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Solvation analysis is one of the most important tasks in chemical and biological modeling. Implicit
solvent models are some of the most popular approaches. However, commonly used implicit solvent
models rely on unphysical definitions of solvent-solute boundaries. Based on differential geometry,
the present work defines the solvent-solute boundary via the variation of the nonpolar solvation free
energy. The solvation free energy functional of the system is constructed based on a continuum de-
scription of the solvent and the discrete description of the solute, which are dynamically coupled
by the solvent-solute boundaries via van der Waals interactions. The first variation of the energy
functional gives rise to the governing Laplace-Beltrami equation. The present model predictions of
the nonpolar solvation energies are in an excellent agreement with experimental data, which sup-
ports the validity of the proposed nonpolar solvation model. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4745084]

I. INTRODUCTION

Under physiological conditions, water constitutes 65%–
90% of cellular mass. As such, essentially all important
biological processes, including signal transduction, transcrip-
tion, and translation, occur in an aqueous environment. There-
fore, an elementary requirement for quantitative modeling and
analysis of biological processes is a detailed understanding
of the solvation process, in which solute molecules are trans-
ferred from their lowest energy state in vacuum to an equi-
librium state in a solvent environment.1–4 The solvation pro-
cess involves the work of inserting a molecule into the solvent
and a range of possible solvent-solute interactions at the inter-
face, including hydrogen bonding, ion-ion, ion-dipole, dipole-
dipole and multipole attractions, Debye attractions, and
London dispersion attractions. These interactions induce
structural reorganization of the solvent near the interface as
well as possible solute configurational changes.

Experimental techniques, such as neutron diffraction
with isotopic substitution and anomalous x-ray diffraction,
have been applied to determine the solvent atomic dis-
tribution in the vicinity of the interface. A vast range of
computational approaches has also been developed to predict
the solvent microstructures. In molecular mechanics, the
solvent can be described with a variety of sites, different
levels of bond flexibilities, different orders of multipole
expansions, and many quantum mechanical treatments.5–9

For example, solvent microstructure can be extracted from
molecular dynamics simulations and described by density
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distribution and correlation functions.10–12 These functions
can also be described by the density functional theory13

and/or integral equations.14, 15 In general, both molecular
mechanical and statistical mechanical based microstructural
theories are capable of predicting solvent radial distribution
functions, surface tension, temperature, and pressure.16–19

The calculation of solvation free energy has captured a
great deal of interest with research developing solvation mod-
els ranging from simple phenomenological modifications of
Coulomb’s law, implicit solvent models that describe the sol-
vent by mean-field approximations,20–24 explicit solvent mod-
els that treat the solvent in molecular or atomic detail,1 to
complex quantum mechanical methods.2, 25–27 Each of these
models has its own domain of applicability, merits, and lim-
itations. Explicit and quantum methods are ideal for study-
ing the solvation of relatively small molecules, but involve
an excessively large number of degrees of freedom for large
molecules, which can become prohibitively expensive. Im-
plicit solvent methods and, especially multiscale methods
which are able to reduce the number of degrees of freedom,
are indispensable in solvation analysis and the quantitative de-
scription of other biological processes in general.

An essential element in all implicit solvent models
is the description of the interface that separates the so-
lute from the solvent.28 Many solvation quantities of physi-
cal interest, including electrostatic free energies, surface ar-
eas, cavitation volumes, solvation free energies, and pKa

values, are very sensitive to the interface definition. Cur-
rently, a number of different surface definitions, including
the van der Waals (vdW) surface, the solvent accessible
surface,29 the solvent excluded surface,30 and electron den-
sity isosurface are used in implicit solvent analysis, and have
had much success in biomolecular modeling,31–38 including
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protein folding,31, 32 protein-protein interfaces,33 protein sur-
face topography,34 oral drug classification,35 DNA bind-
ing and bending,36 macromolecular docking,37 and enzyme
catalysis.38 However, these surface definitions are ad hoc par-
titions to separate solute atoms from the surrounding solvent,
and often create geometric singularities.39 Currently, there is
no consensus about which surface should be used to describe
the solvent-solute boundary in implicit solvent models.

