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The publication of the promising results of the Edmonton protocol in 2000 generated optimism for islet transplantation as
a potential cure for Type 1 Diabetes Mellitus. Unfortunately, follow-up data revealed that less than 10% of patients achieved
long-term insulin independence. More recent data from other large trials like the Collaborative Islet Transplant Registry show
incremental improvement with 44% of islet transplant recipients maintaining insulin independence at three years of follow-up.
Multiple underlying issues have been identified that contribute to islet graft failure, and newer research has attempted to address
these problems. Stem cells have been utilized not only as a functional replacement for β cells, but also as companion or supportive
cells to address a variety of different obstacles that prevent ideal graft viability and function. In this paper, we outline the manners
in which stem cells have been applied to address barriers to the achievement of long-term insulin independence following islet
transplantation.

1. Introduction: An Emerging Field in
Treatment for Type I Diabetes Mellitus

The promising results of the Edmonton protocol, published
in 2000, brought new enthusiasm to the field of islet
transplantation. With this method, Shapiro et al. combined
a glucocorticoid-free immunosuppression regimen with
improved techniques for islet isolation and purification,
followed by transplantation via percutaneous transhepatic
portal embolization of 4000 islet equivalents per kilogram
of body weight. Although most patients required repeated
transplants to achieve insulin independence, at a median
follow-up of 11.9 months, all seven patients who had under-
gone islet transplantation had no requirements for exoge-
nous insulin. Prior to the procedure, recipients uniformly
suffered from recurrent severe hypoglycemic episodes, and
they experienced resolution of these episodes with increased

stability in blood glucose values afterwards. No major com-
plications occurred. These outcomes generated hope that
islet transplantation would optimize metabolic control in
patients with Type 1 Diabetes Mellitus (T1DM) and obviate
the need for exogenous insulin administration [1].

However, to the great disappointment of the medical and
research communities, long-term follow-up of transplanted
patients revealed less encouraging outcomes. Among a
cohort of 65 patients followed for an average of 35.5 months
after transplantation, most were able to achieve short-term
insulin independence, but 92.5% eventually required insulin
to maintain glycemic control. These results were tempered by
persistent C-peptide positivity in 82% of patients, as well as
sustained improvements in hypoglycemia and blood glucose
lability in those with surviving grafts [2]. The recently
released report of the Collaborative Islet Transplant Registry
is more encouraging with 44% of the 208 allograft recipients
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in the 2007–2010 era maintaining insulin independence at 3
years of follow-up, but still leaves room for improvement [3].
These limitations of long-term graft function have brought
attention to the need for further refinements in the islet
isolation and transplantation process.

2. Etiologies of Graft Dysfunction

Multiple reasons have been cited as underlying etiologies
of graft failure. The period surrounding transplantation is
marked by a rapid loss of approximately 50–70% of donor
islets [4, 5]. This large-scale islet loss is partly caused by the
quality of donor pancreata as well as the isolation process
itself, which includes enzymatic digestion, cold-storage time,
and exposure to hypoxia during isolation and culture [6].
These combined stresses generate inflammatory cytokines
and initiate proapoptotic NF-κB, mitogen-activated kinase,
and poly(ADP-ribose) polymerase stress pathways before
transplantation has even occurred [7, 8].

Another major culprit in early islet death is the innate
immune system, which launches a large-scale inflammatory
reaction, initiating massive β cell death immediately after
percutaneous infusion [4, 9]. This instant blood-mediated
inflammatory reaction (IBMIR) occurs secondary to the
brisk activation of coagulation and complement cascades,
which are triggered by exposure to human blood [10].
While collagen residues and islet surface molecules activate
the intrinsic coagulation cascade, tissue factor, which is
secreted by transplanted islets and expressed on ductal cells
that contaminate islet preparations, activates the extrinsic
cascade. Coagulation as well as collagen residues lead to
platelet activation. Complement activation can occur also
via classical and alternative pathways. These processes are
followed by spread of inflammatory cells into the islet,
resulting in cytotoxicity and the eventual progression down
apoptotic pathways [9–11].

