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ABSTRACT

Motivation: Network inference approaches are widely used to shed

light on regulatory interplay between molecular players such as genes

and proteins. Biochemical processes underlying networks of interest

(e.g. gene regulatory or protein signalling networks) are generally non-

linear. In many settings, knowledge is available concerning relevant

chemical kinetics. However, existing network inference methods for

continuous, steady-state data are typically rooted in statistical formu-

lations, which do not exploit chemical kinetics to guide inference.

Results: Herein, we present an approach to network inference for

steady-state data that is rooted in non-linear descriptions of biochem-

ical mechanism. We use equilibrium analysis of chemical kinetics to

obtain functional forms that are in turn used to infer networks using

steady-state data. The approach we propose is directly applicable to

conventional steady-state gene expression or proteomic data and

does not require knowledge of either network topology or any kinetic

parameters. We illustrate the approach in the context of protein phos-

phorylation networks, using data simulated from a recent mechanistic

model and proteomic data from cancer cell lines. In the former, the

true network is known and used for assessment, whereas in the latter,

results are compared against known biochemistry. We find that the

proposed methodology is more effective at estimating network top-

ology than methods based on linear models.
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1 INTRODUCTION

Networks of molecular components play a prominent role in
molecular and systems biology. A graph G¼ (V(G), E(G)) can
be used to describe a biological network, with vertex set V(G)

identified with molecular components (e.g. genes or proteins)
and edge set E(G) with regulatory interplay between the compo-
nents. Edges in a biological network are often associated with the

causal notion that intervention on a parent node influences its
child node(s). Data-driven characterization of the graph struc-
ture E(G) (often referred to as the topology) is known as network

inference and has emerged as an important problem class in

bioinformatics and systems biology. Network inference can aid

in efficient generation of biological hypotheses from high-

throughput data. Further, network inference can aid in exploring

molecular interplay that is associated with specific phenotypes,

such as disease states.
From a statistical perspective, network inference entails

reverse-engineering a graph G using biochemical data D and,

where available, prior knowledge regarding aspects of the top-

ology. Over the last decade, many methods for network inference

have been proposed (see e.g. Lee and Tzou, 2009; Markowetz

and Spang, 2007). To date, most methods for network inference

have been rooted in discrete or linear formulations (Bender et al.,

2010; Hill, 2012; Morrissey et al., 2010; Opgen-Rhein and

Strimmer, 2007; Sachs et al., 2005). As discussed in Oates and

Mukherjee (2012a), a wide range of existing approaches can be

viewed as variants of the statistical linear model (‘linear’ refers to

linearity in parameters, so that nonlinear basis functions may be

used within a ‘linear’ framework). Moreover, a number of

approaches based on ordinary differential equations (ODEs;

Bansal et al., 2007; Nam et al., 2007) are ultimately reducible

to linear statistical models, as described in Oates et al. (2012).
However, the biochemical processes underlying biological net-

works are often highly non-linear. When the data-generating

process is non-linear, use of linear models may produce ineffi-

cient or inconsistent estimation, attributing causal status to arti-

facts resulting from model misspecification (Heagerty and

Kurland, 2001; Lv and Liu, 2010). Indeed, such bias can prevent

recovery of the correct network even in favourable asymptotic

limits of large sample size and low noise (Oates and Mukherjee,

2012a). On the other hand, in many settings, non-linear dynam-

ical models of relevant biochemical processes are available. For

example, gene regulation may be modelled using Michaelis–

Menten functionals (Cantone et al., 2009), and metabolism

may be modelled using mass action chemical kinetics (Lee

et al., 2008). Here, we describe an approach by which kinetic

models can be used to inform network inference from

steady-state data. As we show below, such information can be

valuable in guiding exploration of network topologies.
Kinetic formulations have been widely studied in the systems

