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Abstract
The genetic basis of neurodevelopmental and neuropsychiatric diseases has been advanced by the
discovery of large and recurrent copy number variants significantly enriched in cases when
compared to controls. The pattern of this variation strongly implies that rare variants contribute
significantly to neurological disease; that different genes will be responsible for similar diseases in
different families; and that the same “primary” genetic lesions can result in a different disease
outcome depending potentially on the genetic background. Next-generation sequencing
technologies are beginning to broaden the spectrum of disease-causing variation and provide
specificity by pinpointing both genes and pathways for future diagnostics and therapeutics.

Introduction
High-throughput genetic analyses, including current advances in detecting copy number
variants (CNVs) and single nucleotide variants (SNVs), are leading to an explosion in the
number of candidate genes and genomic regions contributing to neurodevelopmental disease
[1-3]. This has been accompanied by a change in focus from a genetic model involving
common genetic variants (>1 % frequency) to rare variants of high impact that are
collectively common. CNV analyses, in particular, have led to the identification of
numerous genomic regions, which, when deleted or duplicated, increase risk for autism,
schizophrenia, epilepsy, and numerous intellectual disability phenotypes. Several themes
have emerged from these and recent genome sequencing studies. 1) Every human carries a
surprisingly large number of essentially disruptive mutations that are extremely rare
(estimated at 250-300 genes per individual) [4]. 2) For certain neurological diseases there is
an emerging view that there is an overall increase in the burden of the most disruptive
mutations (i.e., larger CNVs). 3) Dozens of mutations in different regions and different
genes have been identified for seemingly identical neurodevelopmental disorders. This is in
stark contrast to earlier Mendelian disease models where one gene was primarily responsible
for diseases such as Huntington disease, Duchenne muscular dystrophy, and familial
Parkinsonism. 4) Finally, mutations in the same gene or seemingly identical large CNVs
may result in very different disease outcomes. Interpretations of these findings are
compounded by the lack of a consensus phenotyping criteria and the notion of various
subtypes for a given “umbrella disorder.” These observations have suggested a more
complicated genetic model underlying the etiology of neurodevelopmental disorders. Given
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their population prevalence and the cost to the healthcare system, genetics provides the best
prospect to furthering our understanding of their cause, genetic counseling options, and
eventually improved treatments. In this review we will highlight the current status of whole-
genome efforts to identify genes and discuss their implications in the context of a common
neurodevelopmental model for disease.

Copy number variation in neurodevelopmental disorders
Genetic linkage analysis and chromosome karyotype analyses initially played a key role in
the discovery of genes important in neurological disease [5-9]. Many of these disorders were
clinically well-defined and relatively quite rare facilitating their rapid genetic delineation.
Other more common and complex phenotypes, including developmental delay, epilepsy,
schizophrenia, and autism, in the general sense, have been genetically more elusive although
successful linkage studies suggested a model where different genetic loci (each in a different
family) contributed to disease. Genome-wide association studies (GWAS) have identified
relatively few common variants of large effect, leading to increased interest in a rare-variant
common-disease model to help explain the missing heritability [10].

Strong support for this model arose from the initial studies of large copy number variation of
idiopathic cases of disease [11-15]. CNV studies using array comparative genomic
hybridization (arrayCGH) or single nucleotide polymorphism (SNP) microarrays identified
numerous large deletions and duplications among patients with neurodevelopmental disease.
While very few specific loci initially reached statistical significance, a consistent pattern of
increased CNV burden, particularly for large CNVs affecting multiple genes, was reported.
This heterogeneity meant that sample sizes of a several hundred patients were insufficient to
claim significance at the individual CNV level. Two studies recently examined CNVs in
some of the largest cohorts (~15,000) of children with developmental delay and intellectual
disability [1,2]. This has led to the discovery of new sites of potentially pathogenic variation
and refinement of the smallest region of overlap of previously identified loci [1]. There are
now 59 CNVs corresponding to 39 distinct genomic regions that show enrichment in CNVs
among cases when compared to controls. The majority are large (>300 kbp), comprising on
average 10-15 genes. Each CNV locus is extremely rare, with the most recurrent flanked by
segmental duplications, which elevate local CNV mutation rates as a result of unequal
crossover [14,16,17]. For Intellectual Disability/Developmental Delay (ID/DD), 25.7% of
ascertained cases carry a CNV greater than 400 kbp in size, compared to only 11.5% of the
control population (Figure 1A) [1]. It is, thus, predicted that 14.2% of disease may be
associated with large CNVs. This matches well with the diagnostic yield of 14.7% described
by Kaminsky et al., which also focused on large CNVs (primarily >500 kbp) [2], and
previous studies reviewed in Hochstenbach et al. 2011 [18].

