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Abstract
X-linked Infantile Spasms Syndrome (ISSX) is a catastrophic epilepsy of early childhood with
intractable seizures, intellectual disability, and poor prognosis. A spectrum of mutations in the
Aristaless-Related Homeobox gene (ARX) has been linked to ISSX, and downstream targets of
this interneuron-expressed transcription factor are being defined. Recent advances combining in
vitro and in vivo methods have unveiled complex interactions between Arx and its binding
partners and their effects on cell migration and maturation that can help explain the diversity of
ARX phenotypes. New mutant mouse models of Arx-induced pathology, including a recent
human triplet-repeat expansion mutation with a phenotype of infantile spasms and electrographic
seizures, provide valuable tools for exploring the pathophysiology of Arx and substrates for
testing novel therapies.

Introduction
X-linked Infantile Spasms Syndrome (ISSX; OMIM ID: 308350) is a rare and catastrophic
epilepsy syndrome of childhood that consists of early-onset myoclonic spasms, irregular
high voltage EEG waves termed hypsarrhythmia, followed by intractable seizures and
intellectual disability (ID) associated with autistic features. ISSX is one of over a dozen
infantile spasms syndromes for which single genes have been discovered in the last decade,
triggering a molecular reclassification of this major category of pediatric epilepsy [1*].
While the clinical spasms usually subside by age 5, epilepsy and ID persist through
adulthood. Although a brief course of adrenocorticotropic hormone (ACTH) therapy can
control spasms in the short term, there are concerns about long-lasting side effects and its
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overall efficacy [2, 3, 4]. In addition, no current therapies have been shown to prevent
epilepsy or improve the intellectual outcome of patients with ISSX [5, 6, 7, 8, 9]. Therefore,
understanding the mechanisms underlying ISSX and developing novel therapies remain
critical scientific and clinical priorities.

The last decade has witnessed critical advancements in our understanding of the
pathophysiology of the syndrome, beginning with the finding that expansions in the first and
second poly-alanine tracts (pA1 and pA2) in the transcription factor gene Aristaless-
Related Homeobox (ARX) (GenBank ID: NG_008281.1) cause ISSX [10, 11, 12, 13]. ARX
mutations cause a spectrum of clinical disorders, from X-linked Lissencephaly and
Ambiguous Genitalia (XLAG; OMIM ID: 300004) to ISSX and non-syndromic mental
retardation (OMIM ID: 300419) [14]. In the CNS, ARX is expressed in subpallial
proliferative zones and in developing and adult interneurons, where, under the influence of
DLX1/2 and a downstream network of transcription factors, it plays a pivotal role in
migration and differentiation [15, 16, 17, 18, 19, 20, 21].

The first mouse model to be generated, the constitutive Arx knockout mouse (ArxKO),
displays XLAG-like characteristics with a small brain and severe interneuron migration
deficit. ArxKO mice die soon after birth, preventing the study of the role of Arx in postnatal
neurodevelopment [22] (Table 1). To overcome this limitation, several groups have
developed postnatally viable rodent models of Arx mutations featuring full longevity. Also,
the past two years have seen significant progress in exploring the molecular pathology of
Arx mutations and their impact on gene expression during development.

Mutations in ARX domains lead to distinct phenotypes
ARX has several conserved domains: the octapeptide domain, 3 nuclear localization
sequences (NLS1-3), 4 poly-alanine tracts (pA1-4), the DNA-binding homeodomain (HD)
and the Aristaless domain [11,15] (Fig. 1). Truncations and HD mutations commonly cause
severe phenotypes, whereas missense mutations and in-frame expansions of the first two
pAs associate with the more neurologically restricted ARX phenotypes, such as ISSX [14].
Despite this apparently consistent genotype-phenotype relationship, precise details on the
complex molecular pathology of different ARX mutations are poorly understood. In recent
years, several attempts to reproduce the most common ARX mutations and investigate their
downstream effects have appeared and are reviewed here.

The transfer of Arx into the nucleus is mediated by importins, which transiently bind to the
NLS and release Arx inside the nucleus by a RanGTP-dependent mechanism [23,24]. In an
in vitro trafficking study, Arx proteins with naturally occurring NLS mutations and
overexpressed in HEK293 cells accumulated next to the nuclear membrane and co-localized
with the importin, IPO3. In contrast, WT Arx diffusely stained throughout the nucleus and
did not co-localize with IPO3, suggesting that IPO3 normally rapidly dissociates from Arx
once inside the nucleus. Interestingly, binding of NLS mutated Arx to IPO3 was
indistinguishable from WT Arx. However, mutant Arx proteins did not dissociate from IPO3
once inside the nucleus, suggesting that the principal defect is the inability of mutant Arx to
uncouple from IPO3 [25*].