biology literature, and recently, there has been much interest in

statistical inference for such systems (e.g. Chen et al., 2009; Xu

et al., 2010). Our work is in a similar vein but focuses on network*To whom correspondence should be addressed.
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inference per se and on the steady-state rather than time-course
setting. Although biochemical assays have become cheaper, it
remains the case that experimental designs must often negotiate

a trade off between more conditions (e.g. perturbations, biolo-
gical samples and technical replicates) and temporal resolution.
Methodologies, which can exploit knowledge concerning rele-

vant dynamical systems in the steady-state setting, are therefore
potentially valuable.
In brief, we proceed as follows. We consider a class of

non-linear biochemical dynamical systems that are relevant to
the biological process of interest (we focus on protein signalling,
discussed in detail later). Steady-state analysis leads to a class of

functional relationships between parent and child. These func-
tional relationships are used to formulate a statistical model for
network inference from steady-state data. In this way, network

inference is rooted in functional relationships derived from
non-linear kinetics. Importantly, we do not assume detailed
knowledge of the dynamical system, but only the broad class

to which dynamics and associated equilibria may belong.
Indeed, the approach we describe does not require any kinetic
parameters to be known a priori nor knowledge of the network

topology and is in that sense directly comparable with conven-
tional network inference methods. Its potential advantage stems
from then rich yet constrained nature of the class of functional

relationships that are considered. As recently discussed in Peters
et al. (2011), non-linear functional forms can aid in identification
of underlying causal relationships.

We develop these ideas in the context of protein signalling
mediated by phosphorylation. Enzyme kinetics have been exten-
sively studied, and dynamical formulations are widely available

in the literature (see e.g. Leskovac, 2003). For some proteins and
pathways, regulation has been studied in considerable causal and
mechanistic detail. Indeed, there exist detailed computational

models for canonical protein signalling pathways, which have
been validated against experimental data (e.g. Schoeberl et al.,
2002; Xu et al., 2010). Further, proteomic technologies now

allow multivariate, data-driven study of phosphorylation, facil-
itating biological validation of network inference methodologies.
We take advantage of these factors to examine the performance

of our approach using both simulated and real data.
In the phosphorylation setting, Goldbeter–Koshland kinetics

(Goldbeter and Koshland, 1981) form the functional class that

underlies our network inference approach. Goldbeter–Koshland
kinetics are well known to be capable of highly non-linear be-
haviour including exquisite sensitivity. It has been experimentally

demonstrated that this so-called ultrasensitivity is biologically
relevant to signalling network dynamics, facilitating abrupt
and precise decision making (e.g Kim and Ferrell, 2007). We

carry out statistical inference in a Bayesian framework, using
reversible-jump Markov chain Monte Carlo (RJMCMC) to
explore the joint model and parameter space. This yields pos-

terior probability scores for edges in the network that are
analogous to scores obtained in existing statistical network infer-
ence approaches for steady-state data (Ellis and Wong, 2008;

Mukherjee and Speed, 2008).
The remainder of this article is organized as follows. In

Section 2, our approach is laid out, followed by an exposition

of the associated computational statistics. In Section 3, we pre-
sent results on data simulated from a recently developed

dynamical model of the mitogen-activated protein kinase
(MAPK) signalling that has been validated against experimental

data (Xu et al., 2010). We then show results on real proteomic

data from breast cancer cell lines. Finally, Section 4 closes with a

discussion of practical implications and opportunities for net-

work inference based on functional models, along with asso-

ciated technical challenges.

2 METHODS

We begin in Section 2.1 by describing our approach in general

terms. Section 2.2 then introduces relevant concepts in the application

area of protein phosphorylation. In particular, we describe a class of

non-linear equations derived from Goldbeter–Koshland kinetics. Next,

in Section 2.3, this model class is embedded into a Bayesian statistical

framework for observations obtained at equilibrium. Inference over

model space is facilitated by reversible-jump MCMC, with Section 2.4

dedicated to a presentation of our sampling scheme and a discussion of

key implementational details.

