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Abstract
Computational models of signal transduction face challenges of scale below the resolution of a
single cell. Here, we organize these challenges around three key interfaces for multiscale models
of cell signaling: molecules to pathways, pathways to networks, and networks to outcomes. Each
interface requires its own set of computational approaches and systems-level data, and no single
approach or dataset can effectively bridge all three interfaces. This suggests that realistic “whole-
cell” models of signaling will need to agglomerate different model types that span critical
intracellular scales. Future multiscale models will be valuable for understanding the impact of
signaling mutations or population variants that lead to cellular diseases such as cancer.
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INTRODUCTION
Cells sense their environment, process information, and respond through the molecular
biology of signal transduction.22 One amino acid mutation in a signaling protein can have
profoundly adverse consequences for diseases such as cancer.14 Thus, signaling is
fundamentally a multiscale problem in need of modeling approaches that can bridge across
scales.

There are many reviews in this issue that focus on multiscale biological models connecting
molecular-cell, cell-tissue, and tissue-organ scales. Here, we restrict the scope of our review
to the different molecular scales that exist within a single cell (Fig. 1). We use “molecular
scales” to refer to the number and granularity of the subcellular or submolecular components
that make up a system. At the lowest scale, enzymes regulate posttranslational modifications
on individual proteins to transmit information via intracellular pathways. These pathways
are wired together as intracellular networks that enable crosstalk and feedback control.
Ultimately, the networks converge upon a key set of effector proteins, which mediate
discrete cellular outcomes, such as proliferation, differentiation, and death. This review
focuses on models that make predictions across the molecule-pathway, pathway-network,
and network-outcome scales. We conclude with some pragmatic simplifications for future
models and look ahead to the new frontiers of modeling signal transduction across multiple
scales.
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Molecules to Intracellular Pathways
Signaling proteins relay information by changing their abundance, activity, localization, or
binding partners. These rapid signaling events are largely triggered by posttranslational
modifications (phosphorylation and ubiquitylation) on the target protein. There are many
techniques for cataloging specific protein modifications and for making predictions about
the protein targets of modifying enzymes.23,39,40,52,78 However, it is difficult to integrate
these lists of modification sites and candidate targets in a way that makes clear predictions
about new signaling pathways.

Linding et al.58 developed an integrated computational approach, called NetworKIN, for
predicting candidate protein kinases for catalyzing an observed phosphorylation event.
NetworKIN takes individual phosphorylation sites from proteomic data and maps the
flanking amino acid residues onto position-specific scoring matrices64 to search for
consensus substrate motifs of protein kinases. The algorithm is improved by incorporating
contextual information about the modified protein based upon its reported protein
interactions.80 Then, the local interaction network is surveyed for protein kinases with the
closest sequence similarity to the consensus substrate motif. Using known kinase-substrate
pairs, the authors found that incorporating contextual information doubled the accuracy of
their predictions.58 The importance of cellular context was further reinforced by a recent
study that incorporated subcellular localization when considering mitotic kinases with
overlapping substrate specificity.4 The tools for pathway prediction are most advanced for
signals mediated by protein phosphorylation. However, similar approaches could soon be
adapted to other classes of posttranslational modifications as we gain a greater
understanding of the sequence specificity of the modifying enzymes.19

A major complication for modeling signaling pathways is that proteins are often modified on
multiple sites. This creates a challenge for experimentally monitoring n different
modification sites and for modeling each of the 2n possible modification states of a signaling
protein. Sometimes, the biology reveals its own simplifications that can streamline a
multiscale model. For example, autophosphorylation of the fibroblast growth factor receptor
(FGFR) occurs on seven distinct tyrosine residues, creating 27 = 128 possible modification
states. However, Furdui et al.27 found by mass spectrometry that FGFR autophosphorylation
occurs as an ordered sequence: Y653 first, then Y583, then Y463, etc. This stereotyped
cascade allowed the authors to build a kinetic model of FGFR signal propagation that was
far more tractable than the combinatorics originally implied.