Comparisons of CNV burden for different diseases suggest increasing CNV burden in
disorders with greater phenotypic severity (defined here in terms of increasing comorbid
cognitive impairment and congenital abnormalities) [1,19,20]. Cases with congenital
malformations demonstrate the greatest increase in CNVs followed by ID/DD. Intermediate
burdens were observed for idiopathic generealized epilepsy (IGE), autism spectrum disorder
(ASD) and schizophrenia. While CNV studies for children with ID/DD show an increase of
14.2% for large CNVs, the burden is lower for ASD [1,21,22] with a diagnostic yield around
6-8% predominantly from de novo CNVs [18,21,22]. Studies of adults with schizophrenia
and epilepsy demonstrate lower diagnostic yields of ~5% [11,12,18,23,24]. For other
neurodevelopmental conditions there is either conflicting evidence for increased CNV
burden, such as for bipolar disorder [25,26], or no evidence, as for Tourette’s syndrome and
dyslexia [19,20,27]. In all cases burden statistics are more significant when considering de
novo events exclusively [15,18,21,22,26].
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One possible interpretation of these results is that large CNVs, by virtue of affecting more
genes by way of dosage imbalance, demonstrate a larger effect size than small CNVs and
SNP variants. Consistent with this observation, the odds of a CNV being de novo is linearly
proportional to its size with CNVs larger than 1 Mbp being more likely to arise sporadically
than inherited from a parent (Figure 1A). There is compelling evidence, then, that CNVs are
under strong purifying selection in the general population [24,26,28]. Remarkably, as much
as 8-10% of the general population carries such extremely rare or private CNVs suggesting
that they must play an important role in human health.

Size spectrum of copy number variation
The majority of CNV loci convincingly classified as pathogenic to date are large (>500
kbp). We posit that this reflects both a technological limitation and an ascertainment bias as
a result of the mutation severity. Affordable whole-genome sequencing [29] has revealed a
plethora of uncharacterized genetic variation below the lower limits of arrayCGH and SNP
array platforms, which rapidly lose genome-wide sensitivity below 50 kbp for most
commercial arrays [30]. The number of CNVs per individual increases linearly as sizes
approach 100 kbp (closely related to the de novo rate and matching observations of selection
against large CNVs), but then begins to increase exponentially for CNVs less than 10 kbp in
size (Figure 1B) [31]. This poses a significant challenge in the study of smaller variants that
are more likely to be inherited (Figure 1A) but present at a far greater count in any given
individual (Figure 1B). Larger, ethnically matched control populations in conjunction with
information regarding the inheritance will be required to assess significance as “the
haystacks get larger and the needles become smaller.”

Whole-genome sequencing experiments focus primarily on detecting SNPs and indels
(typically below ~20 bp in length). The analysis of copy number and structural variation is
frequently an afterthought requiring specialized and computationally intensive methods
[4,29,30]. No method is comprehensive and each differs in its sensitivity as a function of
size and class of CNVs. Read-pair methodologies, for example, are most sensitive to events
between 40 bp and 1 kbp (depending on library insert sizes and consistency) [30-33]. Read-
depth methodologies are powerful for detecting copy number changes greater than 10 kbp
and are dependent on sequence coverage, which limits the number of genomes that can be
analyzed [29,30,34-37]. This leaves a gap in our detection abilities between about 1 kbp and
50 kbp where performance is suboptimal (Figure 1B).