2.1 General formulation

We consider a state vector X ¼ ðX1; . . . ;XpÞ containing concentrations of

p proteins. Equilibrium analysis of phosphorylation dynamics, as

described below, leads to a system of p equations Xi ¼ fiðX;Ui; hiÞ

where i indexes proteins, Ui are external input variables and �i unknown

parameters. The component function fi depends on a subset �i of the state

variables, such that we may write Xi ¼ fiðX�i ;Ui; hiÞ, where X�i indicates

selection of components of the vector X whose indices are members of the

set �i. Variables j2�i are the parents of node i in graph G; the parent sets

�i specify the (unknown) topology of interest since (j,i)2E(G),j2�i. Our

inference scheme seeks to infer the �i’s from steady-state data. Since the

dynamical system is not usually known in detail a priori, we consider the

practically applicable case in which the fi’s are known only to belong to a

certain class F (derived from Goldbeter–Koshland kinetics, as described

below) with parent sets �i and all parameters �i remaining unknown.

2.2 Protein phosphorylation

We consider proteins i 2 V ¼ f1; . . . ; pg, each of which has an unpho-

sphorylated form X0
i and a phosphorylated form Xi (i2V). Phosphory-

lated proteins are referred to as phosphoproteins. The chemical reaction

that gives product Xi from substrate X0
i is known as phosphorylation and

is catalysed by kinases XE (E 2 Ei). We consider the case in which the

kinases themselves are phosphoproteins (if phosphorylation is not driven

by a kinase in V, we set Ei ¼ ;). The ability of a kinase E 2 Ei to catalyse

phosphorylation of Xi may be tempered by inhibitors XI (I 2 I i;E � V;

the double subscript indicates that inhibition is specific to both substrate

and kinase). Thus the parents �i of Xi comprise both the kinases and their

inhibitors: �i ¼ Ei [ fI i;EgE2Ei . Because of specificity of phosphorylation

reactions, we assume that the underlying network G is sparse, such that

the number of parents �i for variateXi is low. An example is shown, using

a standard graphical representation, in Figure 1a. In what follows we use

X0
i ;Xi to denote the concentrations of proteins X0

i ;Xi, respectively;

Ui ¼ X0
i þ Xi is then the total concentration of protein i, which is

taken to be approximately invariant over the timescale of phosphoryl-

ation dynamics.

For network inference, model selection will take place over parent

sets �i. Accordingly, we require functional equations for any such

subset (Fig. 1b). We use ODEs of the Michaelis–Menten type to provide

a suitable class of analytic approximations for phosphorylation dynamics

(Kholodenko, 2006; Steijaert et al., 2010). The rate of phosphorylation

X0
i ! Xi due to kinase Xj is given by VXjX

0
i =ðX

0
i þ KÞ, which explicitly

acknowledges variation of kinase concentration Xj and permits
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kinase-specific response profiles (parameterized by K) with maximum

reaction rate V.

Equilibrium analysis of the foregoing kinetic model yields functional

relationships between nodes that we use to inform analysis of steady-state

data. The seminal example of Goldbeter and Koshland (1981) considered

phosphorylation by a single enzyme (XE) and dephosphorylation by a

single phosphatase (XP), which at equilibrium satisfy the balance

equation

VEXEX
0
i

X0
i þ KE

¼
VPXPXi

Xi þ KP
ð1Þ

whose solution Xi ¼ fiððXE;XPÞ;X
0
i ; hiÞ is capable of expressing a range

of biologically relevant non-linearities. In this work, we extend the class

of molecular regulatory mechanisms by entertaining multiple kinases

along with multiple kinase inhibitors. For simplicity, we assert that all

kinases act independently and that all kinase inhibition occurs competi-

tively. In particular we do not consider complex interactions between

these regulators, such as cooperativity. Competitive inhibition requires

that substrate (X0
i ) and inhibitor (XI) compete for the same binding site

on the enzyme (XE):