Although the innate immune response causes early β
cell death, long-term deterioration in graft function is also
related to allo- and autoimmunity [2]. Similar to solid organ
transplants, islet grafts are susceptible to the development of
allograft rejection via sensitization to alloantigens presented
by antigen presenting cells and subsequent activation of a
T cell-dependent immune response [12, 13]. Unfortunately,
another consequence of the IBMIR is antigen presenta-
tion of transplanted islets by infiltrating neutrophils and
macrophages [11]. The rejection process can be mitigated
by immunosuppressants, but once drug levels are decreased,
allosensitization occurs [12]. Alloreactive T cell activity, mea-
sured by presence of cytotoxic T cell precursors, is strongly
associated with graft failure, although this influence can
also be affected by the type of immunosuppression regimen
[14, 15]. The similarity in function and viability between
autografts and allografts containing twice as many islets
underscores the role of alloreactivity in underperformance
of allografts [16].

Given that T1DM is an autoimmune disease, recurrent
autoimmune destruction involving donor islet antigens may
also play a role in graft failure. Monocytic infiltration of islet

grafts with preferential β cell loss has been demonstrated
weeks after transplant [17]. Studies evaluating autoantibody
influence on transplanted islet success have shown varying
associations. The autoimmune process appears to largely
contribute to graft destruction in the context of a donor and
recipient MHC class II antigen match [18]. While also likely
affected by differences in preparation and immunosuppres-
sive regimens, higher baseline lymphocyte counts, and T cell
autoreactivity against islet-associated antigens are negatively
associated with graft function [14, 19–21].

Another hurdle that has emerged as a limitation in graft
viability and function is the development of an optimal
vascular network [22]. Normal pancreatic islets have an
extensive microvascular system. Capillaries supplying the
endocrine cells are more numerous, with thinner walls,
more extensive fenestrations, and larger diameters than
exocrine components, suggesting an increased importance of
perfusion and sensitivity to hypoxia [23]. Unfortunately, this
network is interrupted during the islet isolation process [22].
Transplanted islet oxygen, nutrient supply, and exposure to
intraislet paracrine signaling are limited by rate of neovas-
cularization and alterations in the vascular development that
differ compared to the vascular networks seen in native islets
[24, 25].

The site of transplantation may also have important
implications. Aside from islet exposure to the IBMIR, the
portal vein has several drawbacks as a transplant site [25].
Islets may be exposed to higher concentrations of β cell
toxic immunosuppressants via the portal vein [26]. Oxygen
concentrations supplied by the portal vein are lower than
those from arterial supplies, resulting in relative hypoxia
of the islet graft. Pancreatic islets transplanted intraportally
into the liver of mice also have substantially lower blood
flow than native islets [25, 27]. Because of glycogen and
glucose production by the liver, vascular communication
with surrounding hepatocytes can expose transplanted islets
to higher glucose concentrations than seen in the systemic
circulation. This results in impairment of the appropriate
response of β cells and α cells to systemic blood glucose
levels [28, 29]. Development of hepatic steatosis may also
negatively affect graft function [30].

3. Stem Cells as a Tool to Address
Limitations of Islet Transplants

Recent advances in the field of stem cell research have
stimulated significant interest in the potential role that both
multipotent (adult), pluripotent (embryonic), and induced
pluripotent stem cells could play in the replacement of islets
in patients with T1DM. The unique properties of different
postnatal or adult stem cell populations offer valuable sup-
portive functions that appear to enhance graft function and
survival. In addition to a potential role as companion cells
during transplantation, pluripotent or embryonic stem cells
present a potential alternative for the generation of insulin
producing cells (IPCs). The use of adult stem cell populations
has also emerged as a potential source of IPCs, and these
cells can be directed down a pancreatic and endocrine lineage



Journal of Transplantation 3

of development. The remainder of this paper will focus on
a discussion of the different adult populations of stem cells
that have been employed as companion or supportive cells
for islets transplants and conclude with a brief description of
research utilizing stem cells in an attempt to generate IPCs.
The different roles played by these cells are summarized in
Table 1.

