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Abstract
A novel protein identification framework, PILOT_PROTEIN, has been developed to construct a
comprehensive list of all unmodified proteins that are present in a living sample. It uses the
peptide identification results from the PILOT_SEQUEL algorithm to initially determine all
unmodified proteins within the sample. Using a rigorous biclustering approach that groups
incorrect peptide sequences with other homologous sequences, the number of false positives
reported is minimized. A sequence tag procedure is then incorporated along with the untargeted
PTM identification algorithm, PILOT_PTM, to determine a list of all modification types and sites
for each protein. The unmodified protein identification algorithm, PILOT_PROTEIN, is compared
to the methods SEQUEST, InsPecT, X!Tandem, VEMS, and ProteinProspector using both
prepared protein samples and a more complex chromatin digest. The algorithm demonstrates
superior protein identification accuracy with a lower false positive rate. All materials are freely
available to the scientific community at http://pumpd.princeton.edu.

Introduction
Tandem mass spectrometry (MS/MS) has emerged as the premier tool for protein
identification of cellular samples.1,2 Most large scale studies currently use a shotgun
proteomics approach, where proteins are extracted from a living sample, enzymatically
digested, and fractionated.3 The peptides are then fragmented using MS/MS and then
typically analyzed using either database4–14 or hybrid de novo/database methods.15–24 There
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is currently no automated high-throughput pure de novo approach for protein identification
in the literature. Protein identifications can then be inferred based on the individual peptide
sequences. This final protein list reported by an algorithm is the prime objective of a large-
scale proteomics experiment, so it is imperative that the methods used to generate the list
can predict a high number of correct protein identifications with a low number of false
positives.3,25

As large-scale cellular samples have a diverse population of proteins, it is difficult to
quantify the protein identification accuracy of an algorithm exclusively by the total number
of correct protein “hits”. The false-discovery rate (FDR) has been used as an additional
metric for the quality of a protein identification list. Statistical methods based on parametric
distributions,26 hierarchical modeling,27,28 cumulative scoring,29 or target-decoy strategies30

have been developed to use the evidence for peptide identifications for computing protein
identification probabilities. The FDR for protein identification is typically higher than that
for peptide identification since any errors in peptide identification will propagate to the
protein level. For example, false identifications of proteins are typically the result of the
annotation of a single incorrect peptide while correctly identified proteins are often labeled
on the basis of many peptides. Though many instruments are available for MS/MS analysis,
the most accurate measurements come from using high-resolution detector types including
time-of-flight, Orbitrap, and ion cyclotron resonance. The high accuracy of these
instruments can yield better peptide and protein identification and can help reduce the
number of false positive results reported.

Though these methods can provide very reasonable assessments for the protein identification
FDR of a particular tool, it is not possible to exactly quantify the number of false positives
reported for a large-scale sample. That is, due to the unknown size and types of proteins that
are in a typical shotgun proteomics experiment, the number of “true” proteins cannot be
identified. To address this issue, a standard protein mixture31 can be developed where the
protein list is known a priori. Using such a mixture, the number of protein “hits” can be
quantified based solely on the proteins used to construct the sample and any common
contaminants that are found throughout the samples. Though such a protein mixture may
have an order of magnitude less proteins than a typical cellular sample, it can provide
critical insight and serve as a test bed for the predictive capability of an algorithm on both
the peptide and protein level.

Determination of an accurate protein list is also crucial for the identification of post-
translational modifications (PTMs). Several algorithms have been developed for sample
analysis that are capable of protein identification and post-translational modification (PTM)
search.4–7,9–17,20–24,32–41 Typically, an initial analysis of cellular data will have a limited
number of variable PTMs due to the exponential increase in database search time that result
in enumeration of all combinations of modified peptides. This is typically resolved by
implementing a two-pass approach33,42,43 where the database is initially scanned either with
no modifications or a small subset of variable modifications to eliminate proteins that did
not score above a given threshold (based on the peptide hits). In the second pass, the protein
list found from the first search can be used in an untargeted search that contains a larger
variety of variable modifications or other unusual digestion/fragmentation information. The
inaccuracies in the protein list from the first pass may transfer to the second pass if a peptide
from an incorrect protein is used to identify potential PTMs.

In this paper, a complete proteomics workflow method (Figure 1a) is introduced to identify a
comprehensive list of unmodified and modified proteins using high-resolution MS/MS. LC-
MS/MS data is initially analyzed using the PILOT44,45 algorithm to find a rank-ordered list
of unmodified de novo peptide sequences. These sequences are subsequently analyzed using
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PILOT_SEQUEL46 to find unmodified database peptides that closely match the de novo
sequences. A novel protein identification method, PILOT_PROTEIN, has been developed to
predict a comprehensive list of unmodified proteins (Figure 1b) from the peptide list
generated by PILOT_SEQUEL. PILOT_PROTEIN combines the scores of the de novo
sequences and the database peptides to score all of the possible proteins and outputs an
unmodified protein list with a minimal number of false positives. Using this output
unmodified protein list, the PILOT_PTM47 algorithm will perform a second pass over the
LC-MS/MS data and perform an untargeted PTM search and identify any modification types
and sites that are present on a sample protein (Figure 1c). The final result will be a
comprehensive protein list that contains the types and sites of all modifications present in
the data. The novel aspects of this work include (i) the development of a unmodified protein
identification algorithm that produces a competitive number of protein “hits” with respect to
state-of-the-art algorithms, (ii) the utilization of a rigorous biclustering algorithm to identify
peptide homologues that are incorrectly labeled and therefore reduce the false positive
output, (iii) the generation of template amino acid sequences from the unmodified protein
list that can serve as good inputs so the PILOT_PTM algorithm can identify a good list of
modified spectra, and (iv) the development of a completely integrated webtool
(http://pumpd.princeton.edu) that allows free access to the PILOT, PILOT_SEQUEL,
PILOT_PROTEIN, and PILOT_PTM algorithms for identification of all sample proteins
along with all corresponding types and sites of PTMs.

Methods
PILOT_PROTEIN Algorithm for Unmodified Protein Identification

The framework for PILOT_PROTEIN consists of three distinct stages (Figure 1b). The input
to the algorithm is a complete list of proteins, each of which is assigned a rank-ordered list
of peptides from the PILOT_SEQUEL algorithm. The first stage scores all proteins in the
current protein list. Scoring of each protein uses the individual scores of each rank-one
peptide that is found within the protein. Bias toward redundant sequences is reduced by
considering only the top score for a given peptide sequence. The top scoring protein is
retained and is annotated with all corresponding peptides. The second stage analyzes all
remaining proteins to filter out any spectra that may contain a rank-two or higher peptide
that can be associated with the protein found in stage one. Any proteins that no longer have
a peptide are removed from consideration while all others are analyzed using stage one. This
iterative procedure continues until no proteins remain. The third stage of PILOT_PROTEIN
consists of a peptide clustering approach using OREO.48,49 Using the Smith-Waterman50

alignment score as a distance metric, all peptides within the filtered protein list are clustered
together to identify any homologous sequences that have sequence mass differences within
the parent mass tolerance. This stage of the algorithm helps to identify sequences that are
incorrectly annotated and would otherwise lead to a lower protein identification specificity.
The algorithm is described in full detail below.