XEXI Ð XE Ð XEX
0
i ! XE þ Xi ð2Þ

When multiple inhibitors (I; I0) are present, they are assumed to act ex-

clusively, competing for the same binding site on the enzyme:

XEXI0 Ð XE Ð XEXI0 ð3Þ

Mathematically, competitive inhibition by exclusive inhibitors corres-

ponds to rescaling of the Michaelis–Menten parameter

KE�KEð1þ
X
I2I i;E

XI

KI
Þ: ð4Þ

where the sum runs over inhibitors I of the kinase E. (The interested

reader is referred to Leskovac (2003) for further details.) Phosphatase

specificity is currently poorly characterized compared with kinase speci-

ficity, so our analysis does not attempt to cover this level of regulation. In

particular dephosphorylation is assumed to occur at a rate V0Xi propor-

tional to the amount of phosphoprotein. Collecting together our model-

ling assumptions and solving the resulting balance equation produces a

functional model class F , with member functions fi 2 F given by

fiðX�i ;Ui; hiÞ ¼
X
E2Ei

VE=V0XEX
0
i

X0
i þ KEð1þ

P
I2I i;E

XI

KI
Þ
: ð5Þ

Here, the parameter vector hi contains the maximum rates (V) and

Michaelis–Menten constants (K) specific to phosphorylation of species

i (dependence of V, K on i is notationally suppressed for clarity).

When Ei ¼ ; we instead define fi ¼ �i, equal to the average phosphopro-

tein concentration.

2.3 Statistical formulation

The Goldbeter–Koshland model (5) gives a general form for the func-

tional relationship between nodes at steady-state. Inference proceeds

based on a Bayesian formulation of this model (Fig. 1c). Consider inde-

pendent observations of protein expression obtained at equilibrium with

respect to phosphorylation dynamics. To fix a characteristic scale, all data

are scale normalized prior to inference, such that each species has unit

mean. For a given protein i, a model Mi for phosphorylation describes

putative kinases Ei and associated inhibitors I i;E (E 2 Ei) for protein

i (note that Mi contains more information than the subset �i, namely

the specific mechanistic roles played by each variable in �i). Then, con-

ditional on Mi and parameters �i we have the following statistical model

logðXiÞ ¼ logðfiðX�i ;Ui; hiÞÞ þ "i ð6Þ

where "i � Nð0; �2i Þ. Here, the error term "i absorbs contributions from

observation error and model misspecification, with the logarithm of both

predictor and response taken to improve the normality assumption.

In the Bayesian setting, prior probability distributions are required for

parameters �i and models Mi. For the parameters hi ¼ ðV;K; �Þ, which

we have augmented with � (as with the other parameters, we drop the

subscript i on � for clarity), physical considerations require that Vj, Kj, �

40. Following Xu et al. (2010), we postulate that all biological processes

must occur on an observable timescale, motivating, in the shape, scale

parametrization, the gamma priors V��(2,1/2), K��(2, 1/2), each of

unit mean and variance 1/2. The noise parameter � is inverse-gamma

distributed a priori as ���-1(6,1), with prior mean 1/5 and variance

1/100 chosen to correspond to the magnitude of measurement noise in

current proteomic technologies (Hennessey et al., 2010).

When expert opinion is available, rich subjective model priors may be

elicited (see e.g. for graphical models, Mukherjee and Speed, 2008), but

for this work we employed an objective prior, depending on a (possibly

empty) prior model M0
i . Prior specification should account for the dis-

tinct roles of kinases and inhibitors; a mathematical formulation is

described in the Supplementary Information.