Arx directly represses the transcription of Lmo1, Ebf3, and Shox2 [26,27**] (Fig. 2). To
investigate how missense HD mutations may affect this repression, Shoudbridge et al.
(2011) measured transcript levels of Lmo1 and Shox2 in HEK293T cells transiently
overexpressing either WT Arx, NLS, or HD mutants. Electrophoretic mobility shift assays
(EMSA) and ChIP-qPCR data suggest that HD mutations lead to de-repression of Arx
targets by loss of DNA binding. NLS mutations also result in transcriptional de-repression,
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which could be explained by the formation of peri-nuclear aggregates. Conversely, HD
mutants would not be expected to mislocalize or form aggregates, yet some HD mutations
(i.e. L343Q, P535R, and R358S) display double the rate of protein mislocalization relative
to WT-Arx. Although below the 5-7 fold rate of abnormal protein localization observed in
NLS mutants, this result raises the possibility that some HD mutations partially disrupt
nuclear translocation [28*].

A 24-bp duplication in pA2 and a 7-alanine expansion in pA1 are both common causes of
ISSX, although other mutations have been reported [10,11,13]. The connection between
relatively small in-frame expansions in a poly-alanine tract and the cellular pathogenesis of
infantile spasms, seizures, and intellectual disability is unclear. One hypothesis, that
expansions of Arx lead to misfolding and aggregation, has gained traction after the finding
that overexpression of Arx with expanded pA1 and pA2 in vitro caused Arx mislocalization
and increased cell death [23,29]. Recently, heterologous overexpression of expanded Arx
proteins in HEK293 cells produced similar results [30]. New mutations in pA1 and pA2
found in patients were introduced into HEK293T cells. The degree of protein
mislocalization correlated with the length of the pA expansion and phenotypic severity.
Protein mislocalization was also observed in Arx proteins containing point mutations in the
HD [28*]. Although nuclear translocation defects and protein misfolding can result in
mislocalization, it is possible that the degree of mislocalization and aggregation observed in
heterologous overexpression systems may not be the same in developing neurons. In fact,
the recently reported pA1 expansion mouse model does not show increased cell death, and
protein mislocalization is nonuniform, appearing predominantly in a subset of interneurons
in the somatosensory cortex [31**]. Therefore, protein mislocalization may only partially
explain Arx pA1 expansion cellular pathology; and other defects in regulation of gene
expression may be contributing factors. In vivo data from electroporation of ArxE (8-alanine
expansion in pA1) in Arx-/Y embryos support this notion. While WT-Arx rescued radial and
tangential migration, ArxE partially rescued radial, but not tangential, migration. This was
accompanied by a selective transcriptional de-repression of Arx direct targets, raising the
possibility that radial and tangential migration modes require expression of distinct gene
subsets [32**]. These results disagree with in vitro data where increasing the length of pA1
and pA2 resulted in increased transcriptional repression as measured by a reporter vector
[33].

Co-factors can refine the activity of transcription factors with cell-type specificity. In the
case of Arx, the co-repressor Tle1 displayed diminished binding to ArxE in vitro. It is
possible that differential expression of Tle1 and other unknown Arx co-factors across the
forebrain may partially explain the different effects of ArxE on radial and tangential
migration and the broad spectrum of ARX phenotypes [32**,33]. Overall, these studies
paint a complex picture where protein mislocalization and selective gene deregulation both
contribute to the molecular pathogenesis of Arx pA expansions.

Transcriptional control of Arx targets
Mutations that impair DNA binding, nuclear translocation, or interactions with co-repressors
are likely to differentially impact the expression of Arx targets, which may partially explain
the broad spectrum of ARX-related phenotypes. In fact, relatively subtle single nucleotide
homeodomain mutations display significant differences in transcriptional repression [34]. In
C. elegans, deletion of the Arx orthologue, alr-1, results in a highly variable touch-
insensitive phenotype, suggesting a role for alr-1 in maintaining a high expression level of
its targets by minimizing stochastic variation in their transcription [35*]. Although it is
difficult to translate these results to mammalian brain, they may contribute to the clinical

Olivetti and Noebels Page 3

Curr Opin Neurobiol. Author manuscript; available in PMC 2013 October 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



variability in humans with ARX mutation, notwithstanding environmental and genomic
individual differences.