4. Stem Cells as Companion Cells

4.1. Mesenchymal Stem Cells. Among the most studied of
adult stem cells as companion or supportive cells for islet
transplantation are mesenchymal stem cells (MSCs). MSCs
are multipotent progenitor cells found in the perivascular
spaces of many adult tissues. These cells have the capacity
for self-renewal. MSCs may be able to differentiate into
mesodermal and potentially ectodermal and endodermal
lineages, but the ability of these cells to differentiate into
all three lineages remains somewhat controversial [76]. The
multipotent, immunomodulatory, and regenerative proper-
ties of these cells have inspired applications in models of
tissue injury and immune diseases, ranging from increased
neurogenesis in rats to inhibition of proinflammatory
cytokines in murine acute lung injury models [76].

In preclinical studies, cotransplantation of islets and
MSCs has emerged as a promising tool to improve graft
survival. Early studies focused on the effects of bone-marrow
derived MSCs and the benefits of this cell population on
transplanted islet function have been demonstrated repeat-
edly through in vivo experiments in rodents and primates
[77]. Cotransplantation with syngeneic MSCs results in a
lower β cell requirement for normoglycemia, with observed
improvements in glucose tolerance and prolonged viability
of allogeneic islet transplants in mice [31, 39–41]. In diabetic
cynomolgus monkeys at 1 month after transplantation, the
combination of MSCs with islets confers prolonged graft
function with significantly increased C-peptide levels com-
pared to islets transplanted with nonspecific bone marrow
cells [32]. Because of their adhesive properties, MSCs have
also been shown to coat islets in a coculture system. This
characteristic provides a potential model for transplantation
that may improve interactions between the cell types after
engraftment [78].

Numerous studies have been undertaken to investigate
the mechanisms behind the beneficial effects of bone
marrow-derived MSCs. One important contribution of
MSCs appears to be related to their immunomodulatory
capabilities. MSC administration in mice with allogeneic
islet grafts was associated with decreased delayed-type
hypersensitivity via cleavage of CD25 from the T cell
surface. This effect limited T cell activation and prolonged
graft survival [31]. Additional MSC dosing was associated
with reversal of acute rejection of allogeneic transplants
in monkeys [32]. These properties are mediated via pro-
duction of multiple factors that collectively act to suppress
T cell proliferation and function, dendritic cell matu-
ration, and natural killer-cell proliferation. MSC-derived
factors act on these immune cells to decrease secretion

of proinflammatory cytokines including interferon gamma,
granulocyte-macrophage colony-stimulating factor, tumor
necrosis factor-α, and monocyte chemoattractant protein-
1 [31, 33–35]. MSCs also act to induce regulatory T cells
and the generation of anti-inflammatory cytokines like IL-
10, modulate neutrophil function, and B cell function and
differentiation [35, 37]. Collectively, these effects create a
shift away from antigen-specific cytotoxicity and inflamma-
tion [31, 36–38, 42, 57].

Another component to the advantageous effects of MSCs
is their contribution to establishing a vascular network for
new islet grafts. Compared to islets transplanted alone,
multiple studies have demonstrated that mice transplanted
with bone marrow cells or bone marrow-derived MSCs
combined with islets had a significant increase in peri-
islet vessel number, with a higher capillary to β cell
ratio observed postoperatively [39–41]. In cotransplantation
models, the development of new vessels in hybrid grafts was
observed earlier [39]. This earlier and more pronounced
increase in capillary density seems to occur secondary
to secretion of multiple proangiogenic factors, including
vascular endothelial growth factor (VEGF), interleukin 6(IL-
6), interleukin 8(IL-8), hepatocyte growth factor (HGF),
TGF-β (transforming growth factor-β), and platelet-derived
growth factor [39–44]. MSC secretion of matrix metallo-
proteinases is also thought to initiate degradation of the
preexisting extracellular matrix, allowing endothelial cells
to migrate into islets. This consequence is evidenced by
increased vascular sprout development and endothelial cell
migration into the surrounding matrix that occurs in vitro
when MSCs are combined with human islet-endothelial cell
composite preparations compared to islets combined with
only endothelial cells [31, 45].