2.4 Reversible jump Markov chain Monte Carlo

Inference over networks was carried out using Markov chain Monte

Carlo (MCMC). For linear and discrete models, marginal likelihoods

are typically available in closed form. Then, sampling needs only to ex-

plore the model space (see e.g. Ellis and Wong, 2008; Madigan et al.,

1995; Mukherjee and Speed, 2008). However, in the present, non-linear

setting parameters cannot be integrated out analytically, motivating the

(a) (b) (c)

Fig. 1. Overview of approach. (a) An example of a phosphorylation network. (b) Our approach couples automatic generation of chemical models with

Bayesian model selection to infer regulators �i of species i. (c) A statistical formulation (graphical model) for equilibrium phosphorylation of species i is

characterized by specifying kinases (E 2 Ei) and inhibitors (I 2 I i;E) of kinases. [Bounding boxes are used to indicate multiplicity of variables, shaded

nodes are observed with noise.]
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need to sample over the joint space of models and parameters. Further-

more, the dimension of the model is not fixed, as the number of param-

eters dimðhMÞ depends on the model M; dimðhMÞ ¼ dimðVMÞþ

dimðKMÞ þ 1 where the former quantities are functions of the numbers

of kinases and inhibitors according to M. We therefore employ

reversible-jump MCMC (RJMCMC) (Green, 1995) for inference. Fol-

lowing Green and Hastie (2009), we enumerate all possible models as

fMðkÞgk2K and define the across-model state space

S ¼
[
k2K

ðfkg ��kÞ; k ¼ X
E2EM

ðkÞ

�
fEg � IM

ðkÞ

E

�
ð7Þ

where parameters �M
(k)

for model M(k) belong to �k and � denotes the

Cartesian product. The reversible-jump sampler constructs an ergodic

Markov chain on S which has, as its stationary distribution, the posterior

probability distribution pðsjDÞ; s 2 S. In particular the marginal pðkjDÞ

over the model index k 2 K corresponds exactly to the posterior model

probabilities pðMðkÞjDÞ. Construction of an efficient RJMCMC sampler

requires an intuition for the across-model state space. We adopt a delib-

erately transparent Metropolis-within-Gibbs approach (Roberts and

Rosenthal, 2006), updating one coordinate of S at a time using a

Metropolis–Hastings accept/reject probability of the form

�ðs; s0Þ ¼ minð1;Aðs; s0ÞpðDjs0Þ=pðDjsÞÞ. A number of distinct proposal

mechanisms were employed to ensure ergodicity and provide rapid

mixing. Precise details of the proposals used, along with their associated

ratios Aðs; s0Þ may be found in the Supplementary Information. For ap-

plications, 30000 iterations of the Gibbs sampler were performed, with

5000 discarded as burn-in. Convergence was assessed using repeated runs

from dispersed initial conditions.

3 RESULTS

In this section, we empirically assess our methodology and com-

pare its performance against network inference based on the linear

model. In Section 3.1, we show results using a recently published

dynamical model of the MAPK signalling pathway due to Xu

et al. (2010), where the underlying network is known exactly. In

Section 3.2, we apply our approach to a real proteomic dataset. In

both cases, for fair comparison between different methods, no

informative model priors were used (i.e. we set 8i;M0
i ¼ ;).

3.1 Simulation study

Data were generated from a computational model of the MAPK

signaling pathway due to Xu et al. (2010), specified by a system

of 25 non-linear ODEs (Fig. 2a). The simulation gives covariates

that are highly correlated at equilibrium, as would be expected in

practice, while providing a known network G for evaluation pur-

poses. Further details regarding the computational model are

described in the Supplementary Information. We introduced in-

dependent Gaussian measurement noise, additive on the log

scale, of magnitude � ¼ 0.2, similar to error incurred by current

proteomic technologies (Hennessey et al., 2010).
We benchmarked our approach against the linear-additive-

