

a repetitive region (see Section 5.6). Hence, SeqAlto decides to stop

examining k-mers according to the following boolean function

gðl;mÞ ¼ l > ðmþ 2Þ, where m is the number of mismatches and gaps

of the best alignment so far and l is the number of k-mers examined. For

reads with high number of mismatches, this early stopping does not guar-

antee finding the correct hit. This procedure is described in Algorithms 1

and 2. Overall, this procedure results in SeqAlto spending less time on

high-quality reads.

If the ungapped alignment outputs a best alignment with penalty score

greater than a single gap open, the read is then examined for a single gap

alignment. At this stage, the location of each k-mer is normalized by sub-

tracting the location of the k-mer in the read. For each pair of normalized

locations with distance smaller than the maximum gap size, the locations

are extended to find single gap alignments with at most one mismatch on

each side. This is able to resolve some indels in repetitive regions.

5.3 Needleman–Wunsch extension

All reads that do not align in the ungapped alignment stage are passed to

the Needleman–Wunsch extension stage. The order of examining k-mers

is the same as for the ungapped alignment. Each k-mer location is

searched with a banded Needleman–Wunsch with affine gap penalty to

find gapped alignments. The width of the band can be chosen by the user

and by default it finds up to at least 50 bp indels. The same function g(l,

m) is used to determine if the program should continue examining k-mers.

Single instruction multiple data (SIMD) acceleration through SSE2 in-

structions is used to improve the performance of this stage.

5.4 Paired-end alignment

Paired-end information is both used to help search for alignments and

also resolve discordant read pairs. If one read in a pair aligns and the

other read does not, SeqAlto searches for the remaining read within the

maximum insert size of the pair with a combination of Smith–Waterman

and Needleman–Wunsch. These alignments are flagged in the output

giving the user additional flexibility in post-processing. If both pairs

align with one or more equally good hits, all possible combinations are

checked for a concordant pair. If all possible combinations are discord-

ant, SeqAlto searches for a concordant alignment within a region around

each alignment defined by the maximum insert size.

5.5 Hybrid mode

For reads much less than 100 bp, SeqAlto has some trouble aligning reads

in repeat regions and also reads with high numbers of mismatches due to

Algorithm 1 Ungapped Alignment

l 0

m 1

while not g(l, m) and (exists k-mers unexamined) do
i index of next unexamined k –mer
5: x examine(ith k-mer)
if x > 0 then

l lþ 1
end if

if x5m then

10: m x
end if

end while

Algorithm 2 Examine k-mer

i index of k-mer to be examined

n number of locations k-mer exists
if n5MAX LOC then

Mark k-mer i as examined

5: Check all locations of k-mer i for ungapped alignment
return number of mismatches in best alignment

else if all k-mer with n5MAX-LOC examined then

Mark k-mer i as examined
Check all locations of k-mer i for ungapped alignment
10: return number of mismatches in best alignment

else

return-1
end if

2371

Read alignment for resequencing



an inability to locate enough seeds on the reads. In hybrid mode, SeqAlto

outputs reads with few valid seeds as a FASTQ file that can be then

aligned with BWA or any other alignment tool. The two resulting

SAM files can then be merged to produce the final alignment.

5.6 Mapping quality score

Mapping quality (MAPQ) scores provide a way for users to judge the

reliability of each alignment. They were first introduced in MAQ

(Li et al., 2008) as an estimation of the probability a read was aligned

incorrectly. Accurate calculation of mapping quality considerably slows

down the alignment process since all k-mers should be visited. Despite not

visiting all k-mers, SeqAlto also provides an estimate of mapping quality.

The mapping quality reported by SeqAlto is not as specific as the map-

ping quality reported by other tools. However, in practice there is little

difference.

As discussed in the Mapping and Assembly with Quality (MAQ) art-

icle (Li et al., 2008), there are mainly two sources of alignment error. The

first is when the best alignment fails to be reported by the alignment

algorithm. The second is when a read aligns optimally to an incorrect

location due to genetic variation or read errors. Similar to BWA, SeqAlto

ignores the first source of error and assumes either the best alignment will

be reported or no alignment will be reported at all. SeqAlto estimates the

second source of error by recording all alignments that differ from the

best by at most one mismatch and also the percentage of the read covered

by highly repetitive k-mers. The formula used is similar to that of BWA

for compatibility with downstream tools.