In addition to proangiogenic effects, MSCs also have
potent antiapoptotic effects that protect islets from the
hypoxia and inflammatory destruction which occurs as
a result of the isolation and transplantation process. In
an in vitro model of islet hypoxia and reoxygenation, rat
islets cocultured with bone marrow MSCs had increased
expression of protective hypoxia-induced genes, along with
decreased apoptotic rates, and improved glucose-stimulated
insulin secretion when compared to islets cultured alone
[46]. Cocultured islets also had an increased ATP/ADP
ratio leading to improved glucose-stimulated insulin release
[42, 47, 79]. Rat islets treated with streptozotocin to mimic
peritransplantation inflammation had decreased apoptosis
and increased glucose stimulated insulin secretion when
indirectly cocultured with MSCs [48]. In vivo benefits of
these cells on early islet death from the isolation process are
demonstrated by improved blood glucose values in diabetic
mice receiving a marginal mass of human islets that were
cultured in MSC media for 48 hours before transplantation.
This improvement was noted when compared to results
obtained from transplantation of islets that had undergone
more typical isolation procedures [47].

Many of the effects of MSCs appear to be mediated via
secretion of paracrine factors, including HGF, TGF-β, IL-
6, VEGF A, and platelet-derived growth factor [42]. The
importance of this influence is supported by a decrease in
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Table 1: Described roles of stem cells in islet transplantation.

Stem cell Function Mechanism

Mesenchymal stem cells

Immunomodulation

Decreased activation and proliferation of T cells, dendritic
cells, and NK cells, thereby decreasing secretion of
inflammatory cytokines including interferon gamma,
granulocyte-macrophage colony-stimulating factor, tumor
necrosis factor-α, and monocyte chemoattractant
protein-1 [31–36]
Induction of regulatory T cell activation and IL-10
production [35, 37, 38]
Modulation of neutrophil and B cell function and
differentiation [35, 37]

Establishment of graft vascular
network

Secretion of angiogenic paracrine factors VEGF, IL-6,
IL-8, HGF, PDGF, and TGF-β [39–44]
Secretion of matrix metalloproteinases [31, 45]

Antiapoptotic
Secretion of paracrine factors including HGF, IL-6, and
TGF-β resulting in increased expression of genes
protective against hypoxia [46–48]

Improved β cell architecture Unknown [49]

β cell replacement Differentiation into insulin-producing cells [50–54]

Adipose-derived stem cells

Establishment of graft vascular
network

Secretion of angiogenic paracrine factors VEGF, HGF,
bFGF, GMCSF, and TGF-β [37, 55, 56]
Differentiation into endothelial cells [57]

Antiapoptotic
Secretion of antiapoptotic growth factors, including HGF,
GM-CSF, and TGF-β [56]

β cell replacement Differentiation into insulin producing cells [58–60]

Adipose-derived stem cells +
endothelial progenitor cells

Establishment a vascular network
within grafts

Direct differentiation into vasculature and pericytes [61]
Release of paracrine factors [61]

Neural crest stem cells Improved graft innervation Neuronal differentiation [62, 63]

Human embryonic stem cells β cell replacement Differentiation into insulin producing cells [64–72]

Induced pluripotent stem cells β cell replacement Differentiation into insulin producing cells [73–75]

benefits on islet survival and vessel development observed
when human islets are cocultured with bone marrow cells
and antibodies that selectively deplete these paracrine factors
[80]. Direct cell contact between the MSCs and islets may
also play a role, however, as immunomodulatory effects
and IL-10 production are decreased in vitro when islets are
separated from MSCs by a permeable membrane [38].