Gaussian formulation logðXiÞ � Nð1�0 þDM�M; �
2IÞ with

design matrix DM ¼ ½. . . logðXjÞ . . .�j2�M and intercept �0; the

logarithm of a vector is taken component wise. All variables

were mean-variance standardized prior to inference. We consider

two standard approaches to inference for the linear model,

namely (i) the LASSO with penalty parameter set according to

cross validation (‘Lin. Lasso’) and (ii) a conjugate Bayesian for-

mulation [‘Lin. Bayes’; Hill (2012)], based on the g-prior

�M � Nð0; n�2ðD0MDMÞ
�1
Þ, with a flat prior over the intercept

p(�0)!1 and reference prior over the noise p(�)!1/�. For the

Bayesian approach, we took a model prior p(M) to be uniform

over in-degree d ¼ dimðbMÞ with the restriction d � 3. Model

averaging was then used to obtain posterior inclusion probabil-

ities. For each of the linear approaches (i) and (ii) we also con-

sidered adjusted variants (‘Lin. Lasso Adj.’ and ‘Lin. Bayes

Adj.’) where log-phospho-ratios logðXi=UiÞ constitute the re-

sponse; this can be motivated as a simple first order correction

for variation in total protein levels.
For each phosphorylated or active species i in the computa-

tional model, we sought to infer the parents �i. For a fair com-

parison with the linear approaches, which do not ascribe

functional roles to variables, we did not distinguish between kin-

ases and inhibitors during assessment. The resulting receiver

operating characteristic (ROC) curves are shown in Figure 2b.

(a) (c)(b)

Fig. 2. Simulation study. (a) Computational model of the MAPK signalling pathway (due to Xu et al., 2010). Circles represent proteins, and rectangles

represent interventions (drug treatments) used to perturb the system. For proteins, one strike-through represents inactivity, and two strikes represent

degradation. (b) Average receiver operating characteristic (ROC) curves (sample size n¼ 24, noise � ¼ 0.2, see text for details) using data generated from

model (a). (c) Area under ROC curve (AUR) for each of the sample size (n) and noise (�) regimes shown (boxplots over 10 datasets for each n, � regime).

‘G.K. Kinetics’ network inference using Goldbeter–Koshland kinetics as described in text; ‘Lin. Bayes’ Bayesian variable selection using linear model;

‘Lin. Lasso’’ variable selection using LASSO and linear model; ‘Lin. Bayes Adj.’ and ‘Lin. Lasso Adj.’ as previous but corrected for total protein levels as

described in text.
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Overall performance was quantified using area under the ROC

curve (AUR), aggregated over all i2V. Results are shown over 10

datasets D for each of various combinations of sample size n and

noise level � (Fig. 2c). In all regimes, our approach outperformed

linear approaches; the latter did not perform well even in this low

dimensional example. We note also that even in the least challen-

ging regime (n¼ 24, � ¼ 0), none of the approaches were able to

perfectly recover the entire network G. The adjusted regressions,

which model the log-phospho-ratio as the response, did not out-

perform the standard linear regressions.

3.2 Cancer proteomic data

Data were obtained using reverse-phase protein arrays [RPPA;

Hennessey et al. (2010)] applied to a panel of breast cancer cell

lines (Neve et al., 2006). Data D comprised equilibrium observa-

tions for p¼ 38 phosphorylated proteins, in addition to their

unphosphoryated counterparts (Fig. 3a). Cell lines belong to

two biologically distinct subtypes known as basal (n¼ 22) and

luminal (n¼ 21), with each member cell line comprising one

sample. The true data-generating network is not known for bio-

logical samples, but for certain nodes, the relevant kinase–

substrate relationships have been described in considerable

mechanistic detail in the literature. To minimize the risk of com-

paring results of inference against an incorrect literature model,

we focused attention on selected nodes in the data for each of

whom the key kinase is well established. For example, the protein

S6 is known to be phosphorylated via the kinase activity of p70

S6 Kinase (p70S6K); both proteins are included in our assay.

Treating S6 as the target (i.e. the network child), we scored

each of the remaining 37 proteins as a candidate regulator

(i.e. for inclusion in the parent set �S6) using each method.