In the past few years, a series of efforts has been taken
to improve the surface description of implicit solvent mod-
els. The first effort was the introduction of curvature driven
partial differential equations (PDEs), i.e., geometric flows,
to construct singularity free protein molecular surfaces in
2005.40 This has led to the recent surge in PDE based ap-
proaches for molecular surface analysis. The next step was
the introduction of the minimal molecular surface (MMS),
obtained by using variational principles and the mathemat-
ical theory of geometric flows, namely, the mean curvature
flow.41, 42 The MMSs are able to minimize the surface free
energy of a macromolecule in solution. A natural step to im-
prove the minimal molecular surface model was to consider
more solvent-solute interactions in the surface construction by
using potential-driven geometric flows.43 Recently, differen-
tial geometry based multiscale models have been introduced
for the analysis of structure, dynamics, and transport of com-
plex chemical and biological systems.44 An essential ingre-
dient of such models is the use of the differential geometry
of surfaces as a natural means to separate the continuum sol-
vent domain from the atomistic solute domain, while dynam-
ically coupling discrete descriptions and continuum descrip-
tions. The main strategy is to construct a total energy func-
tional of the system to encompass the polar and nonpolar free
energies of solvation, and other energies of interest. Intensive
investigation has been carried out to practically implement
differential geometry based solvation models in the Eulerian
representation,45 Lagrangian representation,46 and quantum
formulation.47 These models incorporate solvent-solute van
der Waals interactions and thus, partially take care of solvent
size effects near the interface. They have been extensively val-
idated with experimental data of solvation free energies.45–47

While these solvation models are similar to those of Dzubiella
et al. in spirit,48, 49 the treatment of surface tension is differ-
ent in the two approaches. Most recently, generalized corre-
lations have been considered in differential geometry based
multiscale models to account for not only solvent-solute inter-
actions, but also ion-ion and ion-solute interactions.50 These
multiscale models, in principle, should be able to capture the
solvent microstructure. However, these differential geome-
try based multiscale models involve polar and nonpolar sol-
vation components, and chemical potential type of energies,
which can contribute to uncertainty in the model validation
and quantification.

The objective of the present work is to minimize model-
ing uncertainty in the differential geometry based multiscale
models by considering a relatively isolated situation where
electrostatic interactions do not play an important role. A spe-
cific physical process is the solvation of nonpolar molecules,
in which the electrostatic interactions between solvent and so-
lute are negligible. This simplified situation constitutes a test

of whether the differential geometry based framework pro-
vides a viable description of solvation free energies. Note
that in the present approach, while an atomistic description
is utilized for the solute, the solvent domain is treated as a
continuum.

The rest of this paper is organized as follows. Section II
is devoted to the formulation of the present differential geom-
etry based nonpolar solvation model. We present a variational
framework for the solvation free energy contributions. The
governing equation is derived by the Euler-Lagrange vari-
ation. The solution of the governing equation gives rise to
the solvent-solute boundary, which facilitates solvation free
energy calculation. We design schemes of second-order nu-
merical accuracy for the construction and evolution of solute
characteristic function. Appropriate iterative procedures are
provided to ensure convergence of the solution. Section III
presents validation and analysis of the proposed new solva-
tion model. The applications of the proposed theories, meth-
ods and algorithms are considered to two sets of compounds:
alkanes and alkenes. Comparison is given to experimental
measurements and results in the literature. Finally, this paper
ends with a conclusion.

II. THEORY AND ALGORITHM

A. Theoretical model

In this work, we investigate the physical boundary be-
tween solvent and solute by considering a realistic problem
with less uncertainty. Specifically, we apply our variational
approach to apolar molecules that admit negligible polar sol-
vation effects. Nonpolar solvation processes are generally as-
sociated with the insertion of an uncharged solute into sol-
vent. There are many nonpolar solvation models available.
The most commonly used model is the scaled particle the-
ory (SPT) (Ref. 22) which includes the energy of the sur-
face tension effect and the mechanical work of immersing a
particle into the solvent. Recent work by Levy, Gallicchio,
and others3, 4, 51 has demonstrated the importance of attrac-
tive solute-solvent terms as well as models of solvent-solvent
repulsive interactions, in addition to both area and volume
contributions.51 In the present work, we employ the follow-
ing model for nonpolar solvation free energies:51