Given the dimensions and severity of human ARX-related disease, the identification of
novel ARX targets and elucidation of their individual roles in neurodevelopment are high
priorities. Recent microarray and qPCR efforts have led to the discovery of 35-84 genes
potentially regulated by Arx. Three of these genes have been confirmed as direct targets:
Lmo1, Shox2 and Ebf3. In addition, Arx modifies the brain expression of Lmo3, Lmo4,
Cxcr4, Cxcr7, and Lhx7, among others [26,27**]. Cxcr4 and Cxcr7 are receptors that bind
stromal cell-derived factor α (SDF-α) and play distinct roles in interneuron migration [36,
37, 38, 39, 40, 41]. The transcription factor gene Ebf3 is strongly repressed by Arx and its
ectopic expression in Arx null mutants halts the normal migration of interneurons, indicating
that its gene targets are key regulators of cortical development. In contrast, ectopic
expression of Lmo1, another transcription factor gene normally repressed by Arx, did not
result in detectable migration deficits [27**]. Dozens of potential novel downstream targets
have recently been identified using a high-throughput method to detect Arx binding to
promoter regions, enriching the already complex pool of genes controlling interneuron
development that may be regulated by Arx [42] (Fig. 2).

While in vitro methods have permitted a rapid growth in our understanding of Arx-driven
molecular pathology and transcriptional defects, the creation of rodent models engineered
with Arx mutations remains a necessary step for investigating how endogenously expressed
mutant Arx proteins alter specific steps in interneuron development leading to the neural
circuit deficits and clinical features of ISSX.

Engineered Arx poly-A expansions in mice reproduce human ARX/ISSX
phenotypes

While the first constitutive Arx knockout mouse model highlighted the importance of Arx in
development, the null mutant dies shortly after birth, limiting its usefulness for studying the
role of Arx in adulthood [22]. To test the hypothesis that Arx deficiency in developing
interneurons is sufficient to replicate features of ISSX, Marsh et al. (2009) created a viable
conditional knockout model of Arx by deleting the gene only in cells within the medial
ganglionic eminences. The conditional Arx knockout (Arx-/Y; Dlx5/6CIG) displays
spontaneous seizures by day P14, abnormal EEG patterns, and loss of calbindin
immunoreactive neocortical interneurons. The presence of infantile spasms was not noted in
this model. Interestingly, heterozygous females also showed spontaneous seizures, but not as
frequently as male hemizygotes [43*]. Although there are no known human null mutations
reported, the Arx-/Y; Dlx5/6CIG mouse represents a unique opportunity to study the role of
Arx in interneuron development in brain tissue with an otherwise wild-type background,
which may provide additional clues regarding interneuron specific mechanisms underlying
ISSX (Table 1).

Recently, two mouse models engineered with expansions in pA1 which reproduce the
human 7-alanine expansion have been independently developed [31,44**]. The model
published by Kitamura and colleagues, Arx(GCG)7/Y, survived for approximately 3 months,
allowing the detection of spontaneous seizures, learning impairments, loss of cholinergic
and GABAergic interneurons, and interneuron migration deficits in the developing brain. In
their study, two other models with homeobox domain mutations, P355L and P355R, were
also made for comparison. The ArxP355L (or ArxPL) line had a similar, but more subtle
phenotype compared to Arx(GCG)7/Y. These features stood in striking contrast to the
ArxP355R (or ArxPR) model whose mutation lies in the same position within the gene, yet
causes perinatal death, gross brain malformations, and severe defects in interneuron
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migration similar to the Arx-/Y mouse and human XLAG [44**]. It has been shown that an
expanded Arx protein at the pA1 results in misregulation of Arx transcriptional targets [23].
Therefore, it is possible that the P355L and the (GCG)7 mutations result in a similar defect
in transcriptional regulation (Table 1, Fig.1).