Figure 3b displays the result of inference for the parents of S6

(S6 is phosphorylated on amino acid residues Serine 235236;

results for basal subtype shown and measurements of S6 phos-

phorylation on residues Serine 240244 were excluded since this

correlates closely with phosphorylation on Serine 235236).

Despite the known well-established regulatory role for p70S6K,

it is striking that only our approach ranks p70S6K highly. The

LASSO approaches ascribe no weight to the correct kinase in

this case. To gain more insight into the assignment of weights by

the competing methodologies, we constructed scatter plots com-

paring weight distributions (Fig. 3c). It is immediately clear that

the weight assignments vary markedly between basal and luminal

subtypes. In addition, it is noticeable that there is little agreement

between the apparently similar linear formulations. We extended

this investigation to several other key signalling players whose

regulation is well understood (Table 1). Overall, we find that the

proposed approach outperforms the linear methods.

4 DISCUSSION AND CONCLUSIONS

In this work, we investigated integration of biochemical mech-

anisms into network inference for steady-state data. We focused

on protein phosphorylation, a key biochemical process where

the availability of relatively sophisticated simulation models,

extent of existing mechanistic insight and availability of relevant

proteomic data combine to facilitate assessment of network

inference approaches. Our results, on simulated and real data,

demonstrated that protein signalling network topology may be

estimated more successfully under our approach than by conven-

tional linear formulations. The linear approaches we used were

outperformed on simulated data and failed to identify known
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Fig. 3. Cancer protein data. (a) Heatmap of reverse-phase protein array

data from a panel of breast cancer cell lines. (b) Proteins were ranked as

potential regulators of the node S6 under each methodology. The protein

p70 S6 Kinase (p70S6K) is known to be a key kinase for the node S6; this

known regulator is shown in red in the bar plots. (c) Comparison of

methodologies: Each point in the scatter plots represents one phospho-

protein, with the known kinase p70S6K highlighted in bold. [(b) and

(c) display weights (posterior probabilities or absolute regression coeffi-

cients) assigned to each protein by each method.]
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regulation in real data. In addition to superior performance, a

chemical formulation ascribes mechanistic roles to variables and

may increase interpretability. In complementary work, Oates and

Mukherjee (2012b) consider the use of nonlinear chemical kin-

etics for network inference using time-course data, reporting that

a chemical formulation outperformed a number of mechanism-

free approaches, including non-parametric models.
Estimation of dynamical parameters in the presence of struc-

tural uncertainty remains an open area and an important topic

for future work. Here, although we sampled both networks and

parameters jointly, we focused exclusively on network inference.

It remains unclear how to report kinetic parameter estimates in

the presence of structural uncertainty. One approach would be to

first fix a network and subsequently estimate the associated dy-

namics. However, this has the disadvantage of relying on a ‘point

estimate’ of the network and therefore being sensitive to network

misspecification. This is especially relevant in the small sample

setting where typically no one model will capture substantial

posterior mass. Alternatively, one could estimate the total

effect of an interaction by averaging over all models. This relates

to ideas in causal inference for graphical models (Pearl, 2009) but

has the disadvantage that the resulting ‘total effect’ may lack a

natural chemical interpretation.

It is important to note that the chemical formulations con-

sidered here are not fully identifiable with respect to parameters.

Indeed, the maximal reaction rates VE are identifiable only up to

an unknown normalizing constant V0, whereas the Michaelis–

Menten parameters KE are known to be only weakly identifiable

(Calderhead and Girolami, 2011). Nevertheless, the model struc-

ture M itself remains identifiable in this setting (Supplementary

Information). Our empirical results on simulated and real data

provide examples where structural inference, using the formula-

tion we propose, is possible under realistic conditions. However,

factors including model mis-specification and missing variables

(see e.g. Oates and Mukherjee, 2012a) may limit structural

identifiability in general. Indeed, we found that all approaches

performed poorly on luminal cell lines in our real proteomic

data example (Supplementary Information). Therefore, results

of structural inference should be interpreted with caution and

treated as hypotheses to be tested experimentally.