Gnp = γ (Area) + p(Vol) +
∫

�s

ρsU
vdW(r)dr, (1)

where γ is the surface tension, Area is the solvent-excluded
surface area of the solute, p is the hydrodynamic pressure,
Vol is the solvent-excluded volume of the solute, ρs is the
solvent density, �s denotes the solvent accessible region, and
U vdW(r) is the solvent-solute vdW interaction potential. The
first two terms in Eq. (1) are those from the SPT.22 Since the
division of polar and nonpolar solvation energies is somewhat
arbitrary, the polar contribution might not be completely ex-
cluded in real situations. Nevertheless, the attractive van der
Waals interactions can offset possible small polar contribu-
tions. This nonpolar solvation model has been shown to pro-
vide a good agreement for the solvation forces of proteins51

and RNA hairpins23 with explicit solvent models. Levy and
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co-workers have demonstrated good performance of a similar
nonpolar model.3, 4, 52, 53

The free energy functional (1) provides a method for
practical nonpolar solvation analysis. Moreover, a variational
principle based on (1) leads to a potential-driven geometric
flow equation for the surface evolution46

∂X
∂t

= −WnN, (2)

where X ∈ � ⊂ R3 is a position vector on the evolving man-
ifold �, N is the outward unit normal direction at X, and
the potential Wn ≡ −2γH + p − ρsU

vdW vanishes upon op-
timization of the free energy functional (1) with respect to the
solvent-solute interface �. Here, H is the mean curvature of
�. The generalized geometric flow equation (2) is in the La-
grangian formulation. The numerical solution of (2) involves
the evolution of a triangularization mesh representing the
solvent-solute interface. The advantage of such a Lagrangian
approach is that it evolves only a two-dimensional surface.
The Lagrangian approach encounters difficulties in handling
topological changes, such as surface breaking or merging,
which commonly occur in biomolecular surface constructions
and molecular dynamics applications. However, one can over-
come these obstacles by using the Eulerian formulation,40–43

in which the surface is embedded into a higher dimensional
space as a level set of higher dimensional surface. Then the
topological changes can be easily handled.

B. Governing equations in Lagrangian
and Euler formulations

In the Lagrangian formulation, the potential driven geo-
metric flow equation of the solvent-solute interface is given
by Eq. (2). The total free energy is known to be decreasing
when the surface is evolved by (2) (Ref. 46) and the steady
state solution of Eq. (2) yields a solvent-solute interface with
Wn = 0.

In the Eulerian formulation, the interfacial surface is em-
bedded in a hypersurface and the latter is evolved under pre-
scribed driving forces. Consider a hypersurface function S(r)
with r ∈ R3. Then the desired surface can be represented as a
set of points with a constant value of function S,

� = {r|S(r) = L}, (3)

where L is an isosurface value. On an isosurface, ∇S vanishes
along two tangential directions. Thus, the normal direction at
r is given as

N = ∇S

‖∇S‖ . (4)

Moreover, the explicit form of mean curvature can be ob-
tained according to the equality 2H = ∇ · N,

H = 1

2
∇ ·

( ∇S

‖∇S‖
)

. (5)

By the Chain Rule

∂S

∂t
= ∂S

∂X
· ∂X

∂t
= ∇S · ∂X

∂t
= −Wn∇S · N. (6)

Substituting from (4), one has

∂S

∂t
= −‖∇S‖Wn = ‖∇S‖[2γH − p + ρsU

vdW]. (7)

Finally, by using (5), we arrive at the Eulerian form of the pro-
posed potential driven geometric flow equation for the solute-
solvent interface

∂S

∂t
= ‖∇S‖

[
γ∇ ·

( ∇S

‖∇S‖
)

− p + ρsU
vdW

]
. (8)

The vdW potential UvdW is computed pairwise for
each atom U vdW(r) = ∑

i V
vdW
i (r), where V vdW

i (|r − ri |)
= εi[(

σi+σs

|r−ri | )
12 − 2( σi+σs

|r−ri | )
6] is the standard 12-6 Lennard-

Jones potential for the ith particle of the solute at ri and the
solvent at position r. Here, σ s represents the solvent radius, σ i

is the radius of the ith particle of the solute, and εi the well-
depth. In this work, V vdW

i (r) is taken as the attractive part
of the Lennard-Jones potential according to the Weeks-
Chandler-Anderson (WCA) theory.45, 46, 54 σ i is taken as
the solute atomic radius and σ s is fixed to be 0.65 Å
as a calibrated solvent radius.51 To determine all the well-
depth parameters in UvdW, we assume that the Lennard-Jones
potential is a constant when sampling on the vdW surface of
the ith atom.45, 46 Therefore, we set V vdW

i (σi) = εi[(
σi+σs

σi
)12

− 2( σi+σs

σi
)6] = V vdW

1 (σ1). The atom-dependent well depth pa-

rameters εi are determined if V vdW
1 (σ1), which is used as a

fitting parameter, is known. In general, each V vdW
i (σi) should

admit a different value for each type of atom, however, we
feel that the loss of generality in taking them equal is small
while computational savings are great.