5.7 Choice of k-mer size

The size of the k-mer seed needs to be selected prior to index construction.

A single size is clearly not optimal for all read lengths. Smaller k-mers will

be too repetitive and larger k-mers will reduce sensitivity. Table 6 displays

the performance with various k-mer sizes.

As indicated in Table 6, 22-mer seeds are optimal for 100 bp reads. For

longer reads, using 28-mer seeds is probably a better choice.

5.8 Multi-threading

SeqAlto is able to take advantage of modern multi-core computers by

distributing the alignment of each read to multiple threads. There is little

communication between the threads except when reading and writing

files. SeqAlto is run in default mode on 1 million 101-bp paired-end

reads from the real Illumina dataset and the alignment time is recorded.

Table 7 shows that SeqAlto scales well up to at least eight threads

while BWA is limited by its non-parallelized pairing step. An Illumina

HiSeq2000 generates about 600 gigabases of data per run. This translates

to about 3 billion 100-bp pairs. On a modern octa-core workstation com-

puter, SeqAlto is able to align the 3 billion pairs in about 6 days com-

pared to about 15 days with BWA on the same computer. Considering

one Illumina HiSeq 2000 takes 11 days to generate the sequence data, this

allows one inexpensive desktop workstation to service several large se-

quencers. As read lengths and the quality of sequencer output improves,

these results will become even more significant.

6 DISCUSSION

Overall, SeqAlto is an efficient alignment tool that targets the

future of resequencing where reads are long and high quality.

When aligning longer reads, SeqAlto is faster than most existing

tools while retaining the ability to accurately align complex vari-

ants. This is particularly important for the high volume of rese-

quencing that will be required as sequencing enters clinical

applications. For convenience, SeqAlto outputs in the common

SAM format that is compatible with numerous downstream ana-

lysis tools.
The comparison of alignment algorithms is primarily per-

formed with simulated reads as real reads do not have a clear

ground truth available. On simulated reads SeqAlto is shown to

be faster than most current tools and able to accurately align

reads with large indels. When aligning real Illumina reads,

SeqAlto maintains its efficiency advantage over most of the

tools. This advantage is expected to increase as read quality im-

proves. The ability to align reads with large indels is particularly

evident when variants are called from the aligned reads. Both

GATK and Samtools were able to correctly call more indel vari-

ants from SeqAlto’s aligned reads from both real and simulated

data compared to all the other tools except Stampy. In the cases

where less variants were called, SeqAlto was more accurate.

There is a clear trend towards longer read lengths among

high-throughput sequencers. SeqAlto has been shown to be

ideal for aligning long high-quality reads for the purpose of

resequencing. We expect that the large seed approach taken by

SeqAlto to be the standard approach for read alignment as the

volume and length of reads increase.
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Table 6. Alignment performance with various k-mer sizes for 100-bp

single-end reads

k-mer Time %Aln %Unique [%Err] %Q10 [%Err]

18 218 94.26 89.53 [0.151] 89.15 [0.074]

20 197 94.16 89.44 [0.152] 89.04 [0.077]

22 178 93.94 89.23 [0.167] 88.83 [0.090]

25 151 93.22 88.52 [0.202] 88.12 [0.119]

28 146 91.95 87.30 [0.266] 86.90 [0.167]

Time measured in seconds.

Table 7. Speed-up due to multi-threading of SeqAlto and BWA

SeqAlto BWA

Threads Time Speed-up MPH Time Speed-up MPH

1 1395 1.0� 2.58 2010 1.0� 1.79

2 700 2.0� 5.14 1121 1.8� 3.21

4 360 3.9� 10.00 612 3.3� 5.88

8 184 7.6� 19.57 436 4.6� 8.26

Time measured in seconds. MPH stands for millions of pairs aligned per hour.
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