Other simplifications can stem from the architecture of a multisite model itself. Thomson
and Gunawardena79 showed that a generic multisite model of protein phosphorylation
simplifies dramatically when the steady-state distribution of phospho-states is considered.
The authors found that the number of possible steady-state distributions increases with the
number of phosphorylation sites. The different distributions create a platform for complex
information processing by downstream pathways33 and suggest an explanation for why
multisite phosphorylation has expanded during evolution. Computationally, the
approximation79 should prove valuable for modeling receptor tyrosine kinases, which
autophosphorylate rapidly and may operate at quasi-steady state relative to their downstream
pathways.

Specific amino-acid modifications can be tracked empirically by various methods, but
monitoring protein–protein associations is much more difficult. For association-driven
signaling pathways, mathematical models can be particularly useful to assess the relative
importance of competing molecular mechanisms. One pathway where protein–protein
associations are critical is apoptotic signaling induced by cytokines. Albeck et al.1 modeled
the intersection of apoptotic caspases and Bcl2-family proteins upon pathway activation by
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TNF-related apoptosis-inducing ligand (TRAIL). The authors paid particular attention to the
protein–protein associations among Bcl2-family members and their ability to form pores in
mitochondria. Mitochondrial permeabilization was known to be associated with apoptosis,
but the authors’ model suggested that puncturing this organelle was critical for eliciting the
“snap-action” kinetics of cell death. Surprisingly, positive feedback from the enzyme-
catalyzed branches of the TRAIL network was insufficient to yield snap-action behavior.
The model thus enabled interrogation of specific molecular processes that remain
empirically inaccessible.

Combining protein–protein interactions and post-translational modifications often results in
a combinatorial explosion of species and kinetic parameters that is difficult to handle
analytically.36 Blinov et al.12 and Lok and Brent59 developed two computational strategies
for dealing with this complexity of scale. The software BioNetGen12 implements “rule-
based modeling” in which individual reaction rules are specified for each molecular state
transition. The key simplification here is that transition rates are assumed to be independent
of one another. Independence allows the parameters to scale with the number of molecular
species rather than with the number of molecular states of those species. Faeder et al.24 used
BioNetGen to model FcεRI signaling triggered by dimeric IgE. The authors found that state
trajectories varied wildly depending on the expression levels of key signaling proteins,
suggesting that a spectrum of combinatorial states could confer signaling specificity.

The Moleculizer approach from Lok and Brent59 implements a different modeling strategy
by building reaction networks on demand. When the combinatorics of molecular states
dramatically exceeds the number of signaling molecules in a cell, one can model the
stochastic behavior of individual molecules more readily than the network itself.
Moleculizer exploits this property by following the trajectory of single molecules through
the reaction network and then summarizing the results at the end of the simulation. This
strategy solves the problem of combinatorics but creates others with respect to inefficiencies
in parameter estimation.13 Nevertheless, BioNetGen software now accommodates
Moleculizer-like approaches, so the relative performance of the two can be compared for
specific combinatorial applications.

Intracellular Pathways to Intracellular Networks
Various intracellular pathways have now been encoded as detailed biochemical reaction
networks with plausible model parameters.1,6,17,37,56,62,67 These models can explain and
predict experimental data, but it is unclear how scalable they are when multiple interacting
pathways are considered. The earliest efforts at wiring together pathways coincided with the
first mechanistic models themselves. Bhalla and Iyengar11 assembled a library of signaling
pathways and showed that inter-pathway connections could lead to “emergent properties”
within the network. For example, crosstalk between the Ras-MAPK and PLCγ-PKC
pathways through cytosolic phospholipase A2 creates a positive feedback loop and the
emergence of MAPK-PKC bistability. These and other network architectures were shown to
provide dynamical-systems properties that could give rise to sustained signaling activity,
even when the initial stimulus was withdrawn. This thought-provoking study was among
those that laid the groundwork for defining systems biology as a discipline.41