The computation of the proposed nonpolar solvation
model is carried out in two steps. At the first step, the potential
driven geometric flow equation (7) is numerically solved by
using the finite difference method. A brief description of this
solution procedure is given here, and we refer to our earlier
works42, 45 for more details. We first rewrite equation (8) as

∂S

∂t ′
=

√
1 + ‖∇S‖2

[
∇ ·

(
∇S√

1 + ‖∇S‖2

)
− p

γ
+ ρs

γ
U vdW

]
,

(9)

where t′ = tγ . Two modifications have been conducted.
First, to avoid a vanishing value in the denominator, ‖∇S‖
is replaced by

√
1 + ‖∇S‖2. Such a replacement will not

affect the optimized solvent-solute interface, because ‖∇S‖2

is much larger than one near the interface. Second, the
temporal variable is scaled by γ . We note that the free
parameters of this equation are essentially the surface tension
γ , hydrodynamic pressure constant p, and solvent density ρs.

Consider a macromolecule with total Na number of
atoms. All geometric structures of compounds consid-
ered in this work are taken from the pubchem web
(http://pubchem.ncbi.nlm.nih.gov). vdW radii are set as
1.87 Å, which is ZAP-9 radius,55 for the carbon atom and
1.10 Å for the hydrogen atom. We denote the center and ra-
dius of the ith atom to be ri = (xi, yi, zi) and ri, respectively,
for i = 1, 2, . . . , Na. We then define the domain enclosed
by the solvent accessible surface to be D = ⋃Na

i=1{r : |r − ri |

http://pubchem.ncbi.nlm.nih.gov
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< ri + rp}, where rp is the probe radius. For the initial value
of S, we consider an indicator function

S(x, y, z, 0) =
{

S0, (x, y, z) ∈ D

0, otherwise
, (10)

where S0 = 1000. The explicit Euler method and the second-
order central difference scheme are used for temporal and spa-
tial discretization, respectively. We only numerically update
the values of S(x, y, z, t) at the points in between the vdW sur-
face and solvent accessible surface, i.e., (x, y, z) ∈ ⋃Na

i=1{r :
ri < |r − ri | < (ri + rp)}. This is for the purpose of protect-
ing the van der Waals surface and making the computation
more efficient. After the steady state solution is numerically
reached, the solvent-solute interface � can be represented as a
set of points with a constant value of function S, � = {r|S(r)
= L}. Here, the isosurface value is chosen to be L = S0

2 .
In the second step, we calculate the nonpolar solvation

free energy based on the solvent-solute interface �. For this
purpose, we need to compute surface integrals and volume
integrals over the solute domain �m, which are defined orig-
inally in the Lagrangian formulation. However, the hyper-
surface function S is defined on a three-dimensional (3D)
Cartesian grid in the Eulerian formulation. Consequently, the
isosurface � is also represented based on the 3D Cartesian
grid. Therefore, great care has to be exercised when calculat-
ing these integrals.

C. Surface extraction

A stand-alone algorithm based on the marching cubes
method56 is constructed. Consider a grid point (xi, yj, zk) on
the 3D Cartesian grid and denote Si, j, k = S(xi, yj, zk). We
first compute a normal vector n = (nx, ny, nz), according to S
values nearby,

nx(xi, yj , zk) = Si+1,j,k − Si−1,j,k

2	x
,

ny(xi, yj , zk) = Si,j+1,k − Si,j−1,k

2	y
, (11)

nz(xi, yj , zk) = Si,j,k+1 − Si,j,k−1

2	z
.

The surface integral of a density function f can be approx-
imated by57∫

�

f (x, y, z)dσ =
∫

�

f (x, y, z)δ(d)dr

≈
∑
i,j,k

f (xi, yj , zk)δ̃i,j,kh
3, (12)

where δ(d) is a delta function and d is distance of a point (x,
y, z) defined in � from the interface �. By means of the delta
function, the surface integral becomes a volume integral in
the entire domain, and the latter is numerically approximated
based on discrete function values f(xi, yj, zk) and a 3D discrete
delta function δ̃i,j,k . Here, for simplicity, we assume a uni-
form mesh size h along x, y and z directions. Generalization
to a nonuniform mesh is possible. Following Smereka, the 3D

discrete delta function δ̃i,j,k is taken to be

δ̃i,j,k = δ̃
(+x)
i,j,k + δ̃

(−x)
i,j,k + δ̃

(+y)
i,j,k + δ̃

(−y)
i,j,k + δ̃

(+z)
i,j,k + δ̃

(−z)
i,j,k,

(13)

where δ̃
(±α)
i,j,k , (α = x, y, z) are 1D discrete delta functions.57

For a node (xi, yj, zk), these six 1D delta functions are never
present simultaneously. For a reasonable mesh resolution, at
most three of them could be seen.