Concurrent transplantation of islets with MSCs also
has advantageous effects on islet remodeling and structure
that may lead to improved insulin secretion as well as
improved intraislet paracrine communication between β
cells and other islet endocrine cells [81–84]. Immunostaining
reveals in mice, islets transplanted with MSCs develop
graft morphology characteristic of native islet architecture,
versus a more diffuse distribution of α cells and δ cells
in grafts containing only islets [49]. After 6 months of
coculture with MSCs, human islets maintained a three-
dimensional shape that contained endothelial cells compared
to development of a monolayer from islets cultured alone.
Reverse transcriptase-PCR also revealed improvements in
glucagon expression in cocultured islets [80]. Further in vivo
data on the impact of MSC companion cells on the function
of other intraislet hormone-producing cells is needed to
characterize the significance of this effect.

4.2. Adipose-Derived Stem Cells. More recent studies have
demonstrated the potential of additional postnatal organs
to function as sources of MSCs [77]. Adipose tissue has
emerged as a promising origin of these adult stem cells
with regenerative capacity [85]. MSCs derived from adipose
tissue (ASCs) are obtained from the adipose stromal vascular
fraction, a population of cells obtained after enzymatic
dissociation of adipose depots followed by density separation
from adipocytes [86]. ASCs may also be able to differentiate
into mesodermal and potentially ectodermal and endoder-
mal lineages, but again the ability of the cells to differentiate
into all lineages is somewhat controversial [87]. While ASCs
are functionally similar to bone marrow MSCs, they are
more easily accessible with minimal risk to the patient.
Adipose also yields a greater number of stem cells per gram
of tissue than bone marrow [85, 88]. This accessibility is
especially attractive as patients could easily provide their own
populations of cells.

ASCs exhibit a number of potential characteristics and
effects that are similar to MSCs and benefit islet grafts
comparably [85]. Combined transplantation of ASCs with
a marginal islet mass resulted in prolonged graft survival
and glucose tolerance similar to that observed when using
significantly higher numbers of islets. Hybrid grafts had
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a well-preserved islet structure compared to those trans-
planted with islets alone. These hybrid islets also had
decreased presence of CD4+ and CD8+ cells, reflecting
an anti-inflammatory effect [57]. Pretreatment of ASCs
with a mixture of molecules to increase paracrine factor
secretion, followed by coculture with islets, then combined
transplantation of islets and ASCs has been shown to further
improve graft function [89].

While research into the application of ASCs to diabetic
models is ongoing, ASCs have been studied in several other
injury and disease models. Studies in mice with proximal
femoral artery ligation and subsequent hindlimb ischemia
have demonstrated the pro-angiogenic influence of ASC
administration [90]. In vitro studies suggest the etiology is
a combination of differentiation and direct incorporation of
ASCs into vascular structures combined with secretion of
angiogenic and antiapoptotic growth factors [55, 90]. These
specifically include VEGF, HGF, basic fibroblast growth
factor (bFGF), granulocyte-macrophage colony-stimulating
factor (GM-CSF), and TGF-β [37, 55, 56]. ASC-hybrid grafts
demonstrate an increased presence of endothelial cells, which
appear to be differentiated from ASCs [57].