Input/Output—Input to the PILOT_PROTEIN algorithm consists of a list of MS/MS
spectra, each of which has been analyzed with the hybrid de novo/database method
PILOT_SEQUEL. From PILOT_SEQUEL, each MS/MS spectrum is assigned a list of
scored peptides that are directly derived from a protein database. Each peptide corresponds
to a list of all proteins in the database that contain the amino acid sequence as an
enzymatically cleaved peptide. The output to the user is a rank-ordered list of scored
proteins with each protein containing (i) the peptide score, (ii) a list of peptides found, and
(iii) a list of MS/MS spectra that contain the peptides.
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Stage 1: Protein Scoring—Initially given is a set of MS/MS spectra (t ∈ MSMS), each

of which will have a rank-ordered list of peptides p ∈ Pept with a score . Each peptide p
is a theoretically digested sequence from a list of proteins r ∈ Prp. The complete list of
peptides for analysis is given by Equation (1).

(1)

Using this peptide list, the complete list of proteins for analysis is then defined as in
Equation (2).

(2)

Using the complete protein list ProtList, all proteins are scored using their corresponding
peptides (p ∈ Pror) as shown in Equation (3). Bias toward redundant sequences is reduced
by considering only the top score for a given peptide sequence (Eqn. 4).

(3)

(4)

The protein rk in ProtList with the highest score  is removed from the set and added to the
filtered protein list FilProt.

Stage 2: Peptide Filtering—A given MS/MS scan t is annotated if t contains at least one

peptide p with score greater than a threshold ( ) that is part of the protein’s
theoretical peptide list (p ∈ Prork). The threshold value is representative of a
PILOT_SEQUEL peptide that is a direct match to a de novo sequence without the potential
rewards of high-confidence residues.46 The value is defined as the score for which a 2%
FDR is achieved for the LC-MS/MS data set. If possible, the scan t is annotated with the
highest-scoring peptide. All annotated spectra are removed from the set MSMS and added to
the set FilMSMS. If there are no MS/MS spectra remaining in the set MSMS, then the
protein filtering terminates. Otherwise, the stage 1 process is repeated beginning at Equation
(1).

If multiple proteins match a single peptide, this peptide will be annotated to the protein that
has the strongest set (i.e., highest scoring) of additional peptides in the data. This is a
consequence of the scoring methodology of the algorithm since the method (i) scores all
proteins using any peptide information, (ii) retains the highest scoring protein, and finally
(iii) removes all peptides from consideration that are associated with the protein found in
(ii). This three stage process repeats itself until the number of remaining peptides is equal to
zero. If during part (ii), any two (or more) proteins have the exact same list of supporting
peptides (either one or more peptides), all proteins in this list are considered as equally valid
and are reported to the user as a valid “match”. Note that without further peptide
information, it is not possible to distinguish between the proper annotation of any one of
these proteins.

Baliban et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2013 September 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Stage 3: Sequence Based Clustering—Once the unmodified protein list (FilProt) has
been filtered and scored, an analysis of the low-rank proteins can help to eliminate false
positives. Many of the incorrectly annotated proteins will be associated with peptides that
are only found once or twice within the full LC-MS/MS scan. Therefore, it is critical that
any peptides with low spectral counts be further analyzed to validate the assignment. The
PILOT_PROTEIN algorithm uses the biclustering method OREO48,49 to group together
peptides that have sequence similarity and identify potential homologues for peptide
sequences. The mathematical model for biclustering is detailed below.

Scoring Matrix: To score a pair of distinct peptides, a FASTA alignment matrix is
traditionally used.46 Matrices based upon evolutionary distances between amino acids are
not used because conservation of mass between the peptide sequences is very important.
Specifically, for two peptides to be considered as homologues, they must not differ by more
than twice the threshold tolerance for the parent mass. This criterion is imposed because the
difference between the actual parent mass and the experimental parent mass can be at most
the threshold parent error tolerance for any peptide. Thus, if two peptides differ by more
than twice the threshold tolerance, then it is not possible to re-assign either of the peptides to
the alternate spectrum. Additionally, it is anticipated that an incorrectly annotated peptide
will have a sequence that is very similar to another sequence that was annotated in the LC-
MS/MS analysis or that is a theoretically digested peptide of a high-rank protein but not
found in a MS/MS spectrum annotation. Thus, a scoring matrix is used that rewards exact
residue matches with a score of +5 and penalized incorrect matches with a score of −5.
Leucine and isoleucine matches are given a score of +5 and lysine/glutamine matches are
given a score of +5 if the fragment ion tolerance is greater than 0.03 Da. These scoring
values have been chosen based on successful application of the PILOT_SEQUEL algorithm
on high resolution test data sets.46

Isobaric Residues: It is important to consider the treatment of isobaric residues during the
alignment procedure. Isobaric residues can exist on either of two compared peptide
sequences, and are generally present due to incorrect de novo sequence predictions. This can
possibly reduce the overall alignment score between two peptides and prevent the
identification of a homologous pair. To compensate, the Smith-Waterman50 alignment
routine in the FASTA algorithm is altered to replace the penalty for sequence mismatch and
gap insertion with a reward (i.e., +5) for isobaric alignment.

Biclustering Mathematical Model: The complete mathematical model for biclustering
utilizes an input matrix of values to identify cluster boundaries within a re-ordered
matrix.48,49 However, PILOT_PROTEIN uses an input vector of peptides for cluster
determination, so a reduced form of the model is required. A full description of re-ordering
over a matrix is presented elsewhere.48,49

All distinct peptide sequences are sorted by increasing total mass and several vectors are
created. The mass-sorted array is decomposed into smaller vectors at every point where two
adjacent peptide sequences have total masses that differ by more than twice the parent mass
tolerance. All vectors that contain low-confidence sequences are then analyzed with the
biclustering model to identify any homologous high-scoring peptides. For a given vector, the
index i represents a specific element in the vector whose peptide sequence is given as Si.

Binary variables (yi,i′) are defined that represent the position of the peptide sequences in the
final re-ordering of the vector.
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(5)

That is, if y3,9 is equal to one, then element 3 is immediately above element 9 in the final
arrangement of the vector. If y3,9 is equal to zero, this implies that element 3 is not
immediately above element 9 in the final ordering, but does not reveal any additional
information.48,49

The objective function maximizes the total alignment score between adjacent peptide
sequences (Eqn. 6).

(6)

Equation (6) will identify all peptides that have high sequence similarity to the query
sequence Siq. The cluster boundaries of the optimal re-ordering are found when the
normalized alignment score (Ai,i′ divided by length of sequence Si) of adjacent elements is
less than 2. The cluster of peptides containing the query sequence Siq is subsequently
analyzed to determine the validity of the query sequence.

Homology Labeling: For each low-scoring spectral assignment q, a cluster of homologous
sequences Cq is defined by OREO.48,49 The spectral assignment is considered to be invalid
if there exists another sequence q′ in the cluster that has been annotated in at least three MS/
MS spectra and at least one of those MS/MS spectra has a PILOT_SEQUEL score above a
given threshold. The threshold value is set to 6.5, which is indicative of a database peptide
that has both (i) high sequence similarity to the de novo sequence and (ii) is matched to
high-confidence de novo sequence residues.46 Beginning with the cluster sequence that has
the highest alignment score, the above criterion is checked. If the two conditions are met,
then the low-scoring sequence q is assumed to be a homologue of q′ and the MS/MS scans
annotated with sequence q are re-annotated with sequence q′. If the conditions are not met,
then this process is repeated using the sequence with the second-highest alignment score and
will iteratively proceed through the entire cluster until a homologue is found or all
sequences fail the criterion. If all sequences within the cluster fail the criterion, then the
original annotation is maintained.