We restrict our following discussions from one side of
interface, say inside the interface. Consider all grid points
which are either on the interface, or are inside the interface
but whose distance away from the interface is less than h. De-
note the set of such grid points to be I. To carry out integration
exactly on the interface, we use the following discrete surface
integration formula:57

∫
�

f (x, y, z)dσ ≈
∑

(i,j,k)∈I

(
f (xo, yj , zk)

|nx |
h

+ f (xi, yo, zk)
|ny |
h

+ f (xi, yj , zo)
|nz|
h

)
h3,

(14)

where (xo, yj, zk) is the intersecting point of the interface and
the x meshline that passes through (i, j, k), and nx is the x
component of the unit normal vector at (xo, yj, zk). Similar
relations exist between (xi, yo, zk) and ny, and (xi, yj, zo) and nz.
The interface locations and normal directions are calculated
by linear interpolation. For instant, if (xi, yj, zk) ∈ I and (xi+1,
yj, zk) is outside the interface, we calculate a scaled distance
from the interface to be

d = Si,j,k − L

Si,j,k − Si+1,j,k

. (15)

Then the function value and the normal direction can be com-
puted as

f (xo, yj , zk)= (1−d)f (xi, yj , zk) + df (xi+1, yj , zk),
(16)

no = (1−d)n(xi, yj , zk) + dn(xi+1, yj , zk).

The unit normal No at the intersecting point can be easily
computed as No = no

‖no‖ , whose x component is nx in (14).
Other terms in (14) can be similarly approximated.

The surface area can be calculated by setting f = 1 in
Eq. (14). The error of the surface integration depends on the
grid resolution and was observed to be approximately second-
order in h.57 The volume integral of the density function f can
be simply approximated by57

∫
�m

f (x, y, z)dr ≈
⎛
⎝ ∑

(i,j,k)∈J1

f (xi, yj , zk)

+ 1

2

∑
(i,j,k)∈J2

f (xi, yj , zk)

⎞
⎠ h3, (17)

where J1 is the set of grid points inside/on the surface, and
J2 contains the points outside the surface while adjacent to at
least one point belonging to J1.
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TABLE I. Decomposition analysis for the calibration set of 11 alkanes. Comparisons between our variational approach and the explicit solvent model in
Ref. 4 with respect to repulsive and attractive parts and total solvation free energies are conducted. The error in total free energy is calculated according to the
experimental data.58

Rep. part (kcal/mol) Att. part (kcal/mol) Total (kcal/mol) Error (kcal/mol)

Compound Present Explicit Present Explicit Present Explicit Present Explicit

Methane 4.71 5.72 − 2.73 − 3.31 1.98 2.41 − 0.02 0.41
Ethane 6.65 8.07 − 4.75 − 5.44 1.90 2.63 0.07 0.80
Butane 10.30 10.10 − 8.18 − 7.21 2.12 2.89 0.04 0.81
Propane 8.50 12.19 − 6.45 − 8.98 2.04 3.21 0.08 1.25
Pentane 12.19 14.22 − 9.82 − 10.77 2.37 3.45 0.04 1.12
Hexane 14.03 16.17 − 11.54 − 12.38 2.50 3.78 0.01 1.30
Isobutane 10.14 11.91 − 7.97 − 8.88 2.16 3.03 − 0.36 0.51
2-methylbutane 11.73 13.64 − 9.35 − 10.13 2.38 3.51 0.00 1.13
Neopentane 11.81 13.62 − 9.20 − 10.39 2.61 3.23 0.11 0.73
Cyclopentane 10.60 12.79 − 9.43 − 9.99 1.17 2.80 − 0.03 1.60
Cyclohexane 12.05 14.00 − 10.78 − 11.66 1.27 2.34 0.04 1.11

D. Iteration procedure

Essentially, the model involves three optimization param-
eters: the surface tension γ , hydrodynamic pressure p and
the Lennard-Jones potential parameter V vdW

1 (σ1). An iterative
procedure is used to optimize three model parameters γ , p,
and V vdW

1 (σ1):

(1) Choose a trial set of molecules with given atomic co-
ordinates, radii, and experimental data of solvation free
energies. For each molecule, take an initial set of param-
eters γ , p, and V vdW

1 (σ1).
(2) For jth molecule, solve Eq. (2) to a steady state to com-

pute surface area, molecular volume, and solvation free
energy G

j
np.