More recently, others have built upon established models of signaling pathways to
incorporate multiple input stimuli. Borisov et al.15 began with an existing biochemical-
reaction model of PI3K-MAPK signaling induced by the EGF receptor and then overlaid the
receptor-adaptor proteins for insulin. The authors’ network reconstruction, model training,
and experimental predictions pointed to the adaptor protein GAB1 as an important site of
crosstalk for EGF+ insulin-induced MAPK activation. Basak et al.8 achieved the same goals
for NF-κB signaling but in reverse. They began with the biochemistry of the noncanonical
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IκB protein p100/IκBδ, uncovering an essential role in developmental NF-κB signaling
from the lymphotoxin β receptor. Then, the authors built upon a pre-existing model of
canonical NF-κB signaling37,82 to include a noncanonical arm containing p100/IκBδ. The
revised model accurately predicted NF-κB “cross-priming,” whereby prestimulation of cells
with TNF augmented the subsequent response to lymphotoxin β.8 Together, the Borisov et
al.15 and Basak et al.8 studies illustrate how existing biochemical-pathway models can be
intelligently expanded to networks that receive multiple inputs.

Sometimes, downstream signaling mechanisms are too entangled to attempt a complete
biochemical-reaction model with multiple input stimuli. However, there is often a basic
understanding of the rules that different signaling pathways obey, and a rudimentary sense
of how they may intersect. Here, Boolean network models have been found to be
particularly valuable. Starting with the Ingenuity repository of literature-derived
connections, Saez-Rodriguez et al.73 assembled a provisional Boolean network shared by
seven cytokine receptors. The authors pruned their initial network by comparing the model
predictions to a large set of phospho-protein measurements collected in HepG2
hepatocellular carcinoma cells. This step reduced the number of network edges by several
fold, raising the possibility that only a small set of possible interactions are active in a
specific cellular context. Moreover, the authors found a handful of edges that improved
model performance but were absent in the initial network. Similarly novel edge
requirements were also reported by Aldridge et al.,3 who used fuzzy logic (rather than
discrete Boolean logic) modeling to reconstruct the TNF–EGF–insulin signaling network.
Thus, simple rule-based network models are capable of proposing new experimentally
testable interactions, even though the mechanisms themselves are not hard-coded as formal
biochemical reactions.

There remain many biological scenarios where pathway connections are too speculative to
assemble a plausible rule set for logic-based models. When scaling such pathways into
networks, it is preferable to use modeling approaches that are purely data driven. Some data-
driven approaches are incredibly simple but useful. For example, using signaling data from a
two-ligand screen of cytokines and GPCR agonists, Natarajan et al.63 devised a
straightforward “interaction score” to gauge the nonadditivity between input stimuli.
Combined with a literature-based reconstruction, the score allowed the authors to hone in on
a handful of surprising points of crosstalk that merited further investigation.

Other data-driven approaches are based on associations within a dataset. Garmaroudi et al.28

assessed specific pairwise correlations between phosphoproteins activated in
cardiomyocytes upon infection with coxsackievirus B3. The authors built a data-driven
phosphoprotein network by using partial correlation coefficients, which account for the
confounding correlations among other measurements within the dataset. This reconstruction
revealed that NF-κB signaling induced by inflammatory autocrine cytokines45 was a critical
component of the host cell-death response.28 An elegant, but data-intensive, alternative to
frequentist approaches is to infer network associations de novo with Bayesian methods.26

Sachs et al.72 exploited the single-cell “experiments” inherent to flow cytometry and
reconstructed a network of nine phosphoproteins in CD4+ T cells. The application of
Bayesian networks should become more widespread with the advent of mass cytometry,
which can measure dozens of signaling proteins concurrently in single cells (see below).9