As an example, Figure 2 shows the clustering approach applied to a MS/MS spectrum with
experimental parent mass 900.41 Da. The original annotation (in red) is KSTQNAPR, which
is an invalid assignment and is the only peptide assignment in the LC-MS/MS associated
with the corresponding protein. Without the clustering approach, this false-positive protein
will be output by the PILOT_PROTEIN algorithm if the minimum protein score threshold is
lower than 5.1 (the score of the sole peptide annotation). However, the clustering method
identifies several candidate peptides (in blue) with sequence similarity to the incorrect
peptide. Note that this example shows a peptide sequence (KSTGGKAPR) that has been
assigned to three distinct MS/MS spectra, and the top scoring assignment has a score of 8.4.
Thus, the clustering approach will label the KSTQNAPR assignment as a homologous
(false) annotation and re-assign the spectrum to the KSTGGKAPR sequence.

Note that the possibility of removing a peptide homologue for which a sequence differs by
only one amino acid depends on the tolerance of the parent mass error. For high resolution
instruments, this particular case should happen very infrequently since two peptides that
differ by one amino acid will generally have parent masses that are beyond the allowable
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threshold tolerance. If a lower resolution instrument is used, then it is possible that a proper
homologous peptide would be removed if the single different amino acid is similar for each
peptide (e.g., I and N). However, this analysis has been restricted to high-resolution parent
mass detectors so the only ambiguities that may arise are between I and L or between K and
Q. The authors note that the assignment of I or L is impossible for any algorithm to
distinguish and that the K/Q homology was not detected in this study.

Once the biclustering/homology labeling routine is completed for all peptides with low
spectral counts, then all proteins are re-scored using the new peptide annotations. Any
peptide that was considered a homologue is not used for protein scoring, but is still
associated with the protein as a redundant sequence. All proteins that do not pass the scoring

threshold ( ) are eliminated from consideration. This threshold
criterion directly builds off of the threshold cutoff for PILOT_SEQUEL and implies that a
protein would either require one assigned database peptide that had a good match to the de
novo sequence or else a combination of peptides would be necessary. Whenever a set of
peptides that identifies a particular protein may also correspond to another protein,
PILOT_PROTEIN will report a “protein group” for that group of peptides to allow the user
to resolve any ambiguity. All remaining peptides are output to the user.

Search for Protein Modifications using PILOT_PTM
Upon generation of all unmodified proteins in a protein sample, a targeted or untargeted
modification search can be performed. The PILOT_PTM algorithm47 will utilize the smaller
list of unmodified proteins on a second-pass of the LC-MS/MS data to determine all
modification sites and types for any peptide that is an enzymatic fragment from these
proteins. The comprehensive list of modifications used for the search is constructed using all
known PTMs, chemical derivatives, and artifacts found in the UniMod,51 RESID52 and
Delta Mass53 databases. Each modified peptide corresponding to the modified protein will
also be annotated with the modification information. PILOT_PTM will be run on every MS/
MS spectrum that is not annotated with a peptide that is assigned to a protein by
PILOT_PROTEIN. To run the PILOT_PTM algorithm, a list of test peptides must be
generated by in silico digestion of the unmodified protein list. It is assumed that any
modified peptide found in the sample must be part of an unmodified protein found from
PILOT_PROTEIN. The following sections detail the approach for test peptide generation
for PILOT_PTM.

Candidate Peptide Generation—Using the maximum number of missed cleavages, the
number of specific termini, and the digestion enzyme input by the user, the unmodified
proteins from PILOT_PROTEIN are theoretically digested to generate a “candidate peptide”
list. When analyzing a MS/MS spectrum for PTMs, the first step is to identify a three amino
acid sequence tag that will isolate one or more “test peptides” that may be found in the MS/
MS spectrum. The mathematical model for sequence tag generation is outlined below.

Sequence Tag Generation—After the MS/MS spectrum is preprocessed, there exists a
list of filtered ion peaks, (p ∈ P), each of which is associated with a given mass (Mp) and
intensity (Ip). A complete list of three amino acid sequences q is input and used to generate
appropriate sequence tags t as follows. Given a base peak pb (mass Mpb) and an amino acid
sequence q, a sequence tag t is found if there exists an end peak pe (mass Mpe) such that |
Mpe − Mpb − Mq| < tolfrag where Mq is the mass of the three amino acid sequence q. A peak
p is considered part of the sequence tag set Pt if there exists a N-terminal subsequence of q

such that  where  is the mass of the subsequence. Note that the null
subsequence and the full subsequence are considered, so pb and pe are in the set Pt.
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Complementary peaks may be added to the set Pt if they exist in P. The full set of sequence
tags is labeled as T.

Sequence Tag Scoring—Each sequence tag t is scored using the objective function in
Equation (7). The sum of the intensities of the peaks that comprise the tag (Ip) is
premultiplied by a weighting coefficient (Ct) that is generally equal to 1, but can be reduced
as follows. If the mass error between two consecutive peaks is greater than 40% of the
nominal user input fragment tolerance, then Ct is reduced by 0.2. If two consecutive peaks
represent an amino acid doublet or triplet (i.e., one or two missing peaks, respectively), then
Ct is reduced by 0.2 or 0.4, respectively.

(7)

The top 5 sequence tags are scanned against the candidate peptide list to extract out the test
peptides for the MS/MS spectrum. A candidate peptide is retained if an exact match to the
sequence tag is found within the amino acid sequence and if the mass gaps on the N-
terminal and C-terminal sections are within −50 Da and 250 Da. The mass gap limitation is
imposed to select peptides that will ultimately have a modification mass within the given
mass window. This analysis generally retains 5–10 test peptides for use as input to the
PILOT_PTM algorithm.

PILOT_PTM—All MS/MS spectra not annotated with PILOT_PROTEIN are analyzed
using PILOT_PTM47 for an untargeted PTM search (Figure 1c). All unmodified proteins
identified by PILOT_PROTEIN are theoretically digested to generate a candidate peptide
list. MS/MS spectra are analyzed for the existence of a sequence tag15 which generates a list
of test peptides, as outlined above. Each test peptide is analyzed with PILOT_PTM and the
peptide with the highest cross-correlation score is retained along with the corresponding set
of PTMs. Completion of this approach for all MS/MS spectra yields a comprehensive list of
modified and unmodified proteins, with all PTM sites, PTM types, and supporting peptides
output to a user. If the PILOT_PTM method is unable to fully resolve the particular amino
acid site for a given modification type due to incomplete fragmentation, then the method
will output a list of amino acid sites for which the modification type may exist. In the
analysis below, PILOT_PTM was able to localize the expected site for a modification for
each annotated spectrum. Though the top scoring peptide from PILOT_PTM is reported in
this manuscript, PILOT_PTM will also output a rank-ordered list of all modification sets for
a peptide47 through the use of integer cuts.54 Note that the ILP model used for the
PILOT_PTM algorithm can be formulated using network based constraints.44,45,55–59 Some
annotations that correspond to the same amino acid sequence, the same set of modifications,
and different site assignment for the modifications may be reported as a lower-rank
sequence. All such annotations are assumed to be inferior to the top-rank sequence and are
not included as part of the analysis.

Sample Preparation
Test Set A - QTOF Peptides—These spectra were derived from a publicly available data
set.60 The spectra were collected with Q-TOF2 and Q-TOF-Global mass spectrometers
using a mixture of alcohol dehydrogenase (yeast), myoglobin (horse), albumin (bovine,
BSA), and cytochrome c (horse). A test set of 37 spectra was obtained using only
“ acceptable spectra” as previously defined.44
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Test Set B - Orbitrap Peptides—Stock solutions of a 16 protein mixture were prepared
containing equal amounts of each protein as previously described.46 The proteins were
digested with trypsin and analyzed by automated microcapillary liquid chromatography and
a LTQ-Orbitrap hybrid mass spectrometer (ThermoFinnagin, San Jose, CA). Both MS and
MS/MS spectra were recorded on the instrument and a test set of 401 spectra was annotated
using the SEQUEST algorithm.4

Test Set C - Standard Protein Mix Peptides—Six 18-protein mixtures were preparted
for LC-MS/MS analysis as previously described.31 The proteins were digested with trypsin
and analyzed using either QTOF (QSTAR), LTQ-FT, or Orbitrap mass spectrometers.