(3) Set up a target function

T
(
γ, p, V vdW

1 (σ1)
) =

∑
j

(
Gj

np − Gj,exp
np

)2
,

where G
j,exp
np are experimental data of solvation free

energies.
(4) Parameters p, γ , and V vdW

1 (σ1) are updated by resolv-
ing a least-squares problem to determine non-negative
parameters. The iterative procedure continues until the
target function T reaches within a pre-set tolerance for
the above three parameters.

Numerically, we have found that the above iterative procedure
is not sensitive to the initial values of γ , p, and V vdW

1 (σ1).
The same procedure can be applied to allow each V vdW

i (σi) to
vary independently, which may offer better results. However,
it would require a large training set to determine many extra
parameters in the nonpolar model.

III. RESULTS AND DISCUSSIONS

We validate the proposed nonpolar variational approach
by conducting both numerical calibration and prediction stud-
ies for 11 alkanes, see Table I. All geometric structures of
compounds considered in this work are taken from the pub-
chem web (http://pubchem.ncbi.nlm.nih.gov). The solvent
density is set to ρs = 0.033428 Å−3.51 The potential driven

geometric flow equation is numerically solved by using the
explicit Euler method for time and the second-order central
finite difference scheme for space. In all calculations, we
choose a uniform grid spacing h = 0.25 Å in all Cartesian
directions and a time stepping τ = h2/4.5. Based on the re-
sulting surface �, the solvation free energy Gnp can finally be
determined by calculating volume and surface integrals ac-
cording to (1).

Based on different initial values, the optimized fit-
ting parameters for alkanes are consistently found to be
γ = 0.0806 kcal/(mol Å2), p = 0.0191 kcal/(mol Å3),
and V vdW

1 (σ1) = 11.272 kcal/mol. Note that when V vdW
1 (σ1)

= 11.272 kcal/mol the depth of potential well εH of hydrogen
is 0.046 kcal/mol, which is of the same order of magnitude as
that used in the literature.59, 60

In the calculation of alkenes, we take parameters p and
V vdW

1 (σ1) values from the alkane calculation by assuming the
same solvent behavior. Therefore, only the surface tension γ

is regarded as a global fitting parameter here. The parameter
optimization based on seven alkene compounds converges to
γ = 0.0775 kcal/(mol Å2).

An example plot of the surface evolution for a nonpolar
compound is illustrated in Fig. 1. It is seen that the final sur-
face is smooth and free of geometric singularity.

The solvent-solute dispersion term is crucial in the
present nonpolar model. The Lennard-Jones potential accord-
ing to the WCA theory46, 54 is used for the vdW potential. In
Fig. 2, vdW potentials U vdW(r) are plotted on the final sur-
faces for three nonpolar compounds. Clearly, surface vdW po-
tentials differ much from surface electrostatic potentials com-
puted by the Poisson model.

FIG. 1. The schematic plot of the surface evolution of a nonpolar compound
(2,2,4-trimethylpentane) with respect to the time.

http://pubchem.ncbi.nlm.nih.gov
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FIG. 2. The final isosurfaces of four nonpolar compounds projected with the
corresponding vdW potential. Involved compounds are 1,1-diethoxyethane,
bis-2-chloroethyl ether and dimethoxymethane, from left to right.

To benchmark our model, we consider nonpolar
molecules which have high quality experimental data of sol-
vation free energies. We first consider a calibration study of
alkane compounds. A set of 11 small alkane compounds is
chosen which includes linear, branched, and cyclic apolar
compounds so that subtle differences are expected in the sol-
vation free energy for the compounds with the same molecular
formula. This test set has been frequently used in the litera-
ture for the hydrophobic solute test4, 51 because experimental
data is available.58 Moreover, the work of Gallicchio et al.4

already gave a detailed decomposition of hydrophobic free
energies into attractive and repulsive components by using an
explicit solvent model and an OPLS all-atom force field. This
allows a detailed comparison of our variational approach with
other computational models. Using the optimized parameters,
the results of 11 alkane compounds obtained from the present
variational approach are shown in top section of Table II. It is
evident that our model reproduces the total solvation free en-
ergies of 11 alkanes very well. The present model accurately
catches the subtle differences between linear, branched, and
cyclic apolar compounds. The root mean square (RMS) error
is found to be as small as 0.12 kcal/mol.