4.3. Endothelial Progenitor Cells. Possible benefits on vascu-
logenesis have generated interest in endothelial progenitor
cells (EPCs), which promote angiogenesis at sites of hypoxia
or injury and can be obtained from bone marrow, cord
blood, vessel walls, or peripheral blood [91]. The use of EPCs
in ischemic injury models has previously been undertaken
[92, 93]. In a rat model of myocardial infarction, EPC
transplantation was associated with improved ventricular
function [94]. Microvesicles derived from EPCs enhanced
limb perfusion in mice with femoral artery ligation [95].
Effects are mediated via direct differentiation into new vessels
and possibly through secretion of paracrine factors that
support the growth of new vasculature [96, 97]. Interestingly,
vessel formation after islet transplantation is thought to
be unstable secondary to an inability to attract sufficient
host mural cells [55]. However, generation of a more stable
vascular network has been achieved by cotransplantation of
endothelial cells with ASCs. In this context, ASCs are able
to function similarly to pericytes, which are cells that line
vessel walls and support vasculature. This role is supported
by frequent ASC expression of pericyte surface markers and
the periendothelial location of ASCs in adipose tissue in vivo.
Through paracrine interaction, endothelial cells promote
mitosis and chemoattraction of ASCs, while ASCs promote
endothelial cell survival and migration [55]. The potential
for use of this cell mixture in islet transplants is supported
by the development of a vascular network with clusters
of insulin-positive cells when islets were combined with
subcutaneous implants in mice [61].

4.4. Neural Crest Stem Cells. The utility of other adult
stem cells as companion cells has also been explored. Islet
innervation plays an important role in β cell development
and function [98, 99]. Disruption of this nerve supply
occurs during the isolation and transplantation process.

The importance of innervation for islet function led to
the hypothesis that neural crest stem cells may be valuable
companion cells in islet grafts. In vitro, islets have a trophic
effect on neural crest migration and promote differentiation
into neurons [62]. Neural crest stem cells cotransplanted
with islets migrate and associate with the islet cells. Hybrid
grafts with neural crest cells and marginal islet mass
developed similar β cell mass when compared to transplants
that began with twice the amount of islets. These hybrid
grafts functioned similarly to the islet-only grafts by the one-
month time point, with no significant differences observed
in glucose tolerance [62, 63].

Whether utilized individually or in combination with
other supportive cells, the addition of adult stem cells as
companions to islet allografts provides a promising avenue
to address the limitations afforded by the current transplan-
tation process. While a wealth of preclinical data suggests
this approach is feasible with innumerable benefits, further
studies in human clinical trials are needed to determine if
the myriad of benefits observed in animal models will extend
to human islet transplantation strategies.

5. Human Embryonic Stem Cells (hESCs) and
the Quest to Generate an Alternative
Source of Insulin-Producing Cells

The prospect of a limitless and renewable replacement
for β cells has inspired multiple investigations involving
human embryonic stem cells (hESCs) [64–66]. By mimicking
steps in the typical development of pancreatic endocrine
cells, early studies have been able to induce differentiation
of hESCs into cells that express insulin and other β cell
markers. However, low yields of functionally immature,
ineffective cells rendered clinical utilization of this approach
impractical as these cells had vastly decreased amounts of
insulin compared to normal islets. Further, these early cells
were unable to correct hyperglycemia in mice rendered
diabetic by streptozotocin [67, 68]. More recent advance-
ments in the understanding of embryonic β cell development
have resulted in more successful differentiation protocols.
These approaches generate higher yields of cells expressing
markers of pancreatic endoderm. Once transplanted, these
cells differentiate into functional endocrine cells [69–71].
The microenvironment of various graft sites surrounding
the transplanted cells may also have important effects on
subsequent differentiation [70]. Diabetic mice transplanted
with hESCs treated under these newer protocols experience
sustained correction of their hyperglycemia and have com-
parable insulin and C-peptide levels to mice transplanted
with large numbers of islets. These mice had immediate
recurrence of hyperglycemia upon removal of the grafts
[69, 72]. These findings suggest an in vivo contribution to
the terminal differentiation of hESCs into IPCs. Despite these
advances, there is little known about the in vivo factors or
conditions needed for these terminal maturation steps. This
remains an area of intense study.