Given the many analytical approaches now available for network reconstruction, one must
look closely at the pressing biological questions and available information before
determining a strategy for multiscale modeling.46
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Intracellular Networks to Cellular Outcomes
Signaling networks carry information that determines key cellular behaviors. The
approaches described above give detailed predictions about individual components or
pathways, but they are inadequate for capturing how the pieces fit together to influence cell
phenotype. This is because of the long time delay between signaling and most cell
phenotypes, which creates a problem for network models that usually operate on shorter
time scales. To bridge this gap, data-driven statistical models have been very successful and
are now widely used.49

One context where data-driven models are clearly advantageous is when considering
multiple cellular inputs. Although mechanistic approaches are possible,8,15 such
biochemical-reaction models usually stop at effector signals and cannot move further
downstream to explicit cell outcomes. Janes et al.44 took a data-driven approach to apoptosis
and measured a panel of signal transduction and effector proteins that became activated
during combinatorial stimulation with conflicting stimuli (TNF, pro-apoptotic and EGF or
insulin, anti-apoptotic). Using nine combinations of cytokines, they measured nineteen
intracellular parameters at multiple time points to generate ~8000 measurements, which
were directly paired with multiple readouts of apoptosis. To interpret the high-dimensional
dataset, the authors used partial least squares regression (PLSR) as a means to reduce the
measurements to two axes that mapped to apoptotic response. The PLSR model accurately
predicted cell-death outcomes based on how strongly the intracellular measurements
projected onto the reduced two-dimensional space. Notably, the two axes were associated
with separate combinations of survival and stress-death pathways, suggesting biologically
distinct dimensions of signal transduction. Projections along these axes revealed different
strategies that cytokine stimuli use to modulate the apoptotic response. For example, EGF
reduced cell death by antagonizing apoptotic signaling induced by TNF, whereas insulin
antagonized TNF-driven signaling and also supplemented the network with additional pro-
survival signaling. This study established a framework in which complex extracellular
stimuli and intracellular networks can be condensed into a simpler dimensional space that
directly and mechanistically maps to cell phenotype across longer time scales.

A major challenge in cell signaling is that phenotypic responses to environmental stimuli are
usually cell-type specific. These observations conflict with models of signaling pathways,
which often imply that cells have a common intracellular circuitry.66 To hone in on the
origin of cell-type specificity, Miller-Jensen et al.60 sought to examine the “effector layer”
of signaling. Signaling networks often have an “hourglass” topology,66 and effectors lie at
the waist where signaling inputs converge and outputs are disseminated. The authors
selected three epithelial cell types with profoundly different cell death and cytokine
responses to adenovirus infection and TNF. As expected, effector signaling was dramatically
different amongst the cell lines. But surprisingly, the difference in responses could be
captured by a common “effector processing” model that linked cell-specific effector signals
to cell-specific outcomes. This study thus suggested that cell-type specificity arises at the
transducer level between adaptor proteins33 and effector proteins.60

Like apoptosis, proliferation is promoted or suppressed by various external cues and has
been shown to be amenable to data-driven modeling. Two different studies constructed
PLSR models of proliferation, each illustrating different strategies for model training.
Kumar et al.53 measured downstream phosphorylation states in the context of siRNA
perturbation to construct a model of B-cell proliferation induced by the B-cell antigen
receptor. In this strategy, the authors used loss-of-function perturbations directed at known
network components to decompose input–output relationships in B cells. By contrast,
Kumar et al.54 took an approach that was less biased but more correlative. The authors used
mass spectrometry data of the phosphoproteome to identify a subset of nine phosphorylation
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sites on six proteins that accurately predict cell proliferation in response to EGF-family
cytokines. Together, these two studies show how the choice of training influences the
resulting value of a multiscale network-phenotype model.