For a comparison, the results reported by Gallicchio
et al.4 and Wagoner and Baker51 are also depicted in Fig. 3.
Clearly, their models overestimate the solvation free ener-
gies of 11 alkane compounds. What is considered as a dif-
ficult task is the prediction of the check mark shape of
the solvation free energies of the first six alkanes, i.e., a
drop of the solvation free energy at ethane C2H6 before
a monotonic increase of the solvation free energies as the
alkanes increase in mass. It is noteworthy that the present

TABLE II. Numerical and experimental total solvation free energies for 30 alkane compounds. The numerical energy is the sum of the repulsive part and
attractive part. The free parameters are chosen as γ = 0.0806 kcal/(mol Å2), p = 0.0191 kcal/(mol Å3), and V vdW

1 (σ1) = 11.272 kcal/mol.

(kcal/mol)
Area Volume

Compound (Å2) (Å3) Rep. part Att. part Numerical Experimentala

Methane 50.78 32.27 4.71 − 2.73 1.98 2.00
Ethane 70.62 50.44 6.65 − 4.75 1.90 1.83
Propane 89.18 68.75 8.50 − 6.45 2.04 1.96
Butane 107.30 86.75 10.30 − 8.18 2.12 2.08
Pentane 126.49 105.01 12.19 − 9.82 2.37 2.33
Hexane 144.94 123.23 14.03 − 11.54 2.50 2.49
Isobutane 105.28 86.70 10.14 − 7.97 2.16 2.52
2-methylbutane 120.68 104.89 11.73 − 9.35 2.38 2.38
Neopentane 121.83 104.48 11.81 − 9.20 2.61 2.50
Cyclopentane 109.70 92.55 10.60 − 9.43 1.17 1.20
Cyclohexane 123.64 109.69 12.05 − 10.78 1.27 1.23
RMS of calibration set 0.12

Octane 181.89 159.30 17.70 − 14.94 2.77 2.89
Heptane 163.14 141.27 15.85 − 13.22 2.63 2.62
Nonane 200.46 177.25 19.54 − 16.59 2.95 3.14
Decane 218.96 195.28 21.38 − 18.41 2.97 3.16
2-methylpentane 140.98 123.52 13.72 − 11.13 2.59 2.52
3-methylpropane 139.79 123.33 13.62 − 11.01 2.61 2.51
3-methylhexane 157.13 141.47 15.37 − 12.48 2.89 2.71
2-methylhexane 157.84 140.78 15.41 − 12.72 2.69 2.93
3-methylpentane 139.79 123.33 13.62 − 11.01 2.61 2.51
224-trimethylpentane 165.05 157.86 16.32 − 13.20 3.12 2.87
22-dimethylbutane 136.64 123.47 13.37 − 10.54 2.83 2.57
24-dimethylpentane 150.90 139.16 14.82 − 12.13 2.70 2.87
22-dimethylpentane 155.61 140.95 15.23 − 12.28 2.96 2.88
23-dimethylpentane 153.36 141.02 15.05 − 12.10 2.96 2.52
Cyclopropane 81.50 62.11 7.76 − 6.38 1.38 0.75
Cycloheptane 137.19 127.16 13.49 − 12.10 1.39 0.80
Cyclooctane 150.46 144.47 14.89 − 13.28 1.61 0.86
Methylcyclopentane 126.98 110.56 12.35 − 10.91 1.44 1.60
Methylcyclohexane 140.72 127.39 13.78 − 12.20 1.57 1.61
RMS of prediction set 0.31

aReference 58.
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FIG. 3. Comparison of model predictions and experimental data58 of solva-
tion free energies of six alkanesmethane, ethane, propane, butane, pentane,
and hexane. Solid lines are for experimental data. Stars are for the numerical
data obtained by the present variational approach. Squares are for the numer-
ical data reported in Ref. 51. Circles are for the numerical data reported in
Ref. 4.

variational approach correctly captures the check mark
shape.