Exploration into the possibility of reprogramming
somatic cells into cells that resemble hESCs has also resulted
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in promising outcomes. Although autoimmunity would still
present a challenge, this prospect is especially enticing given
that patient-specific β cells could be generated, circumvent-
ing the need for immunosuppression to prevent rejection.
Social and ethical objections to use of hESCs would also
be avoided. These induced pluripotent stem cells (iPSCs)
could ideally be directed down a pancreatic endocrine
developmental program and then be used to produce insulin
producing cells. While this field has not yet advanced as
far as the human embryonic stem cell field, several studies
utilizing these protocols show the generation of IPCs that
express insulin and some other markers of mature β cells
[73, 74, 100]. In vivo, murine fibroblasts have been utilized
to generate iPSCs, then differentiated into IPCs that improve
hyperglycemia when transplanted via the portal vein in
mice treated with streptozotocin [75]. IPCs generated from
rhesus monkey fibroblasts using similar techniques were
able to normalize hyperglycemia in about half of diabetic
mice receiving renal subcapsular transplants [50]. Early
studies have also utilized viral vectors to infect somatic cells
and induce expression of transcription factors important
for pluripotency. The risk of mutagenesis associated with
genomic integration when using this approach made it
unsuitable for therapeutic use [101, 102]. Newer approaches
continue to be developed that employ alternative methods
of gene delivery, including direct delivery of reprogramming
proteins that are capable of penetrating the cell membrane
without a viral vector, or bacterial delivery of these nuclear
proteins [103, 104].

Despite some promising results of investigations using
hESCs and iPSCs to generate IPCs, several other limitations
exist that are unique to these cell populations. In addition
to the incomplete differentiation, the recombinant pro-
teins required for the differentiation process are extremely
expensive. Current research is exploring chemical com-
pounds that could replace these proteins in protocols, while
providing more easily regulated and efficient processes of
guiding differentiation. Examples include histone deacetylase
inhibitors, (−)-indolactam V, and a cocktail consisting of
inhibitors of transforming growth factor-β (TGFβ) and
extracellular signal-related kinase pathways and thiazovivin
[105–107]. The usage of reproducible large-scale systems to
generate populations of progenitor cells will be necessary for
clinical feasibility [108].

Safety concerns have also arisen regarding teratoma for-
mation from undifferentiated cells [69, 109]. The incidence
of teratoma may be decreased by more effective purification
methods, avoiding transplantation of other pluripotent cells,
or by insertion of pancreatic transcription factor genes that
limit pluripotency [72, 109]. However, the ideal approach
remains to be elucidated. Another potential complication,
the differentiation of pancreatic progenitor cells into acinar-
derived dilated ducts and cysts that could impinge on
functional IPCs, has also been recently described [108].

Some have explored the possibility of forcing adult stem
cells that could otherwise be used as supportive cells in
transplantation strategies towards a β cell lineage in vitro.
These cells may then be able to directly contribute to
islet graft success through differentiation into IPCs [110].

This approach could still take advantage of patient-specific
cells, avoid a need for immunosuppression, and circumvent
some of the complications that arise with pluripotent stem
cell usage. Importantly, this approach should theoretically
reduce teratoma formation. Differentiation of bone mar-
row MSCs has been induced in vitro with high glucose
and nicotinamide-enriched culture mediums. The result-
ing IPCs were able to temporarily control hyperglycemia
in streptozotocin-induced diabetic rats [51, 52]. Normo-
glycemia was also demonstrated in streptozotocin-treated
mice after receiving MSCs that had been differentiated into
IPCs from skin fibroblasts using a 3-stage protocol [53].
IPCs generated from placental and umbilical cord MSCs have
similarly been reported to decrease hyperglycemia in diabetic
mice [50, 54].

Conflicting in vivo evidence exists for IPC development
from MSCs that have not undergone a differentiation
protocol. In mice transplanted with islets and bone marrow
derived MSCs, an increase in pancreatic and duodenal
homeobox gene (PDX-1) positive cells was noted in bone-
marrow cells in the postoperative period. This may have
reflected an increase in islet cell precursors, although no
insulin positive cells developed over the course of the
experiment [39]. Other in vivo studies have had negative
results, with no evidence of MSC-derived β cells observed in
murine pancreatic injury or transplantation models, despite
improved islet graft function [43, 81]. These studies reflect
that the majority of MSC effect on β cell regeneration likely
occurs through augmentation of endogenous cell survival or
regeneration.