Despite these challenges, studies are beginning to approach the gap in genetic variation from
both ends. In addition to point mutations and indels [38,39], exome sequencing data can be
used to discover larger events of potential relevance to disease [40,41]. Similarly, higher
resolution and targeted array studies have identified numerous candidate CNVs well below
500 kbp [42-46]. Some recent prominent examples include a small duplication of VIPR2 in
schizophrenia, and focal partial deletions of TMHLE in ASD [44,47,48]. Smaller CNVs also
confer the advantage of reducing the smallest region of overlap for large CNV regions, such
as the potential refinement of the 15q13.3 microdeletion to CHRNA7, the 17q21.31
microdeletion to MAPT/KIAA1267 [1], and the 16p11.2 deletion to SEZL6 [49-51].
Importantly, small CNVs are converging at sites where other events such as rare point
mutations and translocation breakpoints have highlighted candidate genes. One such
example is the 2q23.1 deletion syndrome, which has been associated with intellectual
disability, seizures, microcephaly, and speech delay. Recently, the minimal region has been
fine mapped via deletions as small as 37 kbp to a single gene—MBD5 [1,52-55]. This gene
has also been discovered to contain both a rare mutation and common variants as well as
translocation breakpoints by sequencing studies of ID, epilepsy, and ASD (Figure 2)
[52,53].
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These results hint that smaller CNVs are a promising direction for future studies
complementing screens for disruptive point mutations by providing stronger priors for rare
singleton mutations in the limited populations studied. This is especially important given our
current abilities to apply arrayCGH in a clinical and basic research setting to tens of
thousands of individuals, while sequencing is typically restricted to smaller cohorts
(hundreds) for any given disease. Eventually, as we progress to more affordable sequencing
of larger populations, a more comprehensive view of all forms of genetic variation will
emerge. Integrating both CNV and sequence data will be mutually beneficial in pinpointing
the most likely candidate genes.

A genetic model of neurodevelopmental disease
An interesting observation to emerge from CNV research has been the distinction between
syndromic CNVs (e.g., Williams Syndrome deletion at 7q11.23) and CNVs that are much
more variable in their outcome. The 15q13.3 microdeletion, for example, is significantly
enriched in cases of autism, schizophrenia, and epilepsy being found in as many as 1% of
IGE cases but absent in ethnically matched controls [1,2,22-24,56-59]. These and other
observations imply that seemingly diverse disease states may share some common genetic,
and perhaps neurodevelopmental, etiology. Moreover, the syndromic CNVs are most
frequently de novo indicating that they are necessary and sufficient while the variable
expressive CNVs are much more likely to be inherited from less severely affected parents.
This indicates that they are, by themselves, insufficient to determine disease outcome [1,60].
The mechanisms for this variable expression are not clear but there is compelling evidence
of an oligogenic model where multiple rare private variants of moderate to large effect
compound to determine final phenotypic outcome [52,60,61]. This model is perhaps
strongest for the 16p12.1 microdeletion. In this case, the deletions are almost always
inherited; developmental delay patients carrying this microdeletion are significantly
enriched for additional CNVs—so called second-site hits; and carrier parents of the 16p12.1
deletion are more likely to suffer from neuropsychiatric disease than noncarrier parents for
the deletion [60]. These results suggest that the 16p12.1 microdeletion creates a sensitized
state and that additional modifier loci (i.e., CNVs) are required to result in a child that is
more severely developmentally disabled.

The implication of this model is both sobering and exciting. CNV and early genome
sequencing experiments both implicate hundreds to thousands of different genes underlying
various neurological phenotypes [22,39]. Analyses of candidate genes, however, are
beginning to converge on a subset of protein-protein interaction networks or biological
processes, many of which are strongly tied to neurodevelopment [18,52,62-64]. Genes
involved in synaptic function have been repeatedly shown to play a role in neurological
disorders [62,63,65,66]. Recent studies of ASD have identified overrepresentation of CNS
development genes in addition to several other pathways [21,65,67]. In our own recent
analysis of 209 exomes from patients with sporadic autism, we found that 39% of the de
novo disruptive mutations formed a highly interconnected protein-protein interaction
network involving beta-catenin upstream and downstream regulation (Figure 3) [52].
Notably, this pathway was not observed to be enriched in unaffected siblings and ranked
significantly with respect to other autism candidate genes. Interestingly, several cases
demonstrated multiple disruptive de novo events within this same network.