Test Set D - Total Chromatin Fraction—HeLa S3 cells were cultured and harvested as
recently described.61,62 5 distinct chromatin fraction samples from the HeLa cells were
prepared using either a salt extraction, a micrococcal nuclease (MNase) digestion, or a total
extraction. The salt extraction and MNase digestion provided both a pellet and a supernatant
extraction.62 For each sample, extracted protein was separated using 1D-SDS-PAGE and in
gel digested by trypsin following treatment with iodoacetamide. Peptide digests were then
analyzed by nanoflow LC-MS/MS on an Orbitrap mass spectrometer as previously
described.63

PILOT_PROTEIN Scoring Method
PILOT_PROTEIN is benchmarked against several state-of-the-art algorithms using the
standard protein mix database (data set C) and the total chromatin fraction (data set D). Data
set C is comprised of a known mixture of 18 sample proteins, so the list of correct protein
hits is known a priori. For this data set, the accuracy of an algorithm is measured using two
metrics: (a) protein identification sensitivity and (b) protein identification specificity. The
definition of each accuracy metric for each algorithm is given below. Data set D is prepared
by extracting a chromatin fraction and will therefore contain a large amount of proteins that
cannot be comprehensively annotated a priori. Therefore, the identification accuracy of an
algorithm will be measured using a reverse sequence decoy database64 and the number of
peptide spectrum matches (PSMs) will be analyzed at various levels of false discovery rate.
A PSM is defined as the peptide-spectrum pair associated with the assignment of a peptide
sequence to a particular MS/MS spectrum. For a LC-MS/MS run, a peptide identification
algorithm can report both a list of unique peptides and a list of PSMs. The unique peptide
list gives an indication of how many distinct peptides were identified throughout the
experiment while the PSM list provides an indication of how many MS/MS spectra were
identified with a peptide. Note that the number of PSMs must be higher than the number of
unique peptides because the same peptide may be found in different MS/MS spectra.
Though a peptide sequence may be repeated in the PSM list, the peptide-spectrum pair will
be unique in the PSM list because only one peptide will be annotated for each MS/MS
spectrum. For a benchmark false discovery rate of 2%, a comparison of the number of
unique peptides, PSMs, and identified proteins will be reported for all algorithms (see Table
2 and Table 4, Figure 5 and Figure 6).

Protein Identification Sensitivity—Each LC-MS/MS run in the standard protein mix
database was derived from an 18-protein mixture. The sensitivity of a given algorithm is
defined as the total number of these 18 proteins that are output from the algorithm. When an
algorithm reports a list of homologues for a certain protein, this list will be examined for the
presence of a sample protein. If one of these proteins is found, that protein will be marked
and added to the list of correct proteins.
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Protein Identification Specificity—Along with the 18 proteins that are used to generate
the stock solutions, 15 other contaminant proteins were commonly found in the experimental
results.31 The specificity is measured using the number of predicted proteins that are not part
of either the 18 sample proteins or the 15 contaminants. When a homologue list is found, the
list is checked for either a sample protein or a contaminant. If found, no false positives are
reported for the homologue list. If not, then only one false positive is reported for the
algorithm.

PILOT_PROTEIN Parameters
The following section discusses the parameters used for each algorithm for each test set. For
all sets, a maximum of three missed cleavages and two specific termini were required.
Carbamidomethylated cysteine was used as a fixed modification while no variable
modifications were allowed. The protein database used was the NCBI non-redundant
database (Sept. 19, 2011 release; 12,679,685 entries). The complete list of taxonomies was
used for data sets A, B, and C while the homo sapiens taxonomy was used for data set D.
The set of absolute tolerance parameters for each data set are listed in Table 1. Note that the
fixed parameters used to analyze PILOT_PROTEIN (i.e., reward/penalty for sequence
matching, weighting constraints, homology labeling) were chosen by training the algorithm
on data sets A and B. The parameter values were then fixed for use in the analysis of data
sets C and D.

Results
The protein identification accuracy of PILOT_PROTEIN was initially tested on two small
data sets consisting of (a) 36 QTOF spectra from 9 proteins (data set A) and (b) 701 Orbitrap
spectra from 12 proteins (data set B).46 PILOT_PROTEIN was able to identify 100% of the
proteins from the two data sets while reporting no false positives. Further, all peptides that
were validated with SEQUEST4 were correctly assigned to each protein. To test
PILOT_PROTEIN on more comprehensive data, data set C derived from all Orbitrap,
QTOF, and LT-FTQ LC-MS/MS files in the Standard Protein Mix Database31 and data set
D derived from a chromatin extraction are utilized. The capability of the method was
benchmarked with five state-of-the-art algorithms VEMS,32 SEQUEST,4 InsPecT,,16 X!
Tandem,33 and ProteinProspector.41 The 112 LC-MS/MS files from data set C contain 18
known proteins along with 15 possible contaminant proteins while the 50 LC-MS/MS files
from data set D contain a more complex array of proteins that are associated with chromatin.
Both data sets were analyzed using the NCBI non-redundant database. The complete list of
taxonomies was used for data set C while the homo sapiens taxonomy was used for data set
D. Note that while SEQUEST was previously used to analyze the information from data set
C,31 both the database (nr vs. swissprot) and the fragment/parent tolerances are different in
this study. The peptide and protein identification results for each tested algorithm and each
LC-MS/MS run are presented as Supplementary Material.

Data Set C: Standard Protein Mix Database
The comparative results for all three instruments from data set C are shown in Figure 3.
Within each graph, the change in protein identification accuracy (sensitivity) with respect to
changing false discovery rate (specificity) is shown. The graphs are generated from a total of
112 LC-MS/MS runs. The curves can be reconstructed using the comprehensive protein list
reported by each algorithm in the Supplementary Material. For a given score cutoff value,
the resulting number of true proteins (hits) and false proteins (misses) are reported and are
used to construct the curves in Figure 3. The score cutoff for PILOT_PROTEIN is the exact
value listed in the table while the score cutoff for the other algorithms is derived using the
negative log of the protein probability (SEQUEST, VEMS, InsPecT) or expectation value
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(ProteinProspector, X!Tandem). To generate the ROC curves from protein identifications
(see Supplementary Material), the lowest protein score threshold was chosen such that no
false positives are reported. This cutoff value defines the left-hand side of each ROC curve
and represents the maximum number of proteins that can be reported with no false positives.
This cutoff score was then incrementally decreased and the number of false positives and
protein hits were reported at each iteration. The iterations were terminated when all true
protein hits that were reported by an algorithm were above the threshold score. Further
reduction of the score threshold for the algorithm will add false positives and no true hits.
Note that the protein identification rate (PIR) is defined as:

(8)

where  is the number of “true” proteins found and  is the total number of possible true
proteins (i.e., 18 times the number of LC-MS/MS runs). The false discovery rate (FDR) is
defined as:

(9)

where FP is the number of incorrect proteins (i.e., not a true protein or a known contaminant)

found and  is the total number of proteins found. For each of the three instruments
(Orbitrap, QTOF, and LTQ-FT), PILOT_PROTEIN consistently demonstrates enhanced
sensitivity (higher PIR) at each of the specificity (FDR) levels. Each of the instruments will
be discussed briefly to highlight the key findings for each set of data.