Similar to bone marrow MSCs, ASCs are capable of
differentiation into primitive IPCs in vitro under certain
culture conditions [58, 59]. ASCs differentiated into islet-
like aggregates were able to produce detectable C-peptide and
improve hyperglycemia in diabetic mice undergoing trans-
plantation with the cells. Interestingly, these improvements
were similar to those seen when transplanting undifferen-
tiated ASCs, suggesting that more work is still needed to
identify mechanisms of improvement [60]. Analogous to
MSCs, much of the evidence regarding ASC effects on islet
replacement points to their role as supportive cells.

Although much progress continues towards the goal of
creating a renewable source of engineered β cells from stem
cells, further research will be necessary for the realization of
this goal in humans. Still, this remains an area of intense
study as multiple high-profile groups within academia and
industry work towards creating insulin producing cells from
embryonic, induced pluripotent, or adult stem cells.

6. Human Clinical Trials

Although no clinical human trials have been published that
employ stem cells in islet transplantation strategies, they are
beginning to be employed in other ways. Recently, patients
with T1DM whose serum lymphocytes were “educated” by
multipotent human cord blood stem cells demonstrated
a progressive improvement in fasting and stimulated C-
peptide levels up to 40 weeks after treatment. “Education”
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was performed by removing the cells from peripheral
blood and returning them to the circulation after stem cell
exposure. Patients receiving this novel treatment exhibited
a significant increase in regulatory T cells and TGF-β1,
reflecting immune modulation as an explanation for the
improved β cell function [111]. Even with clear differences
in the treatment approach, these results provide promise for
a future role of stem cells in islet transplants for T1DM in
humans.

Despite the lack of published human clinical trials, a
search of registered clinical trials (http://clinicaltrials.gov/) at
the time of this paper revealed 15 active studies involving
stem cell treatments for TIDM. Thirteen studies involved
infusion of stem cells (mostly autologous MSCs), while
one study used a stem cell “educator” as outlined above.
Only one study planned to evaluate cotransplantation of
islets with MSCs. The trials listed appear to be of varying
quality, and many factors regarding the administration of
these cells will need to be carefully and rigorously studied.
For instance, in vitro exposure of bone marrow MSCs
to human blood can actually trigger the IBMIR. Markers
suggestive of a mild IBMIR were noted upon retrospective
review of humans receiving therapeutic MSC infusions
for complications related to prior hematopoietic stem cell
transplants. This effect appears to be dependent on multiple
variables including the donor, dose of stem cells, and number
of cell passages. Further study will be necessary to elucidate
the ideal use of parameters to minimize the risks of IBMIR
while maximizing other benefits offered by MSCs [112].
Until further published data is available, physicians should
carefully counsel patients who may be eager or desperate
for novel treatments for T1DM against “stem cell tourism”
or enrollment in experimental protocols without a thorough
review of the quality of ongoing studies.

7. Conclusion

Much progress remains to be achieved in the field of islet
transplantation in order for this procedure to offer a suitable
alternative to exogenous insulin replacement. Stem cells
provide an effective aid to address immune-mediated graft
dysfunction and poor vascular supply, while supporting
β cell growth and development and inhibiting apoptosis.
Although much work is needed in the field, stem cells
may also serve as a renewable source of insulin producing
cells. Through these diverse roles, stem cells may provide
the key to bridging the gap between the current status
of transplant outcomes and a viable long-term solution
to insulin deficiency. In order to move this field forward,
human data will be necessary to provide confirmation of
preclinical studies and provide further characterization of the
therapeutic benefits offered by stem cells.
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