The repulsive and attractive parts of solvation free en-
ergies can be calculated separately in the present model.
Such solvation decomposition results are also listed in
Table II. A comparison of the energies between the present
variational approach and the explicit solvent model in
Ref. 4 is given in Fig. 4. The present studies indicate that our
variational approach performs better than an explicit solvent
model4 in predicting the total solvation energy.

FIG. 4. Comparison of model predictions and experimental data58 of solva-
tion free energies of eleven alkanes. Solid lines are for experimental data.
Stars are for the numerical data obtained by the present variational approach.
Squares are for the numerical data reported in Ref. 51. Circles are for the
numerical data reported in Ref. 4.

FIG. 5. Comparison of model predictions and experimental data of solvation
free energies of nineteen alkanes.

Having demonstrated the accuracy and reliability of our
variational approach, we next conduct a predictive study of
19 other alkane compounds. This test set includes linear,
branched, and cyclic apolar compounds. The same optimized
parameters and computational procedure used for the above
mentioned 11 alkane molecules are employed. Results are
shown in the bottom section of Table II, in which the repulsive
and attractive decomposition is demonstrated as well. Our
variational approach reproduces experimental results very
well. The RMS error is 0.31 kcal/mol. Excellent agreement
can be clearly seen in Fig. 5.

To further demonstrate the accuracy and reliability of
the proposed variational approach, we finally consider cali-
bration and prediction studies for a different type of apolar
molecules, namely, alkenes. We employ a set of 11 alkene

FIG. 6. Comparison of model predictions and experimental data58 of solva-
tion free energies of eleven alkenes. In all charts, solid lines are for experi-
mental data. Stars are for the numerical data obtained by the present varia-
tional approach. Diamonds are for the numerical data reported in Ref. 61.
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TABLE III. Numerical and experimental total solvation free energies for 11 alkenes. The numerical energy is the sum of the repulsive part and attractive part.
The free parameters are chosen as γ = 0.0775 kcal/(mol Å2), p = 0.0192 kcal/(mol Å3), and V vdW

1 (σ1) = 11.272 kcal/mol.

(kcal/mol)
Area Volume

Compound (Å2) (Å3) Rep. part Att. part Numerical Experimentala

3-methyl-1-butene 121.37 101.51 11.34 − 9.63 1.71 1.82
1-butene 103.99 83.30 9.65 − 8.16 1.49 1.38
Ethene 66.70 46.94 6.07 − 4.69 1.37 1.27
1-heptene 160.72 137.95 15.09 − 13.33 1.76 1.66
1-hexene 141.46 119.22 13.24 − 11.61 1.63 1.68
1-nonene 197.53 173.23 18.62 − 16.82 1.79 2.06
2-methyl-2-butene 120.55 101.33 11.28 − 9.65 1.63 1.31
RMS of calibration set 0.177

1-octene 179.23 156.17 16.87 − 15.00 1.87 2.17
1-pentene 122.52 100.86 11.42 − 9.91 1.51 1.66
1-propene 85.59 65.55 7.89 − 6.49 1.39 1.27
Trans-2-heptene 160.84 137.00 15.08 − 13.43 1.65 1.66
RMS of prediction set 0.180

aReferences 58 and 61.

compounds which have been studied by Ratkova et al.61 us-
ing integral equation techniques. In the present study, we ran-
domly choose a set of seven alkene compounds to train our
model parameters, and then use them for the predictive study
of the remaining four alkene molecules. Solvation free en-
ergies of 11 alkene compounds are shown in Table III. The
RMS errors for the calibration set and the prediction set are
found to be, respectively, 0.177 kcal/mol and 0.180 kcal/mol.
These RMS errors are significantly better than that reported in
Ref. 61, which is about 0.462 kcal/mol, obtained by using
the integral equation approach. This finding can be observed
clearly from Fig. 6. In general, the present variational ap-
proach is simpler in theory and easier to implement than the
integral equation approach.61

IV. CONCLUSION

In conclusion, this work provides a differential geometry
based variational approach to improve the solvent-solute in-
terface description in implicit solvent theory. This variational
model offers increased accuracy and reliability in solvation
free energy prediction, indicating the power of differential ge-
ometric methods for the analysis of solvation free energies.
An implication of the present result is that the differential ge-
ometry based definition of solvent-solute boundaries is per-
haps sufficient for solvation free energy predictions, although
generalized correlations50 are needed in order to reproduce
correct solvent microstructures.
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