Occasionally, intracellular signals are so tightly associated with certain cell functions that
the signal itself can be considered as a phenotype. For the fastest cellular responses, second
messengers such as Ca2+ and cAMP often fill this role. Saucerman et al.76 constructed a
differential equations-based kinetic model of cAMP production in cardiomyocytes, where
cAMP controls cell contractility. By perturbing the in silico network, they uncovered
potential mechanisms for maintaining cAMP concentration in response to iso-proterenol
stimulation. Cardiomyocyte contractility may be a special case where detailed molecular
models of signaling can scale to cell and tissue function.18

Like other cell phenotypes, second-messenger signaling is subject to convergent stimuli
from the environment. Chatterjee et al.16 examined calcium-signaling dynamics in platelets
activated by six different agonists. The authors collected calcium transients triggered by
individual or paired stimuli and used these data to build a neural-network model linking
inputs to calcium mobilization. The model accurately predicted the calcium trajectory of
platelets activated by higher-order combinations of stimuli despite that the model was
trained with data from pairwise stimulation. These results suggest that pairs of extracellular
stimuli are sufficient to capture how complex environmental inputs modulate signaling
outcomes, which may provide an important simplification for future studies.43

OUTLOOK AND FUTURE DIRECTIONS
Can models of signal transduction be scaled effectively beyond the level of a single cell?
Achieving this long-term goal will require models that can accommodate many more diverse
inputs while keeping track of individual cell fates across longer spatial and time scales.
Future modeling efforts will also need to invoke simplifications at the molecular level that
are acceptable for tissue- and organ-level simulations.

Signaling Across Multiple Cells
Paracrine-juxtacrine signaling plays an important role in the development and maintenance
of normal tissues.81 How multiple cells coordinate and respond to these signals is difficult to
decompose experimentally because they are highly iterative. During development, for
example, initial morphogen gradients drive tissue polarity, which leads to subsequent
molecular patterning.55 This complexity can be made more tractable when examining the
earliest cell-to-cell communication events in model organisms. In the Drosophila syncytium,
multiple nuclei share a common cytoplasm, and signaling can be dynamic and
compartmentalized during development. Sample and Shvartsman75 have begun to model the
reaction–diffusion dynamics of morphogens within this system, raising the possibility that
outputs from this model could serve as inputs for a multicell model after cellularization.
Syncytial modeling could provide a bridge between the single-cell molecular scales and
multicell spatial-time scales, much like how Xenopus biochemical reconstitutions have
helped to connect signaling pathways to higher-level network properties through
modeling.25,74

Multiscale Modeling with Heterogeneous Cell Populations
Cell-to-cell heterogeneity occurs in many normal and disease contexts, such as development
and cancer. Accounting for heterogeneity is important—there may be variation in molecular
states on a single-cell level so profound that the “average” cell in a computational model
does not exist.57 Recently, there have been several technical advances that allow more in-
depth monitoring of single-cell states. Bendall et al.9 reported the combination of flow
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cytometry with mass spectrometry (“mass cytometry”) as a means for quantifying dozens of
proteins within single cells. In this technique, antibodies are labeled with elements not
normally present in cells. These elements provide an isotopic tag for mass spectrometry
measurements that quantify the amount of protein of interest, and tags can be readily
multiplexed with antibody cocktails. Mass cytometry should be invaluable for identifying
heterogeneously activated signaling pathways in suspension cells, though sample-processing
challenges remain for adherent cells that must be dissociated before antibody staining.

Sampling strategies from multiple cells can also give single-cell information when combined
with quantitative analysis. Janes et al.48 reported a technique called “stochastic profiling,”
which uses repeated ten-cell samplings to identify heterogeneously expressed transcripts.
Ten-cell samplings avoid population averaging and allow for accurate nucleic acid
amplification that would not otherwise be possible from single cells. The analysis uses
statistical fluctuations in the 10-cell samplings to highlight genes that are heterogeneously
expressed. While the authors restricted their analysis to gene measurements, the general
sampling strategy could be extended to signaling measurements that are sensitive down to
tens of cells.42,65

Single-cell methods will help to guide our knowledge of how cells interact with one another
but raise an important challenge of how to synthesize and model these interactions. With this
goal, agent-based models have been successfully employed to interrogate cell–cell and cell-
environment interactions across longer spatial-time scales.68,69,71 These models treat
individual entities (e.g., cells) as “agents” that follow a set of biologically relevant rules.
Allowing the agents to iterate through the rules can reveal emergent phenomena of the
system. Agent-based models are powerful for examining the influence of the cellular
microenvironment,7 proposing critical cell-environment interactions that could easily be
overlooked.