We did not consider an explicit observation model. Because of

the nonlinear nature of the Goldbeter–Koshland formulation,

formal uncertainty propagation would be highly nontrivial for

our model. Assuming log-normal observation error and neglect-

ing predictor uncertainty, we arrived at the statistical model in

Equation (6). In this sense, our formulation may be regarded as

an approximation to inference under an explicit log-normal ob-

servation model. An interesting avenue for further research

would be to make explicit the observation process.
Network inference is naturally facilitated by interventional

experiments; however, adequate modelling of the effects of inter-

vention is important to ameliorate statistical confounding (Eaton

and Murphy, 2007; Pearl, 2009). Within a chemical kinetic

framework, such factors may be naturally accounted for; for

instance, a ‘perfect’ intervention simply corresponds to removal

of the targeted species from the chemical model.
Network inference based on non-linear models is computa-

tionally challenging. We considered low-to-moderate dimen-

sional settings (p¼ 12, 38), for which RJMCMC proved to be

effective. The computations in this article are parallelizable, and

it may therefore be possible to extend this work to

the high-dimensional setting. In general, non-linear approaches

are clearly more burdensome than their linear counterparts,

where highly efficient approaches, including those based

on LASSO and related penalized likelihood schemes, allow

rapid estimation even in high dimensions. We therefore view

the methods presented here as complementary to variable selec-

tion based on linear models, allowing more refined exploration in

settings where some insight into underlying dynamics is

available.
We investigated integration of biochemical mechanisms into

network inference. Although the Goldbeter–Koshland formulae

are invalid at the single-cell level, which is intrinsically stochastic,

our results suggest that these deterministic non-linear equations

represent a better approximation than the corresponding linear

equations. In particular a chemical kinetic formulation is able to

account, in a principled way, for variation in total protein levels

between samples. Consequently, inferred edges cannot be inter-

preted as indicators of direct biochemical interaction; rather an

edge corresponds to the prediction that intervention on the

parent will result in a change in expression of the child, possibly

indirectly via unobserved variables. In our real data example, we

therefore allowed for candidate species, which are not themselves

kinases, such as S6 and p53.
For simplicity, we did not consider post-translational modi-

fications such as ubiquitinylation, nor spatial effects such as

translocation, nor did we explicitly distinguish between phos-

phorylation on different residues. The methodology that we pre-

sented may be generalized to other molecular mechanisms. In

particular alternative mechanisms of enzyme interaction such

as non-competitive, uncompetitive, hyperbolic and parabolic in-

hibition could be readily integrated into our framework.

Table 1. Cancer protein data, comparison of methods

Target Akt p70S6K S6 p53

G.K. Kinetics 4 3 1 8

Lin. Bayes 10 9 15 32

Lin. Bayes Adj. 14 8 8 14

Lin. Lasso NA 8 NA NA

Lin. Lasso Adj. NA 12 NA NA

Total No of candidates 36 37 36 37

The proposed method was compared with linear approaches using reverse-phase

protein array data for nodes whose regulation has been extensively studied in the

literature. Each method ranked potential regulators among candidate proteins; here,

we display the rank assigned to the known kinase, using each of the five methods.

For example, Figure 3b shows such an analysis for the target node (i.e. network

child) S6, where G.K. Kinetics ranked the known kinase p70S6K 1st out of a total

of 36 candidates. High rank indicates that the known kinase is correctly highlighted

in the analysis; the highest-ranked result is highlighted in bold for each target node.

Here, we show the rank assigned to the known kinase for each of the target nodes

Akt, p70S6k, S6 and p53. (‘NA’ indicates that the known kinase received zero

weight. Alternative phospho-forms of the target were excluded as candidates for

Akt and S6, so that there were 36 candidates rather than 37. Here, we present results

obtained using data from cell lines of basal subtype; luminal results are shown in

Supplementary Information.)
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