Orbitrap—The 18 proteins were repeatedly identified for the 10 Orbitrap LC-MS/MS runs,
leading to a total of 180 correct protein identifications that could be reported by each
algorithm. The right-most points for each curve in Figure 3 represent the sensitivity/
specificity when the protein score cutoff threshold is set to the minimum value such that all
correct protein hits will be reported. This gives an indication of how many possible protein
hits can be reported by a given algorithm. Note that the quantification of the protein
sensitivity (number of false positives) is representative of the minimum false positive rate
that can be expected by an algorithm if true protein hits are reported. Over all data sets,
PILOT_PROTEIN annotates the highest amount of proteins (145 hits; 80.6% PIR) correctly,
while reporting only 11 false positives (6.0% FDR). The next highest total is found by
Protein Prospector, which annotated 137 proteins correctly (76.1% PIR) with 16 false
positives (7.0% FDR). SEQUEST annotates 136 proteins (75.6% PIR) and 7 false positives
(3.4% FDR) while InsPecT annotates 135 proteins (75.0% PIR) and 11 false postivies (5.1%
FDR). X!Tandem and VEMS both report the least amount of proteins (122 hits; 67.8% PIR)
and the same amount of false positives (7 FP).

To obtain a more accurate representation of the protein specificity at a given protein
sensitivity, the PIR is analyzed for each algorithm when the FDR is set to a target level.
Note from Figure 3a that PILOT_PROTEIN maintains a higher PIR than all competing
algorithms for all target FDR levels with the exception of a small region between 3–4%
FDR. Specifically, if a maximum target level of 2.5% FDR is selected, then
PILOT_PROTEIN reports 120 protein hits (66.7% PIR) while the next highest algorithm,
SEQUEST, reports 115 protein hits (63.9% PIR). At this benchmark FDR level, X!Tandem,
Protein Prospector, InsPecT, and VEMS report protein hits of 113 (62.8% PIR), 110 (61.1%
PIR), 107 (59.4% PIR), and 106 (58.9% PIR), respectively.
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QTOF—For the 68 QTOF LC-MS/MS runs, the sensitivity vs. specificity for each protein
identification algorithm is displayed graphically in Figure 3b. PILOT_PROTEIN annotated
a total of 1090 correct proteins out of 1224 possible with a FDR of 5.4%. SEQUEST
annotated the next highest amount of proteins with 1055 true hits, though the FDR increased
to 6.1%. Protein Prospector reported the next highest total number of proteins, followed by
InsPecT, X!Tandem, and VEMS.

PILOT_PROTEIN consistently maintains a higher protein identification rate than all other
algorithms for each given false discovery rate. While the protein sensitivity for
PILOT_PROTEIN is only slightly higher than InsPecT, Protein Prospector, or SEQUEST
for higher levels of FDR (> 3%), the difference in sensitivity begins to increase as the FDR
is decreased below 3%. This is extremely important as PILOT_PROTEIN demonstrates a
significant enhancement in the true protein identification rate. Specifically, at 1.5% FDR,
PILOT_PROTEIN reports 855 true hits while the next highest algorithm, InsPecT, reports
793 true hits. The number of identified proteins for each of the additional four algorithms
decreases by at least 99 from InsPecT, with SEQUEST reporting the highest total of the
four.

LTQ-FT—For the 38 LTQ-FT LC-MS/MS runs, a total of 684 proteins could be identified,
and the resulting data is shown in Figure 3c for each algorithm. At the minimum score
cutoff, PILOT_PROTEIN identified a total of 663 proteins correctly (96.9% PIR) with 80
false positivies (7.4% FDR). Only SEQUEST was able to annotate more proteins (676 hits;
98.8% PIR), though the amount of false positives increased substantially to 237 (19.1%
FDR). InsPecT, VEMS, X!Tandem, and Protein-Prospector all report a similar amount of
true hits (596 – 623) and all have between 78 – 141 false positives (7.9% – 13.2% FDR).

Similar to the two previous data sets, PILOT_PROTEIN has a higher protein identification
rate (sensitivity) for each level of false discovery rate (specificity) than any other algorithm.
The difference in sensitivity between PILOT_PROTEIN and InsPecT remains relatively
constant while the difference between VEMS or SEQUEST increases at higher values of
FDR and the difference between X!Tandem or Protein Prospector increases at lower values
of FDR. Though the range of FDR for this particular data set (0 – 20%) is wider than the
QTOF or Orbitrap data (0 – 7%), this increase is largely due to the high FDR of VEMS and
SEQUEST. The other four algorithms had ranges of FDR that were consistent with previous
data. Using a benchmark level of 1.5% FDR as a basis for comparison, PILOT_PROTEIN is
able to annotate 470 proteins correctly (68.7% PIR) which is 41 more proteins then the next
best method, InsPecT (429 hits; 62.7% PIR). Using a 1.5% FDR, VEMS and Protein
Prospector report 379 and 339 proteins (55.4% and 49.6% PIR, respectively), SEQUEST
reports 312 true hits (45.6% PIR), and X!Tandem reports 308 hits (45.0% PIR).

Note that Figure 3a and Figure 3c represent ROC curves for instruments operating with a
high resolution MS1 and a low accuracy MS2 (via the LTQ). The similarity of these data
sets is reflected in the two ROC curves. At a false discovery rate of 2%, the six algorithms
identify between 50%–65% of the proteins for the Orbitrap data and 45%–67% of the
proteins for the LTQ-FT data. The range of protein identification rate for this FDR level and
the range of FDR levels across the data is likely higher for the LTQ-FT data because there
was 3.8 times as much data present for that instrument (38 LC-MS/MS runs) as opposed to
the Orbitrap (10 LC-MS/MS runs).

Data Set D: Chromatin Extraction
The plot of peptide spectrum matches (PSMs) compared with false discovery rate for data
set D is shown in Figure 4 for each algorithm. Each graph is generated by analyzing the 10
repeat injections of a different chromatin extraction technique. Each mixture has extracted
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and purified chromatin from HeLa H3 cells using either a total extraction, a salt extraction,
or a micrococal nuclease (MNase) digestion. The salt and MNase extractions produced both
supernatant and pellet chromatin fractions.62 The plots in Figure 4 can be reproduced from
the peptide identification data reported for each algorithm in the Supplementary Material.

For the salt pellet extraction, PILOT_PROTEIN reported a higher number of PSMs than all
of the other algorithms for a variety of false discovery rate (FDR) levels. SEQUEST tends to
report the second highest amount of PSMs followed closely by X!Tandem and InsPecT. At
lower levels of FDR near 1%, InsPecT begins to identify more PSMs than either X!Tandem
or SEQUEST.

The salt supernatant extraction plot in Figure 4b shows that SEQUEST reports the highest
number of PSMs at lower levels of FDR (less than 2%) and is followed closely by
PILOT_PROTEIN, though at a FDR level of approximately 2.5%, PILOT_PROTEIN
begins to report more PSMs than SEQUEST. InsPecT, X!Tandem, ProteinProspector, and
VEMS all report a similar number of PSMs at a 2% FDR, though the gap between the four
algorithms begins to widen at FDR levels between 2% – 5% as VEMS increased the number
of reported PSMs relative to the other three algorithms.

The MNase pellet extraction data shows that PILOT_PROTEIN reports the highest number
of PSMs at FDR levels below 1% with InsPecT and SEQUEST reporting the next highest.
At a FDR level of approximately 1.5%, InsPecT begins to report the highest number of
PSMs with PILOT_PROTEIN ranking second. Both SEQUEST and X!Tandem consistently
rank third and fourth for this data set, though SEQUEST reports more PSMs than X!Tandem
at low FDR levels and the reverse is true at higher FDR levels.