Future Directions
The development of the human brain is complex involving thousands of different genes.
With respect to disease, we envision that this process can be perturbed either by individual
mutations of singularly large effect or by a few disruptive mutations in different genes
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(oligogenic) that compound at the molecular level to lead to variable outcomes with respect
to neurodevelopmental disease. The former mutations are largely sporadic in origin while
the latter are more likely to be inherited. In both cases, we propose that individual
pathogenic or modifier loci are extremely rare but collectively common in the population.
Under this model, the focus should be on the discovery of disruptive mutations in cases that
are largely absent from the general population. The extreme locus heterogeneity implies that
most initial sequencing studies will be woefully underpowered to prove pathogenicity of any
given gene [52]. Power will arise from 1) the integration of both CNV and SNV data to
triage specific regions or candidate genes; 2) consideration of disruptive mutations across
different diseases (e.g., meta-analyses of epilepsy, schizophrenia, autism cohorts, etc.); and
3) pathway and functional analyses that converge on specific pathways (Figure 4). Once
identified, pathways of clinical significance will become the target of both better diagnostics
and, ultimately, therapeutics.
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Highlights

Current mutation discovery efforts for neurodevelopmental disorders are focused on large
CNVs and small protein-coding SNVs and indels. Between these extremes lies an under-
ascertained range of genetic variants between 1 and 50 kbp, representing a promising
range for future expansion of gene discovery.

Extensive phenotypic variability has been documented for large CNVs with seemingly
similar breakpoints. There is evidence in support of an oligogenic model, where multiple
rare variants of large effect may aggregate within individuals and underlie this
variability.

Despite extreme locus heterogeneity and seemingly disparate phenotypes, genetic studies
are beginning to converge on a core set of biological pathways across a diverse array of
neurodevelopmental conditions. This suggests that a large component of the genetic
etiology may be shared. These pathways are important targets for diagnosis and
therapeutic development.
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Figure 1. CNV burden and de novo rates
(A) CNV burden becomes significantly greater at >100 kbp in cases (blue line) of
developmental delay when compared to controls (green). The observed size of a large CNV
(>100 kbp) is linearly proportional (black line) to the odds that it originates sporadically. We
anticipate that this trend (red line) will hold below 100 kbp (dropping exponentially as it
approaches the size of an indel). In conjunction with an increase in CNV rates for smaller
events, this implies that a significant amount of de novo CNV load remains to be discovered
in the under-ascertained 10–50 kbp range. (B) The relative number of structural variants
(SVs) detected in a normal individual is displayed as a function of SV size. The number of
SVs begins to climb exponentially below ~500 bp reaching on the order of 10,000 events
per person at 50 bp. Conversely, large events are significantly rarer with 500 kbp events
detected in only a subset (9%) of individuals. Current paired-end sequence methodologies
lose detection sensitivity above ~10 kbp, while array-based platforms rapidly lose sensitivity
below 50–100 kbp. As a result, CNVs in this moderate size range are under-ascertained by
the majority of methodologies.
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Figure 2. 2q23.1 microdeletion syndrome refinement
Highlighted are deletion cases from three recent studies that detected focal deletions (37.7
kbp to >1 Mbp) and point mutations converging on MBD5 as the critical gene for the 2q23.1
microdeletion syndrome. In a panel of 8,329 controls only two deletions were detected [1].
*Breakpoints for van Bon et al. [54] are rounded to the nearest 100 kbp. **CNVs from
Talkowski et al. [53] overlap with cases from Cooper et al. [1] and are not shown.
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Figure 3. Protein-protein interaction network for ASD gene mutations
(A) Shown is a highly interconnected protein-protein interaction network consisting of
49/125 severe de novo gene mutations identified from 209 children with simplex autism
described in O’Roak et al. [52]. The pathway is enriched in upstream and downstream
regulators of beta-catenin. It ranks significantly with respect to autism genes and is not
identified in similarly characterized unaffected siblings. (B) An example of a patient with
autism who carries three de novo truncating mutations in genes that encode proteins that are
part of a beta-catenin linked network.
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Figure 4. A model for neurodevelopmental disease
Two paths are shown involving either 1) mutation events of singularly large effect (e.g., a de
novo CNV) resulting in disease or 2) rare mutations that compound to lead to disease of
varying severity and expressivity. The intersection of CNV, indel, and point mutation can be
used to readily identify primary genes where imbalance is sufficient to cause disease. In the
second pathway, multiple events will need to co-exist in an individual to elicit a disease
phenotype. Mutations in both converge on common protein interaction networks and genetic
pathways important in neurodevelopment.
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