Simplifications for Multiscale Modeling
The compounding complexity of signaling across molecular scales raises the question of
whether any simplifications can be invoked during the process of model building. Early on,
for example, modelers went to great pains to assign absolute number to concentrations of
signaling proteins in a network.11,17,51 The feeling was that such network models were not
“complete” unless they accurately captured each molecular detail that was encoded.
However, it soon became clear that systems-level properties of signaling networks were
robust to fluctuations in most of the constituent proteins.5,10,37,51 In addition, multiple
groups showed that the functional response of cells correlates more strongly with relative
changes in signaling rather than absolute levels.20,32,47,61 Consequently, there is now a
greater focus on the kinetic properties of signaling and the changes relative to a
semiquantitative baseline value.17,62 It is far easier to quantify relative fold changes in
signaling proteins compared to absolute levels.2 Adopting the fold-change simplification
therefore allows multiscale models to be constrained by a larger set of experimental data.
Similar results have since been reported for kinetic parameters,77 suggesting that network
topology may be the critical determinant of systems-level properties.

Another recently uncovered simplification involves signal processing and the superposition
of multiple environmental inputs.43 A decade ago, the first consortium-wide efforts for
signal transduction assumed that crosstalk and nonlinearities would abound among
receptors.31 Various instances of synergy and antagonism were uncovered in this work,63

but they were surprisingly rare compared to the number of stimulus pairs considered. Since
then, multiple independent studies have found that synergy or antagonism beyond pairs of
inputs is virtually nonexistent.16,30,38,43 Higher-level combinations of input stimuli are
transduced as linear combinations, providing a dramatic simplification for modeling the
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complexities of a cell’s microenvironment.43 One can efficiently survey the input–output
properties of a signaling network by using stimuli29,44 or perturbations28 in pairs to infer
other higher-order combinations by linear superposition.

CONCLUSIONS
There is no “one size fits all” approach for modeling signal transduction across multiple
scales (Table 1). For example, ordinary-differential-equation models thrive at capturing the
molecule-to-pathway scale, struggle with the pathway-to-network scale, and can only model
the networks-to-outcomes scale if the outcome is a molecular readout. Therefore, we predict
that true multiscale modeling in the future will require hybrid models that integrate
completely different model types in a coherent way.35 If successful, the clinical impact of
such models could be tremendous. Already, many signaling diseases are diagnosed and
treated at the molecular level. Our models must keep pace and strive to push the field
forward.
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FIGURE 1.
Multiple subcellular scales of signal transduction. Signaling molecules undergo
posttranslational modifications to modulate activity within a pathway. Multiple pathways
interconnect to form a signaling network, which collectively integrates external cues to
change cellular behavior. The multiscale properties of signal transduction can give rise to
surprising cellular responses when signaling is perturbed, as with the B-Raf inhibitor
PLX4032.34,70 Models seek to gain additional biological insight by bridging adjacent scales.
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TABLE 1

Modeling approaches at different biological scales.

Scale of model Modeling framework References

Molecules to pathways Motif identification and matching 58

Ordinary differential equations 1, 6, 17, 27, 37, 56, 62, 67, 79, 82

Combinatorics-oriented modeling 12, 24, 59

Pathways to networks Ordinary differential equations 8, 11, 15

Boolean networks 3, 73

Bayesian networks 72

Interaction matrices 63

Graphical Gaussian models 28

Networks to outcomes Ordinary differential equations 76

Partial least squares regression 21, 44, 50, 53, 54, 60

Neural networks 16
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