For the MNase supernatant data, PILOT_PROTEIN consistently annotates a higher number
of PSMs than each of the other five algorithms for all of the relevant FDR levels. SEQUEST
and InsPecT report the second and third most PSMs, with SEQUEST ranking second until at
FDR level of approximately 2.5% where InsPecT begins to rank second. X!Tandem and
ProteinProspector report the next highest amount of PSMs and are followed by VEMS.

The total chromatin extraction shows both SEQUEST and PILOT_PROTEIN reporting a
superior number of PSMs. PILOT_PROTEIN annotates a slightly higher number for FDR
levels below 1.5%, while SEQUEST begins to increase the annotations relative to
PILOT_PROTEIN above this level. InsPecT reports the third highest number of PSMs
across many FDR levels followed by ProteinProspector and X!Tandem.

For two of the five data sets (salt pellet and MNase supernatant), PILOT_PROTEIN
outperforms all other algorithms for each level of false discovery rate (FDR) from the range
of 1% – 3%. In both of these data sets, PILOT_PROTEIN reports over 2,000 more peptide
spectrum matches (PSMs) than any other algorithm at a 2% FDR. Additionally,
PILOT_PROTEIN reports at least 500–700 more unique peptides and 100–200 more
proteins than any other algorithm at this FDR. For two other data sets (MNase pellet and
total extraction), PILOT_PROTEIN annotates more PSMs at lower FDR levels (< 1%),
though InsPecT (MNase pellet) and SEQUEST have more annotations at higher FDR levels.
Note that PILOT_PROTEIN performed the second best to each of these algorithms for these
data sets and the gap between the PSMs reported by the first and second algorithm is
significantly smaller than for the first two data sets. That is, at a 2% FDR,
PILOT_PROTEIN only reported about 800 fewer PSMs, 200–300 fewer unique peptides,
and 60–75 fewer unique proteins than the top scoring algorithm, (i.e., InsPecT for MNase
pellet or SEQUEST for total extraction). The fifth data set (salt supernatant) shows
SEQUEST performing the best at low FDR levels and PILOT_PROTEIN performing the
best at higher FDR levels.
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Breaking down each PSM graph into two regions (FDR ≥1% and FDR < 1%), it is seen that
PILOT_PROTEIN is the top scoring algorithm in 7 of the 10 regions considered (i.e., all
regions except low FDR salt supernatant, high FDR MNase pellet, and high FDR total
extraction). Additionally, PILOT_PROTEIN is the second best scoring algorithm for the
remaining three regions. Alternatively, SEQUEST is the top scoring algorithm for two
regions (i.e., low FDR salt supernatant and high FDR total extraction), the second best for
four regions, the third best for three regions, and the fourth best for one region. InsPecT is
the top algorithm for one region (i.e., high FDR MNase pellet), the second algorithm for
three regions, the third for four regions, and the fourth for two regions.

As an illustrative example, the results for a FDR of 2% are shown in detail in Table 2. The
number of distinct peptides, PSMs, and proteins are reported for each algorithm along with
the percentage of unique entries across all six algorithms in parenthesis. Across all five data
sets (50 LC-MS/MS runs and approximately 450,000 MS/MS spectra), PILOT_PROTEIN
reports a total number of 58,784 PSMs consisting of 14,011 distinct peptides and 4,519
distinct proteins. SEQUEST reports the next highest numer of PSMs with 58,310 matches
coming from 13,795 distinct peptides and 4,493 proteins. InsPecT annotated 12,103 peptides
and 3,751 proteins using 43,535 PSMs and X!Tandem reports 10,206 peptides and 3,312
proteins from 31,120 PSMs. Protein-Prospector and VEMS were able to annotate 3,075
proteins, 9,239 peptides, and 25,594 PSMs and 2,696 proteins, 7,957 peptides, and 18,349
PSMs, respectively.

The unique peptide, PSM, and protein identification crossover for the three algorithms
(PILOT_PROTEIN, SEQUEST, and InsPecT) that identified the most number of PSMs is
shown in Figure 5 for a 2% FDR. In each panel, note that a majority of the unique PSMs
(21,303), peptides (9133), and proteins (3,113) were found by all of the three algorithms.
Additionally, the number of identifications for each panel in Figure 5 reported by exactly
two algorithms is generally higher than that reported for any single algorithm. However,
there does exist a fraction of PSM, peptide, or protein identifications (around 6–10% for
each algorithm) that are reported by only one of the three algorithms. PILOT_PROTEIN
(8,995 individual PSMs), SEQUEST (8,711 individual PSMs), and InsPecT (5,427 PSMs)
report 23,133 PSMs that are not found by either of the other two algorithms. These
identifications represent 28.7% of the total amount of PSMs found by the three algorithms
(Figure 5b). For the unique peptides (Figure 5a) and proteins (Figure 5c), the number of
identifications reported by only one algorithm reduces to 16.5% and 12.3% of the total,
respectively. This provides evidence that the use of multiple identification algorithms to
verfiy the assignments made for an LC-MS/MS data set can enrich the quantity of peptide
and protein identifications output to a user.

Sequence Based Clustering Results
For each of the LC-MS/MS runs in data sets C and D, the sequence based clustering
algorithm was able to remove several peptides that were incorrectly assigned by the
PILOT_SEQUEL hybrid de novo/database identification algorithm. Table 3 shows the total
number of peptides that were labeled incorrectly along with the fraction of those peptides
that were re-annotated with a correct peptide assignment. The remainder of the peptides
were simply removed from the list of annotations. For the standard mix proteins (data set C),
217 PSMs were identified by the clustering algorithm for the Orbitrap data, 773 PSMs for
the QTOF data, and 830 for the LTQ-FT data. Of these spectra, 59 were re-assigned with
another peptide for the Orbitrap data, 387 for the QTOF data, and 398 for the LTQ-FT data.
Table 3 also shows the decrease in identified proteins that came directly as a result of the
clustering algorithm. For data set C, the true positive proteins consist of the 18 sample
mixture proteins and the 15 contaminants while any other protein is considered a false
positive protein. At a protein false-discovery rate level of 2%, this led to a decrease of 23
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false positive proteins for the Orbitrap data, 47 for the QTOF data, and 111 for the LTQ-FT
data. Many of these false positive proteins would have been annotated solely by the peptide
spectrum match that was eliminated via the clustering algorithm. The decrease in the
number of true positive proteins for PILOT_PROTEIN was 6 for the Orbitrap data, 6 for the
QTOF data, and 25 for the LTQ-FT data.

For the chromatin data (set D), the number of PSMs identified by the clustering algorithm
was 115 for the salt pellet extraction, 123 for the MNase pellet extraction, 123 for the
MNase supernatant extraction, 134 for the total extraction, and 211 for the salt supernatant.
The total number of spectra that were reassigned was 34 for the total extraction, 38 for the
MNase pellet, 47 for the salt pellet, 50 for the MNase supernatant, and 76 for the salt
supernatant. For data set D, the true positive proteins are proteins that is contained in the
NCBI nr database while a false positive protein is part of the reverse sequence decoy
database. Using a 2% false discovery rate for the PSMs as defined earlier, this led to a
reduction of 272 false positive proteins and 130 true positive proteins across all five data
sets. Many of the true positve proteins and all of the false positive proteins would have only
been annotated using a single PSM that was removed via the clustering algorithm.