The model developed in our laboratory has a similar 7-alanine (GCG)7 expansion mutation,
but with a notable difference. Unlike the human ARX gene, where pA1 has 16 alanine
codons (10 of which are coded by GCG), the pA1 in the mouse Arx contains 15 alanine
codons (4 of which are coded by GCG). To achieve the same 23-alanine long pA1 tract
mutation seen in humans, an expanded poly-alanine mutation was inserted in the pA1 of the
mouse orthologue such that it contained a total of 23 alanine residues. This humanized
mouse model of ARX pA1 expansion, denominated Arx(GCG)10+7, has a normal life span,
and displays spontaneous seizures and frequent interictal spikes in the EEG. In addition,
Arx(GCG)10+7 mutant pups display a transient pattern of dyskinetic motor spasms during the
first two weeks of life resembling motor spasms observed in humans with ISSX [31**].
Notably, hypsarrhythmia, an EEG abnormality commonly seen in association with human
infantile spasms, was not observed in Arx(GCG)10+7 mutants studied at 2 weeks postnatal,
although mice were not examined for this EEG phenotype at earlier postnatal stages when
spasms were present due to technical challenges. Hypsarrhythmia has not been observed in
all ISSX cases with a known orthologous ARX triplet repeat expansion [45]. Arx(GCG)10+7

mutant mice do display impaired learning ability and social interactions, which parallel the
human ID syndrome (Table 1).

At the neuropathological level, the Arx(GCG)10+7 mutation causes a partial loss of
neocortical calbindin- and NPY-positive GABAergic interneurons and loss of striatal NPY-,
calbindin-, and ChAT-positive neurons. Parvalbumin- and calretinin-positive neurons are
largely spared. This pattern of interneuronal loss suggests that specific regional patterns of
synaptic dysinhibition may generate the complex phenotype of epilepsy, motor spasms, and
cognitive impairment. Intracellularly, the molecular lesion also displays complexity, since
cytoplasmic inclusions in the Arx mutant are seen in somatosensory cortex neurons but not
observed elsewhere in the forebrain, suggesting that protein mislocalization may be cell-type
specific rather than playing a uniform role in in the development of the Arx(GCG)10+7

phenotype [31**]. The viability of the Arx(GCG)10+7 mouse model containing the human-
like 23-alanine expansion in pA1 with a phenotype closely resembling human ISSX makes it
a valuable tool for studying the pathophysiology and potential future treatment strategies of
ARX diseases in vivo.

Conclusion
The recent studies on how Arx mutations alter its function, the identification of novel
transcriptional targets, and the creation of clinically relevant models of ARX/ISSX represent
a significant advance toward understanding the pathogenesis of human ARX-mediated
disease. Alterations in gene expression patterns driven by Arx mutations have highlighted
genes whose precise roles in neurodevelopment and the rise of ISSX and other Arx-related
disorders have yet to be described. While in vitro studies continue to provide a framework
for exploring the molecular pathology and cellular consequences of various Arx mutations,
the recent generation of several models of Arx deficiency based on naturally occurring
human mutations has provided valuable tools to validate downstream gene changes in the
context of the developing brain, and an opportunity to link these with human neurological
phenotypes. These models are also likely to provide useful substrates for investigating novel
therapies for Arx-related diseases, for which only limited treatment options exist.
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Highlights

ARX is a transcription factor deeply involved in interneuron development

ARX mutations can cause epilepsy, infantile spasms, and intellectual disability

Downstream consequences of Arx mutations reveal complex molecular pathogenesis

Mouse models of human ARX mutations are valuable tools to study role of Arx in
vivo

New mouse models provide a substrate for the investigation of novel therapies
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Figure 1.
Diagram of Arx gene and its major conserved functional domains. These domains include
the Octapeptide domain, 3 Nuclear Localization Sequences (NLS1-3), 4 poly-alanine tracts
(pA1-4), the DNA binding Homeodomain (HD), and the Aristaless domain. The general
location of the mutations of current experimental Arx mouse models is shown.
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Figure 2.
Arx regulates transcription of genes involved in interneuron development. The transcription
factors Dlx1/2 upregulate Arx expression. Arx itself acts as both a transcriptional suppressor
and an activator. Arx regulates transcription of several genes, including other transcription
factors such as Lhx7, Gbx1, Ebf3, Lmo1/3/4, and Shox2, each of which play distinct roles in
interneuron proliferation, migration, and differentiation. Other targets, such as Cxcr4,
encode chemokine receptors directly involved in regulation of interneuron migration during
embryonic and early postnatal development.
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