Data Set D: PTM Identification
To demonstrate the capability of PILOT_PROTEIN and PILOT_PTM, the chromatin data
set was used for an untargeted post-translational modification analysis. A universal list of
modifications comprised of information from several databases was used as an input to
PILOT_PTM.47 Generally, five to ten peptide sequences were used as candidate template
sequences for PILOT_PTM. The modified template sequence that had the highest cross-
correlation score was retained. To help reduce the number of false positive modifications, a
reverse sequence decoy database was used to establish a false discovery rate for each cross-
correlation score. The decoy database was constructed from the smaller list of unmodified
proteins output by the PILOT_PROTEIN algorithm. A threshold score cutoff was utilized
that corresponded to a 2% false discovery rate.

To benchmark the capability of PILOT_PROTEIN, the algorithm was compared against the
methods InsPecT and X!Tandem. Both methods employ a two-pass variable modification
search method that initially generates a small protein list in the first pass of the method and
then search for an expanded set of variable modifications in the second stage of the
method.16,33 A previous study compared the residue and peptide prediction accuracy of all
three methods47 and demonstrated that PILOT_PTM has a superior prediction accuracy for
both modified and unmodified spectra. In this study, the variable modification search results
are presented for each of the three algorithms to determine the number of modified peptides,
the number of modified proteins, and the counts for each type of modification. Search
criteria for all three methods included a 0.2 Da parent tolerance, a 0.5 Da fragment
tolerance, 2 tryptic termini, 2 maximum missed cleavages, and 531 variable post-
translational modifications, chemical derivatives, and artifacts.47 A false discovery rate of
2% was imposed using a reverse sequence decoy database based off of the small list of
unmodified proteins generated by each algorithm. The resulting peptide and protein
identifications for all three algorithms are reported in the Supplementary Material.

The summary of all peptide and protein identifications for all 50 LC-MS/MS data sets is
shown in Table 4 for a 2% FDR. The total number of peptides, PSMs, and proteins reported
by each algorithm is reported in Table 2 along with the percentage of unique identifications
compated to the total in parenthesis. PILOT_PROTEIN identified 3,572 modifications on
633 distinct peptides, indicating that 4.57% of the peptides were modified throughout all 50
data sets. InsPecT identified 3,508 modifications on 592 distinct peptides while X!Tandem
identified 3,444 modifications on 415 distinct peptides. PILOT_PROTEIN was able to
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identify 4,519 distinct proteins across all data sets, of which 336 (7.50%) were labeled with
at least one modification. X!Tandem reported a total of 3,312 proteins including 246
modified proteins and InsPecT reported a total of 3,751 proteins including 312 modified
proteins.

The histogram of all modifications identified over all 50 LC-MS/MS data sets is shown in
Table 5. Modifications are annotated in Table 5 based on the amino acid location along the
peptide. Due to the ambiguity between an amino acid acetylation and an acetylation of the
N-terminus, all acetylations that occur on an N-terminal residue will be labeled as an N-
terminal acetylation. To distinguish between their relative locations on the peptide, all
methylations or di-methylations that occur on a C-terminal residue have been specifically
marked (see Table 5). This distinction is intended to provide information about modification
frequency at the terminal position and does not imply that these modifications are on the C-
terminus. Information regarding frequency with respect to sequence position will be helpful
for the classification of PTMs within a proteome.65 The vast majority of modifications
identified by PILOT_PROTEIN, X!Tandem, and InsPecT was oxidized methionine with
2,938 hits, 2,950 hits, and 2,875 hits, respectively. After oxidation, the most common
modification reported by PILOT_PROTEIN was methylation with 363 counts found on
residues located at the C-terminus, 65 counts for lysine, and 29 counts for arginine. The next
most abundant modifications included dimethylation (56 on the C-terminus, 21 on lysine,
and 29 on arginine) and acetylation (51 on the N-terminus, 21 on lysine, and 9 on arginine).
For all algorithms, the majority of the modifications (except oxidation) are found on the C-
terminus (419 modifications for PILOT_PROTEIN, 390 for InsPecT, and 372 for X!
Tandem) and lysine was the amino acid with the most abundant amount of modifications
(103 modifications for PILOT_PROTEIN, 78 for InsPecT, and 98 for X!Tandem). Arginine
also contained several modifications, with 51 total reported from PILOT_PROTEIN, 46
total from InsPecT, and 45 total from X!Tandem.

The crossover for unique peptides, PSMs, and protein identifications for the three algorithms
is shown in Figure 6 for a 2% FDR. The peptides shown in Figure 6a include all
modifications that are assigned to that peptide. If two identified peptides have the same
sequence, but a different combination of modification types or sites, then they are designated
as distinct peptides. Similarly, two PSMs are said to be equivalent between two algorithms if
both the peptide and modification set are equal for a given spectrum. The proteins reported
in Figure 6c represent only the protein identification and are not indicative of the quantity or
location of modifications found on that protein by a particular algorithm. Note that the
number of peptides and PSMs that are identified by all three algorithms is not a dominant
fraction of the total, as it was in Figure 5. The additional complexity with localization of
modifications provides an enhanced layer of complexity that makes it difficult for certain
spectra to be properly identified by multiple algorithms. This is clearly evident in Figure 6b,
where a majority of the unique PSMs are identified by only one of the three algorithms. This
result occurs because it was common for one MS/MS spectrum to be annotated by only one
of the three algorithms. Further, when two or more algorithms annotated a spectrum with a
different modified peptide, it was often found that the peptide sequence and modification
types were similar, but the localization of the modifications was different (see
Supplementary Material). Note that the lack of overlap at the PSM level for the three
algorithms diminishes slightly at the peptide level and more significantly at the protein level.
That is, the relative amounts of unique peptides identified by only one algorithm diminishes
(see Figure 6a). While certain MS/MS spectra may be difficult to annotate for a given
algorithm, this does not imply a 1:1 loss of unique peptide data. The protein data in Figure
6c shows an overlap between three algorithms that has the highest number of annotations.
Further, the overlap between PILOT_PROTEIN and InsPecT is almost as high as the
number of individual identifications by either of those two algorithms alone.
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Discussion
A novel mixed integer linear optimization framework for the identification of all unmodified
and modified proteins in a cellular sample was developed. PILOT_PROTEIN used the
results of the peptide identification algorithm PILOT_SEQUEL to initially generate a list of
all unmodified proteins in the sample. Using a biclustering approach, all peptide
homologues are identified and incorrectly assigned peptide sequences are identified and
removed from consideration. This helps reduce the number of false positives by eliminating
low-scoring peptide identifications. The protein identification accuracy of the
PILOT_PROTEIN algorithm was clearly demonstrated using data31 taken from several MS/
MS instruments. The biclustering approach was very effective in identifying peptide
similarities and reducing false positive reporting compared to competing methods.

The results of PILOT_PROTEIN for unmodified protein identification were benchmarked
using SEQUEST, InsPecT, X!Tandem, ProteinProspector, and VEMS. Overall,
PILOT_PROTEIN reported superior results against each algorithm. Given an unmodified
protein list from PILOT_PROTEIN, the PILOT_PTM algorithm can use an untargeted
search to generate a modified protein list that contains all modification types and sites for
each protein in the sample. The PILOT, PILOT_SEQUEL, PILOT_PROTEIN, and
PILOT_PTM algorithms represent a complete package for identification of all sample
proteins along with all corresponding PTMs and are capable of analyzing an LC-MS/MS
data set with a computation run time of approximately 8 CPU seconds per MS/MS spectrum.
The package is run on a Beowulf cluster with 24 Intel Xeon 2.83 GHz processors and
utilized a message passing interface to parallelize the data processing. Full utilization of all
processors for one LC-MS/MS experiment significantly reduces the computational run time
to approximately 0.6 CPU seconds per MS/MS spectrum. The algorithms are currently
available as a singular webtool free of charge at http://pumpd.princeton.edu. A successful
large-scale application of the aforementioned suite of algorithms for the elucidation of
gingival crevicular fluid has been recently reported.66

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Overall framework for LC-MS/MS analysis. LC-MS/MS data is sent to PILOT algorithm
for de novo sequence generation. The de novo sequences are compared against a protein
database using PILOT_SEQUEL to extract database peptides and their corresponding
proteins. This information is passed to PILOT_PROTEIN for generation of an unmodified
protein list. The unmodified protein list is used with PILOT_PTM to annotate all protein
modification types/sites. (b) Framework for PILOT_PROTEIN. Proteins are initially filtered
based on PILOT and PILOT_SEQUEL peptide scores. Peptide homologues are identified
using OREO to help increase protein identification specificity. (c) Framework for
PILOT_PTM. Using the smaller unmodified protein list, candidate peptides for
PILOT_PTM are generated for each MS/MS spectrum after a sequence tag search.
PILOT_PTM will output the highest-scoring modification set for annotation.
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Figure 2.
Example of peptide homology clustering. The original annotation (KSTQNAPR; red) to a
spectrum with experimental mass 900.41 Da can be corrected using the proper assignment
of KSTGGKAPR (blue) to three other distinct spectra.
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Figure 3.
Standard protein mix database ROC curves. The graphs represent the change in the protein
identification accuracy with changing false-discovery rate. (a) 10 Orbitrap LC-MS/MS runs.
(b) 68 QTOF runs. (c) 38 LTQ-FT LC-MS/MS runs.
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Figure 4.
Chromatin fraction ROC curves. The graphs represent the change in the number of peptide
spectrum matches with changing false-discovery rate. (a) Salt pellet extraction. (b) Salt
supernatant extraction. (c) MNase pellet extraction. (d) MNase supernatant extraction. (e)
Total extraction.
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Figure 5.
Venn diagram for the unique unmodified peptides (a), PSMs (b), and proteins (c) identified
by PILOT_PROTEIN, SEQUEST, and InsPecT. The diagram shows the number of
annotations by one or a combination of the three algorithms for a false discovery rate of 2%.
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Figure 6.
Venn diagram for modified peptide (a), PSM (b), and protein (c) identifications for the
chromatin data. The diagram shows the number of modified peptide, PSM, or protein
identifications that were annotated by one or a combination of the three algorithms for a
false discovery rate of 2%.
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Table 1

Search tolerance parameters. Parent and fragment ion search tolerances for each data set

Data Set Instrument Parent Tolerance (Da) Fragment Tolerance (Da)

A QTOF 0.2 0.2

B Orbitrap 0.1 0.1

C Orbitrap 0.2 0.5

C QTOF 0.2 0.2

C QSTAR 0.5 0.5

C QTOF1 0.5 0.5

C QTOF2 1.0 0.5

C LTQ-FT 0.2 0.5

D Hybrid Orbitrap/Ion trap 0.2 0.5
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Table 3

Summary of sequence based clustering results for PILOT_PROTEIN. For each data set, the total number of
peptide spectrum matches (PSMs) identified by the clustering routine is listed along with the fraction of those
spectrum that were reassigned to another peptide. The decrease in the number of both true positive and false
positive proteins reported by the algorithm is also listed for a 2% false discovery rate

Data Set Clustered PSMs Reassigned PSMs
Missed Proteins

True False

Data Set C - Orbitrap 217 59 6 23

Data Set C - QTOF 773 387 6 47

Data Set C - LTQ-FT 830 398 25 111

Data Set D - Salt Pellet 115 47 1 46

Data Set D - Salt Supernatant 211 76 29 40

Data Set D - MNase Pellet 123 38 17 66

Data Set D - MNase Supernatant 123 50 45 80

Data Set D - Total Extraction 134 34 38 40

J Proteome Res. Author manuscript; available in PMC 2013 September 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Baliban et al. Page 30

Ta
bl

e 
4

Su
m

m
ar

y 
of

 m
od

if
ie

d 
pe

pt
id

e 
an

d 
pr

ot
ei

n 
id

en
tif

ic
at

io
n 

fo
r 

a 
to

ta
l c

hr
om

at
in

 e
xt

ra
ct

io
n.

 T
he

 to
ta

l n
um

be
r 

of
 a

ll 
pe

pt
id

es
, m

od
if

ie
d 

pe
pt

id
es

, a
ll 

PS
M

s,
m

od
if

ie
d 

PS
M

s,
 a

ll 
pr

ot
ei

ns
, m

od
if

ie
d 

pr
ot

ei
ns

, a
nd

 a
ll 

m
od

if
ic

at
io

ns
 f

or
 5

0 
L

C
-M

S/
M

S 
da

ta
 s

et
s 

ar
e 

sh
ow

n 
fo

r 
a 

2%
 f

al
se

 d
is

co
ve

ry
 r

at
e.

 T
he

 to
ta

l
am

ou
nt

 o
f 

un
iq

ue
 e

nt
ri

es
 a

cr
os

s 
al

l a
lg

or
ith

m
s 

is
 a

ls
o 

di
sp

la
ye

d 
fo

r 
ea

ch
 c

ol
um

n.
 T

he
 p

er
ce

nt
ag

e 
of

 u
ni

qu
e 

en
tr

ie
s 

fo
r 

a 
gi

ve
n 

al
go

ri
th

m
 is

 li
st

ed
 in

pa
re

nt
he

si
s

A
lg

or
it

hm
P

ep
ti

de
s

M
od

if
ie

d 
P

ep
ti

de
s

P
SM

s
M

od
if

ie
d 

P
SM

s
P

ro
te

in
s

M
od

if
ie

d 
P

ro
te

in
s

T
ot

al
 M

od
if

ic
at

io
ns

PI
L

O
T

_P
R

O
T

E
IN

14
,0

11
 (

0.
80

7)
63

3 
(0

.6
17

)
58

,7
84

 (
0.

69
3)

1,
25

1 
(0

.4
75

)
4,

51
9 

(0
.8

83
)

33
6 

(0
.7

13
)

3,
57

2

In
sP

ec
T

12
,1

03
 (

0.
69

7)
59

2 
(0

.5
77

)
43

,5
35

 (
0.

51
5)

1,
11

9 
(0

.4
25

)
3,

75
1 

(0
.7

33
)

31
2 

(0
.6

62
)

3,
50

8

X
!T

an
de

m
10

,2
06

 (
0.

58
8)

41
5 

(0
.4

04
)

31
,1

20
 (

0.
36

8)
69

0 
(0

.2
62

)
3,

31
2 

(0
.6

47
)

24
6 

(0
.5

22
)

3,
44

4

T
ot

al
17

,3
67

10
26

25
,5

94
2,

63
3

5,
11

9
47

1
-

J Proteome Res. Author manuscript; available in PMC 2013 September 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Baliban et al. Page 31

Table 5

Post-translational modification identification (PTM) results. The total number of each PTM reported over all
50 LC-MS/MS runs is reported for each algorithm for a 2% false discovery rate. The format for a modification
name is Am where A is the amino acid residue and m is the modification. Note that CT and NT refer to a
modification that is located at the C-terminus and N-terminus, respectively. The labels for the modifications
are: a - Acetylation; d - Dimethylation; m - Methylation; t - Trimethylation; o - Oxidation.

Modification
Algorithm

PILOT_PROTEIN InsPecT X!Tandem

CT-Kd 33 30 22

CT-Km 208 194 185

CT-Rd 23 18 19

CT-Rm 155 148 146

Ka 8 8 11

Kd 21 20 16

Km 65 45 60

Kt 9 5 11

Mo 2938 2950 2875

NTa 51 35 45

Ra 9 3 8

Rd 13 12 12

Rm 29 31 25
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